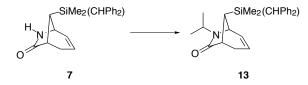
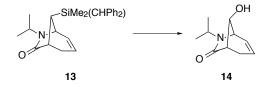

Formal Synthesis of (±)-Peduncularine: Use of the [3 + 2] Annulation of Allylic Silanes and Chlorosulfonyl Isocyanate

Claudia W. Roberson and K. A. Woerpel^{*}


Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information

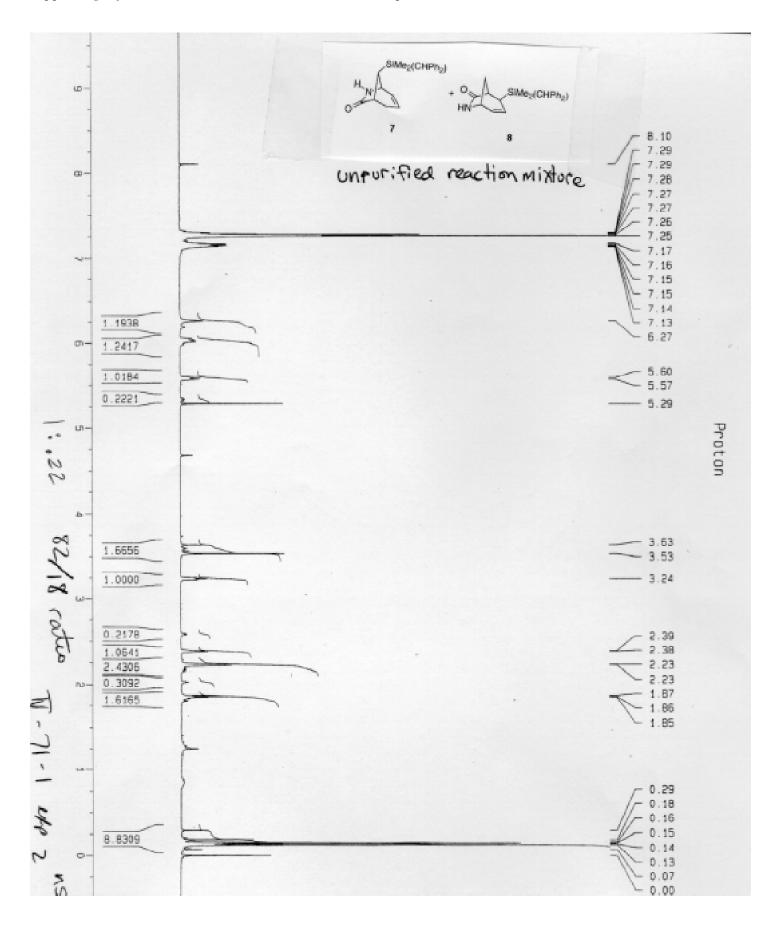

General. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature at 500 and 125 MHz, respectively, using Bruker DRX 500 spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra were acquired on a VG Analytical 7070E or Fisons Autospec spectrometer, and were obtained by peak matching. Microanalyses were performed by Atlantic Microlab, Atlanta, GA. Melting points are reported uncorrected. Analytical thin layer chromatography was performed on EM Reagents 0.25 mm silica gel 60-F plates. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on EM Reagents silica gel (SiO₂) 60 (230-400) mesh. All reactions were carried out under an atmosphere of nitrogen in glassware which had been flame-dried under a stream of nitrogen. Unless otherwise noted, all reagents were commercially obtained and, where appropriate, purified prior to use. Toluene, THF, Et₂O, and CH₂Cl₂ were dried by filtration through alumina according to the procedure of Grubbs.¹ Chlorosulfonyl isocyanate was purchased from Aldrich and distilled over K₂CO₃ prior to use. *s*-BuLi was titrated with 2-butanol (1.00 M in xylenes) using *o*-phenanthroline as an indicator.

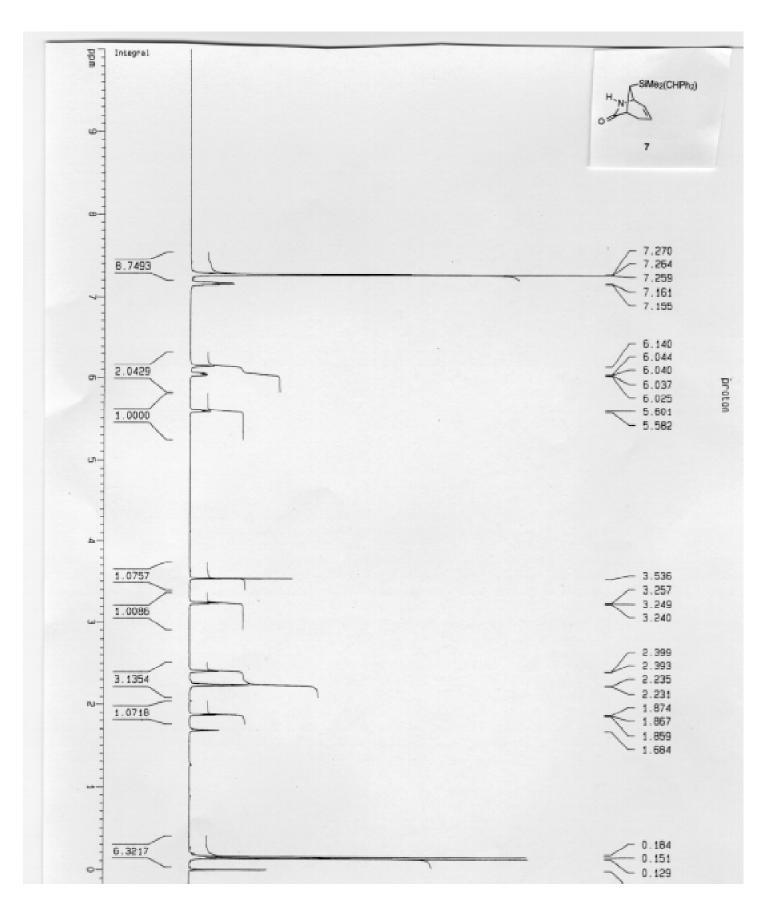

3-Dimethyl(diphenylmethyl)silyl-1,4-cyclohexadiene (6). To a cooled (-78 °C) solution of 1,4-cyclohexadiene (0.055 mL, 0.60 mmol) in 1 mL of THF were added *s*-BuLi (0.625 mL, 0.96 M in cyclohexane, 0.60 mmol), and TMEDA (0.100 mL, 0.60 mmol). The yellow solution was warmed to -45 °C, and after 2.5 h was treated with (Ph₂CH)Me₂SiCl **5**² (0.160 g, 0.613 mmol) in 1 mL of THF. After 10 min at -45 °C, the solution was warmed to 23 °C and treated with 6 mL of saturated aqueous NH₄Cl solution. The organic phase was diluted with 3 mL of Et₂O, separated from the aqueous phase, washed with 6 mL of brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash chromatography (hexanes) provided **6** as an oil (0.139 g, 76%): ¹H NMR (500 MHz, CDCl₃) δ 7.25 (m, 8H), 7.12 (m, 2H), 5.53-5.48 (m, 4H), 3.67 (s, 1H), 2.69-2.56 (m, 2H), 2.25 (m, 1H), 0.08 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 142.3, 128.7, 128.4, 125.8, 125.2, 122.0, 43.6, 29.5, 26.3, -5.5; IR (thin film) 3023, 2819, 1665, 1622, 1600 cm⁻¹; HRMS (CI/isobutane) *m/z* calcd for C₂₁H₂₄Si (M)⁺ 304.1647, found 304.1647. Anal. Calcd for C₂₁H₂₄Si: C, 82.83; H, 7.94. Found: C, 82.83; H, 7.87.

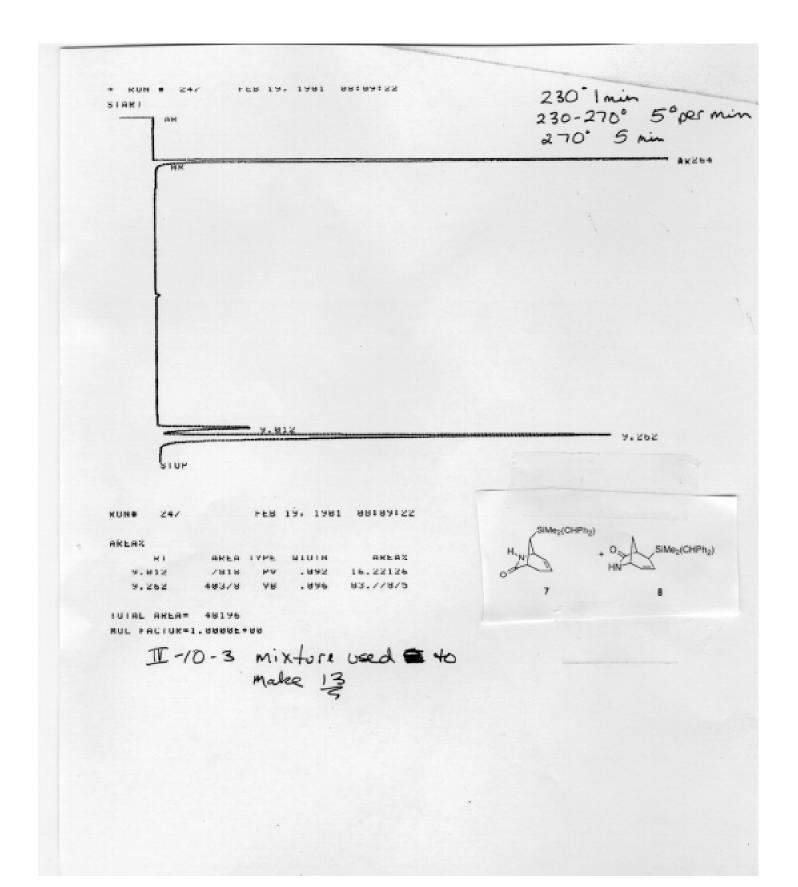
(1*S**,5*S**,8*R**)-8-[Dimethyl(diphenylmethyl)silyl]-6-aza-bicyclo[3.2.1]oct-3-en-7-one (7). To a cooled (-78 °C) solution of **6** (0.030 g, 0.099 mmol) in 1.5 mL of CH₂Cl₂ was added chlorosulfonyl isocyanate (0.020 mL, 0.230 mmol). The solution was warmed to -40 °C. After 24 h at -40 °C, the solution was treated with 2 mL of 25 % aqueous Na₂SO₃. The biphasic mixture was warmed to 23 °C and stirred for 16 h. The organic phase was separated from the aqueous phase, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash chromatography (1:1 EtOAc:hexanes) provided **7** and **8** (0.026 g, 76%) in an 82 : 18 ratio by ¹H NMR. Recrystallization provided a pure sample of **7** as a white solid: mp 154-156 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (m, 8H), 7.15 (m, 2H), 6.14 (br s, 1H), 6.04 (m, 1H), 5.59 (m, 1H), 3.54 (s, 1H), 3.25 (t, *J* = 4.1, 1H), 2.39 (m, 1H), 2.23 (m, 2H), 1.86 (t, *J* = 3.8, 1H), 0.15 (s, 3H), 0.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 182.4, 142.01, 141.95, 131.5, 128.7, 128.6, 128.52, 128.47, 125.6, 51.2, 45.7, 41.7, 34.8, 27.0, -2.7, -2.8; IR (KBr) 3168, 3021, 2961, 1734, 1716, 1700, 1684, 1676, 1670, 1653 cm⁻¹; HRMS (Cl/isobutane) *m/z* calcd for C₂₂H₂₆NOSi (M+H)⁺ 348.1784, found 348.1779. Anal. Calcd for C₂₂H₂₅NOSi: C, 76.03; H, 7.25; N, 4.03. Found: C, 75.80; H, 7.24; N, 4.01.

(1*S**,5*S**,8*R**)-6-Isopropyl-8-[dimethyl(diphenylmethyl)silyl]-6-aza-bicyclo[3.2.1]oct-3-en-7-one (13). To a solution of 7 (0.410 g of 84 : 16 ratio of 7 : 8 by GC, 0.991 mmol of 7) in 20 mL of CH₃CN were added 2,2-dimethoxypropane (0.580 mL, 4.72 mmol), triethylsilane (0.754 mL, 4.72 mmol), and trifluoroacetic acid (0.364 mL, 4.72 mmol). After 16 h, the solution was diluted with 50 mL of Et₂O and treated with 50 mL of saturated aqueous NaHCO₃ solution. The organic phase was separated from the aqueous phase, washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash chromatography (1:3 EtOAc:hexanes) provided 13 (0.239 g, 62%) as an oil which solidified on standing: mp 100-102 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (m, 8H), 7.16 (m, 2H), 5.98 (m, 1H), 5.52 (m, 1H), 4.11 (septet, *J* = 6.8, 1H), 3.53 (s, 1H), 3.04 (t, *J* = 4.5, 1H), 2.52 (m, 1H), 2.27-2.03 (m, 2H), 1.64 (t, *J* = 3.9, 1H), 0.97 (d, *J* = 6.8, 3H), 0.92 (d, *J* = 6.8, 3H), 0.14 (s, 3H), 0.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 142.1, 141.9, 132.1, 128.7, 128.51, 128.49, 128.3, 127.8, 125.51, 125.48, 51.3, 45.8, 43.0, 42.5, 34.8, 26.4, 21.7, 20.5, -2.5, -3.0; IR (KBr) 3035, 2968, 1682, 1635 cm⁻¹; HRMS (CI/isobutane) *m*/*z* calcd for C₂₅H₃₂NOSi (M+H)⁺ 390.2253, found 390.2258. Anal. Calcd for C₂₅H₃₁NOSi: C, 77.07; H, 8.02; N, 3.59. Found: C, 77.08; H, 8.10; N, 3.57.

 $(1R^*, 5S^*, 8R^*)$ -8-Hydroxy-6-isopropyl-6-aza-bicyclo[3.2.1]oct-3-en-7-one (14). To a solution of 13 (0.060 g, 0.173 mmol) in 2 mL of THF was added TBAF (0.207 mL, 1.0 M in THF, 0.207 mmol). After 10 min, the solution was concentrated *in vacuo*. The residue was dissolved in 3 mL of DMF. To this solution was added KF (0.050 g, 0.865 mmol), KHCO₃ (0.019 g, 0.190 mmol), and H₂O₂ (0.235 mL, 30% solution in H₂O, 2.08 mmol). The solution was heated at 65 °C for 17 h. The reaction mixture was cooled to 23 °C, diluted


with 4 mL of CH₂Cl₂, and treated with 4 mL of saturated aqueous NaHSO₃. The organic phase was separated from the aqueous phase, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash chromatography (9:1 EtOAc:hexanes) provided **14** (0.021 g, 67%) as a white solid: mp 101-103 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.04-5.97 (m, 2H), 4.42-4.33 (m, 2H), 3.67 (m, 1H), 2.64 (m, 1H), 2.43-2.32 (m, 2H), 2.33 (d, *J* = 10.1, 1H), 1.15 (d, *J* = 6.8, 3H), 1.13 (d, *J* = 6.8, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 131.2, 128.4, 68.4, 51.4, 43.8, 42.2, 23.4, 22.2, 20.6; IR (KBr) 3248, 3037, 2969, 1651 cm⁻¹; HRMS (CI/isobutane) *m/z* calcd for C₁₀H₁₆NO₂ (M+H)⁺ 182.1181, found 182.1178. Anal. Calcd for C₁₀H₁₅NO₂: C, 66.27; H, 8.34; N, 7.73. Found: C, 66.28; H, 8.33; N, 7.61.




(1*R**,5*S**)-6-Isopropyl-6-aza-bicyclo[3.2.1]oct-3-en-7,8-dione (2). To a cooled (-78 °C) solution of oxalyl chloride (0.032 mL, 0.366 mmol) in 3 mL of CH₂Cl₂ was added DMSO (0.052 mL, 0.731 mmol). After 20 min, a solution of 14 (0.039 g, 0.215 mmol) in 3 mL of CH₂Cl₂ was added. Triethylamine (0.225 mL, 1.61 mmol) was added to the solution after 1 h at -78 °C. The reaction mixture was allowed to warm to 23 °C, was stirred for 16 h, and was poured into 10 mL of H₂O. The organic phase was separated from the aqueous phase, dried over Na₂SO₄, and concentrated *in vacuo*. Purification by flash chromatography (1:1 EtOAc:hexanes) gave 2 (0.033 g, 86%) as a white solid, whose data match that of the known compound:³ mp 67-69 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.24 (m, 1H), 5.84 (dm, *J* = 9.1, 1H), 4.55 (septet, *J* = 6.8, 1H), 3.81 (d, *J* = 5.7, 1H), 3.02-2.84 (m, 3H), 1.24 (d, *J* = 6.8, 3H), 1.16 (d, *J* = 6.8, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.0, 170.1, 132.4, 130.9, 56.3, 50.8, 42.8, 33.8, 22.3, 20.3; HRMS (CI/isobutane) *m/z* calcd for C₁₀H₁₃NO₂ (M)⁺ 179.0946, found 179.0941. **References**

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518-1520.

(2) To prepare compound 5, diphenylmethane (100 mmol) was deprotonated by *n*-BuLi (130 mmol) in 100 mL of Et₂O (35 °C, 48 h) and then added to Cl₂Me₂Si (500 mmol) in 200 mL of hexanes (-78 °C to 0 °C, 4 h). Filtration followed by purification by distillation (130 - 132 °C, 0.10 mmHg) provided 5 in 70 % yield.
(3) Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. *J. Am. Chem. Soc.* 1989, *111*, 2588-2595.

