I. Experimental General Methods. All reactions, except where indicated, were carried out in flame-dried glassware under a dry, oxygen-free argon atmosphere using standard Schlenk and drybox techniques. All solvents were either freshly distilled from sodium benzophenone (or P₂O₅ in the case of CH₂Cl₂) or deoxygenated then dried by passing them through a column of activated alumina under nitrogen¹. CD₂Cl₂ was purchased from Cambridge Isotope Laboratories, Inc. and dried over CaH₂ or P₄O₁₀. The CD₂Cl₂ was subjected to three freeze-pump-thaw cycles and vacuum transferred into glass Schlenk tubes fitted with high-vacuum Teflon plugs, and then stored under Ar. CDCl₂F was prepared by literature procedure.² Air sensitive complexes were handled in an argon filled glove box and stored under argon at -30 $^{\circ}\text{C}$. CP grade CO and C_2H_4 were purchased from National Welders Supply and used as received. ¹³CO (99% ¹³C) and ¹³CH₂¹³CH₂ (99% ¹³C)were purchased from Cambridge Isotope Laboratories, Inc. and used as received. Trimethylaluminum (2.0 M in toluene), 1,3-bis-(diphenylphosphino)propane and Ni(acac)2 were purchased from Aldrich Chemicals and used as received. Elemental analyses were obtained from Atlantic Microlabs Inc., Norcross GA. $H(OEt_2)_2BAr'_4$, and $CDCl_2F^2$ were synthesized using published methods. Analytical Measurements. FT-IR experiments were recorded using a ReactIR 1000 from ASI Applied Systems fitted with a silicon-tipped (SiComp) probe inserted through a nylon adapter and O-ring seal into a 2-necked flask. The 1 H and 13 C NMR data attributed to the counterion BAr'₄ (Ar' = 3,5-(CF₃)₂C₆H₃) are consistent for all cationic complexes examined and are not included in each compound characterized below. Full spectral details have been previously reported.⁴ Kinetic Measurements. Kinetics experiments were carried out under argon in NMR tubes equipped with septa. CDCl₂F was added to samples at -78 °C unless otherwise indicated, after which solids were dissolved at the lowest temperature possible. Kinetics experiments were carried out on a Bruker Avance 300 spectrometer. NMR probe temperatures were measured using a thermocouple.⁵ (diphenylphosphino)propane (4.24 g, 0.103 mmol) were combined in a schlenk flask under argon atmosphere and slurried in Et₂O (60 mL) at 25 °C for 1 h. The slurry became a light blue color. The slurry was cooled to -50 °C and 4.75 mL (2.0 M in toluene, 0.029 mmol based on Me) of AlMe₃ was added dropwise via syringe. The solution was allowed to warm slowly to 25 °C and stir overnight. A yellow-brown slurry formed that upon filtration gave a canary-yellow solid. The solid was washed with Et₂O (3 x 20 mL) and dried in vacuo to yield 3.16 g (61 %) of 1. The NMR spectra were consistent with that previously reported.6 ### In Situ Preparation of Cationic Nickel Complexes for IR Studies. The standard procedure utilized for the generation of complex **2** for the purpose of characterizing CO derivatives by IR spectroscopy is as follows: dpppNi(CH₃)₂ (15.0 mg, 0.030 mmol) and H(OEt₂)₂BAr'₄ (30.0 mg, 0.030 mmol) were combined in a Schlenk tube fitted with a septum and cooled to -80 °C. CH₂Cl₂ (2 mL) was added via syringe and the solution was stirred until homogeneous. This solution was then transferred via cannula to the two-necked IR flask cooled to -80 °C. This solution of **2** was used to generate complexes 4, 5 and 6 by the same procedure as that described below for the NMR reactions. For complex 5 the temperature at which CO was introduced was -80 °C. In Situ Preparation of Cationic Nickel Complexes for NMR Studies. (dppp)NiCH₃(OEt₂)⁺(BAr'₄)', 2[OEt₂]. dpppNi(CH₃)₂ (5.0 mg, 0.010 mmol) and H(OEt₂)₂BAr'₄ (10 mg, 0.010 mmol) were combined in an NMR tube fitted with a septum. The tube was cooled to -80 °C and 0.5 mL CD₂Cl₂ was added via syringe. The tube was agitated with slight warming to ensure complete dissolution and protonation. ¹H NMR (300 MHz, CD₂Cl₂, -80 °C) δ 7.30-7.73 (m, 20H, (C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 3.28 (br, 4H, O(CH₂CH₃)₂), 2.32 (br, 2H, PCH₂CH₂CH₂P), 2.20 (br, 2H, PCH₂CH₂CH₂P), 1.81 (br, 2H, PCH₂CH₂CH₂P), 1.10 (br, 6H, O(CH₂CH₃)₂), -0.08 (br, 3H, Ni-CH₃). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, -80 °C) δ [(C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂ 133.0 (d, ²J_{CP} = 11, ortho), 131.8 (d, ²J_{CP} = 10, ortho'), 131.3 (s, meta), 130.8 (s, meta'), 130.1 (s, para), 129.5 (s, para), 129.1 (d, ¹J_{CP} = 10, ipso), 128.7 (d, ¹J_{CP} = 9, ipso'), 67.7 (s, Ni-O(CH₂CH₃)₂), 27.1 (dd, ¹J_{CP} = 26, ³J_{CP} = 9, PCH₂CH₂CH₂P), 26.7, (d, ¹J_{CP} = 22, PCH₂CH₂CH₂P), 17.0, (s, PCH₂CH₂CH₂P), 14.4 (s, Ni-O(CH₂CH₃)₂) 8.4 (dd, ²J_{CPtrans} = 55, ²J_{CPcis} = 37, Ni-CH₃). ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, -80 °C) δ 27.2 (d, ²J_{PP} = 30), 0.95 (d, ²J_{PP} = 30). (dppp)NiCH₃(OH₂)⁺(BAr'₄), 2[OH₂]. A solution of (dppp)NiCH₃(OEt₂)⁺(BAr'₄)⁻ in CD₂Cl₂/CDCl₂F (50:50 v/v) was prepared similarly to that described above. To the solution at -80 °C was added 1 drop of degassed H₂O via syringe. The NMR tube was agitated to ensure thorough mixing. ¹H NMR (300 MHz, CD₂Cl₂/CDCl₂F, -80 °C) δ 7.4-7.6 (m, 20H, (C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 4.56 (br, Ni-OH₂), 2.33 (br, 4H, PC H_2 CH₂CH₂P), 1.69 (br, 2H, PCH₂CH₂CH₂P), -0.16 (br, 3H, Ni-CH₃). ³¹P{¹H} NMR (121 MHz, CDCl₂F, -80 °C) δ 31.9 (d, ² J_P = 37), 0.1 (d, ² J_{PP} = 37). (dppp)Ni(CO)COCH₃⁺(BAr'₄)⁻, 4. (dppp)NiCH₃(OEt₂)⁺(BAr'₄)⁻ was prepared as above. The solution at -80 °C was purged with a gentle stream of CO for 3-5 minutes. The solution was next warmed to -20 ° C and purged with a gentle stream of argon for 30 minutes. ¹H NMR (300 MHz, CD₂Cl₂, -90 °C) δ 7.15-7.74 (m, 20H, (C₆H₅)₂PCH₂CH₂P(C₆H₅)₂), 2.63 (br m, 2H, PCH₂CH₂CH₂P), 2.32 (br m, 2H, PCH₂CH₂CH₂P), 1.87 (br, 3H, Ni-COCH₃), 1.65 (br m, 2H, PCH₂CH₂CH₂P). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, -90 °C) δ 243.0 (d, ²J_{CP} = 48, Ni-COCH₃), 180.6 (dd, ²J_{CP} = 52, ²J_{CP} = 15, Ni-CO), 133.4, 132.5, 132.4, 132.0, 131.6, 131.0, 130.8, 129.9, 129.3, 129.1, 124.9, 124.3, 123.6 ((C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 39.0 (dd, ³J_{CP} = 26, ³J_{CP} = 14 Ni-COCH₃), 24.0 (d, ¹J_{CP} = 37, PCH₂CH₂CH₂P), 23.6 (d, ¹J_{CP} = 42, PCH₂CH₂CH₂P), 17.5 (s, PCH₂CH₂CH₂P). ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, -80 °C) δ 3.13 (d, ²J_{PP} = 57), -1.28 (d, ²J_{PP} = 57). IR (CH₂Cl₂, -80 °C) ν _{CO} = 2082 cm⁻¹, ν _{acy1} = 1698 cm⁻¹. (dppp)Ni(CO)₂COCH₃⁺(BAr'₄)', 5. (dppp)NiCH₃(OEt₂) ⁺(BAr'₄)' was prepared as above. The solution at –140 °C was purged with a gentle stream of CO for ca. 2 minutes. ¹H NMR (400 MHz, CD₂Cl₂, -80 °C) δ 7.15-7.74 (m, 20H, (C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 2.59 (br m, 4H, PCH₂CH₂CH₂P), 2.20 (br, 3H, Ni-COCH₃), 1.92 (br m, 2H, PCH₂CH₂CH₂P). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, -90 °C) δ 219.1 (d, ²J_{CP} = 45, Ni-COCH₃), 183.8 (br, Ni-(CO)₂), 131.5, 129.2, 129.0 ((C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 46.5 (br d, Ni-COCH₃), 25.5 (br, PCH₂CH₂CH₂P), 17.0 (s, PCH₂CH₂CH₂P). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, -90 °C) δ 11.65 (d, ²J_{PP} = 85), - The ¹³C labeled compound was made in an analogous manner in CDCl₂F using ¹³CO. ¹³C{¹H} NMR (75 MHz, CDCl₂F, -90 °C) δ 221.3 (br d, ² J_{CP} = 45, Ni-COCH₃), 184.5 (dd, ² J_{CP} = 24, ² J_{CP} = 22, Ni-(CO)₂). ³¹P{¹H} NMR (121 MHz, CDCl₂F, -110 °C) δ 11.8 (ddt, ² J_{PP} = 85, ² $J_{PC(acyl)}$ = 45, ² $J_{PC(acyl)}$ = 22), -1.25 (dtd, ² J_{PP} = 85, ² $J_{PC(carbonyl)}$ = 24, ² $J_{PC(acyl)}$ = 5). (dppp)Ni(CO)COCH₂CH₂COCH₃⁺(BAr'₄), 6. (dppp)Ni(CO)₂COCH₃⁺(BAr'₄) was prepared as above. C₂H₄ (1.05 equiv.) was added via syringe to the solution at -80 °C. The solution was allowed to warm to -45 °C. The reaction was monitored with ¹H and ³¹P{¹H} NMR spectroscopy until complete conversion to the chelate complex was observed. IR (CH₂Cl₂, -80 °C) ν_{CO} = 2045 cm⁻¹. The chirality at Ni in complex 6 greatly complicated the ¹H spectrum as there are five sets of diastereotopic methylenes with the central methylene of the phosphine ligand being the only decipherable set as revealed by 1 H COSY (see 1 H data below). 1 H NMR (300 MHz, CD₂Cl₂, -85 $^{\circ}$ C) δ 6.9-8.1 (m, 20H, $(C_6H_5)_2PCH_2CH_2CH_2P(C_6H_5)_2)$, 2.49-2.96 (m, 8H, $PCH_2CH_2CH_2P$ and $NiCOCH_2CH_2COCH_3$), 2.35 (s, 3H, $NiCOCH_2CH_2COCH_3$), 1.75 (br d, 1H, $^2J_{HaHa'} = 15$, PCH₂CHaHa'CH₂P), 1.32 (app. t, 1H, PCH₂CHaHa'CH₂P). ¹H{COSY} exposed ²J_{HH} coupling between the resonances at δ 1.75 and 1.32 (see below for spectrum). $^{13}C\{^{1}H\}$ NMR (75 MHz, CD_2Cl_2 , -85 °C) δ 241.2 (d, $^2J_{CP}$ = 58, Ni- $COCH_2CH_2COCH_3$), 223.1 (s, Ni-COCH₂CH₂COCH₃), 180.1 (dd, ${}^{2}J_{CP} = 47$, ${}^{2}J_{CP} = 24$, Ni-(CO)), 124.7-133.8 $((C_6H_5)_2PCH_2CH_2CH_2P(C_6H_5)_2)$, 37.8 (s, Ni-COCH₂CH₂COCH₃), 37.6 (d, ${}^3J_{CP} = 28$ Hz, Ni-COCH₂CH₂COCH₃), 31.6 (s, Ni-COCH₂CH₂COCH₃), 23.4 (d, ${}^{1}J_{CP} = 24 \text{ Hz}$, PCH₂CH₂CH₂P), 22.5 (d, ${}^{1}J_{CP} = 22 \text{ Hz}$, PCH₂CH₂CH₂P), 16.8 (s, PCH₂CH₂CH₂P). ${}^{31}P\{{}^{1}H\}$ NMR (121 MHz, CD₂Cl₂, -85 °C) δ 9.38 (d, ${}^{2}J_{PP} = 78$), -5.50 (d, ${}^{2}J_{PP} = 78$). The ¹³C labeled compound was made in an analogous manner using ¹³CO. ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, -90 °C) δ 241.4 (br d, ² J_{CP} = 58, Ni COCH₂CH₂COCH₃), 223.1 (s, Ni-COCH₂CH₂COCH₃), 179.9 (ddd, ² J_{CP} = 47, ² J_{CP} = 24, ² J_{CC} = 6, Ni-(CO)). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, -90 °C) δ 9.54 (ddd, ² J_{PP} = 78, ² $J_{PC(acyl)}$ = 58, ² $J_{PC(carbonyl)}$ = 24), -5.73 (ddd, ² J_{PP} = 78, ² $J_{PC(carbonyl)}$ = 47, ² $J_{PC(acyl)}$ = 11). (dppp)NiCH₂CH₂COCH₃⁺(BAr'₄)⁻, 7. A solution of complex 6 was prepared as described above. Argon was purged through the solution for 20 minutes with warming to -15 °C. ¹H NMR (300 MHz, CD₂Cl₂, -60 °C) δ 7.37-7.59 (m, 20 H, (C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 2.78 (br, 2H, Ni-CH₂CH₂COCH₃), 2.33 (br 4H, PCH₂CH₂CH₂P), 2.24 (s, 3H, Ni-CH₂CH₂COCH₃), 1.79 (br, 2H, PCH₂CH₂CH₂P), 0.92 (Ni-CH₂CH₂COCH₃). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, -40 °C) δ 239.6 (d, ²J_{CP} = 14, Ni-CH₂CH₂COCH₃), 124.6-132.7 ((C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 51.0 (s, Ni-CH₂CH₂COCH₃), 29.4 (dd, ²J_{CP} = 56 Hz, ²J_{CP} = 26, Ni-CH₂CH₂COCH₃), 27.3 (s, Ni-CH₂CH₂COCH₃), 26.4 (br d, ¹J_{CP} = 28 Hz, PCH₂CH₂CH₂CH₂P), 25.5 (d, ¹J_{CP} = 25 Hz, PCH₂CH₂CH₂CH₂P), 18.2 (s, PCH₂CH₂CH₂P). ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, -60 °C) δ 28.9 (d, ²J_{PP} = 40), -1.95 (d, ²J_{PP} = 40). (dppp)NiCH₃(C₂H₄)⁺(BAr'₄), 8. A solution of (dppp)NiCH₃(OEt₂) ⁺(BAr'₄) in CDCl₂F was prepared in a manner similar to that described above. The solution was cooled to -130 °C and C₂H₄ (ca. 25 equiv.) was added to the solution via syringe. ¹H NMR (300 MHz, CDCl₂F, -105 °C) δ 7.25-7.55 (m, 20H, (C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), η 2-CH₂CH₂ was not observed due to fast exchange with non-coordinated ethylene (δ 5.4), 2.3-2.7 (br, 4H, PCH₂CH₂CH₂P), 1.7-2.0 (br, 2H, PCH₂CH₂CH₂P), -0.01 (br, 3H, Ni-CH₃). ³¹P{¹H} NMR (121 MHz, CDCl₂F, -105 °C) δ 13.3 (d, ²J_{PP} = 45), 2.09 (d, ²J_{PP} = 45). (dppp)NiCH₂CH₂-μ-H⁺(BAr'₄), 10. A solution of (dppp)NiCH₃(OEt₂) ⁺(BAr'₄) in CDCl₂F was prepared in a manner similar to that described above. The solution was cooled to -130 °C and C₂H₄ (ca. 30 equiv.) was added to the solution via syringe. The solution was warmed to -50 ° C where the loss of propylene and the formation of butenes was observed. ¹H NMR (300 MHz, CDCl₂F, -113 °C) δ 7.24-7.47 (m, 20H, (C₆H₅)₂PCH₂CH₂CH₂P(C₆H₅)₂), 2.5 (br, 4H, PCH₂CH₂CH₂P), 1.92 (br, 2H, PCH₂CH₂CH₂P), (resonance for Ni-CH₂CH₃ was obscured by free diethyl ether (δ 1.1)), -1.0 (br, 3H, Ni-CH₂CH₃). ³¹P{¹H} NMR (121 MHz, CDCl₂F, -113 °C) δ 27.6 (br), 3.28 (br). The 13 C labeled version was made in a similar manner using ca. 8 equiv. 13 CH₂ 13 CH₂. 1 H NMR (300 MHz, CDCl₂F, -45 °C) δ -1.0 (br d, 1 J_{CH} ~ 125, 3H, Ni-CH₂CH₃). 1 H NMR (300 MHz, CDCl₂F, -113 °C) δ -1.0 (br, 3H, Ni-CH₂CH₃). 13 C NMR (75 MHz, CDCl₂F, -113 °C) δ 30.0 (br t, 1 J_{CH} = 160, Ni-CH₂CH₃), 3.17 (dq, 1 J_{CC} = 32, 1 J_{CH} = 124, Ni-CH₂CH₃). #### References - 1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518. - 2) Siegel, J. S.; Anet, F. A. L. J. Org. Chem 1988, 53, 2629. - 3) Brookhart, M.; Grant, B.; Volpe Jr., A. F. Organometallics 1992, 11, 3920. - 4) LaPointe, A.; Brookhart, M. Organometallics 1998, 17, 1530. - 5) Ammann, C.; Meier, P.; Merbach, A. E. J. Magn. Reson. 1982, 46, 319. - 6) Kohara, T.; Yamamoto, T.; Yamamoto, A. J. Organomet. Chem. 1980, 192, 265. ## II. Kinetic Data # Kinetic Data for the migratory insertion of 8. T = 177.5 K $k = 9.3 \times 10^{-4} \text{ s}^{-1}$ $\Delta G^{\ddagger} = 12.7 \text{ kcal/mol}$ III. Representative NMR and IR spectra: ¹³C{¹H} spectrum of 2[OEt₂] S 10 S 16