Chirality Transfer from Carbon to Nitrogen to Carbon via Cyclic Ammonium Ylides

Kevin W. Glaeske and F. G. West*
Department of Chemistry, University of Utah, 315 S. 1400 East, Rm. Dock, Salt Lake
City, UT 84112-0850

west@chemistry.chem.utah.edu
Supporting Information. Physical data for $\mathbf{2 b}-\mathbf{e}$ and $\mathbf{3 b}, \mathbf{d}, \mathbf{e}$ and procedures for determining stereochemical ratios for $\mathbf{3 a}, \mathbf{b}$ (2 pages).

Ammonium salts $\mathbf{2 b}-\mathbf{e}$ were prepared in a manner analogous to that given in footnote 8 for 2a, except that the initial counterion for $\mathbf{2 d}, \mathbf{e}$ was exchanged using NaPF6. Characterization data for $\mathbf{2 b}-\mathbf{e}$ are given below:
2b: white needles, mp 141-143 ${ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}=-14.0^{\circ}(\mathrm{c}$ $=0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr) 2968, 1761, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.41$ (m, 3H), $5.37(\mathrm{dd}, 1 \mathrm{H}, J=9.9,9.9 \mathrm{~Hz}), 5.27(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.8,7.8 \mathrm{~Hz}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{app} . \mathrm{q}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz})$, $4.24(\mathrm{dd}, 1 \mathrm{H}, J=14.1,7.7 \mathrm{~Hz}), 4.10(\mathrm{dd}, 1 \mathrm{H}, J=14.1$, 7.8 Hz), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{ddd}, 1 \mathrm{H}, J=11.4,8.4,2.7$ $\mathrm{Hz}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 166.6,146.4,138.6,132.7,129.1,127.8,113.3$ 70.4, 64.6, 61.0, 55.6, 53.2, 26.5, 25.6, 19.4; 18.7; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BrNO}_{2}$: $\mathrm{C}, 58.70 ; \mathrm{H}, 7.11 ; \mathrm{N}, 3.80$. Found: C, 58.80; H, 7.16; N, 3.88.

2c: white prisms, mp $92-94{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=+6.3^{\circ}(\mathrm{c}=$ $0.20, \mathrm{CH}_{3} \mathrm{CN}$); IR (KBr) 2964, $1755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.57-7.46(\mathrm{~m}, 5 \mathrm{H}), 5.27\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}\right.$ $=5.4 \mathrm{~Hz}), 5.07(\mathrm{dd}, 1 \mathrm{H}, J=9.9,8.1 \mathrm{~Hz}), 4.96(\mathrm{~s}, 2 \mathrm{H})$, $4.77\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=5.4 \mathrm{~Hz} J_{\mathrm{AB}}=5.4 \mathrm{~Hz}\right), 4.72(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.9,9.6 \mathrm{~Hz}), 4.45(\mathrm{dd}, 1 \mathrm{H}, J=9.6,8.1 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 164.0,132.2$, $131.2,129.7,126.5,93.2,67.7,67.5,65.2,54.3,43.4$; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 281 \mathrm{MHz}\right) \delta 26.7$ (s); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BF}_{4} \mathrm{NO}_{3}: \mathrm{C}, 48.33 ; \mathrm{H}, 5.62 ; \mathrm{N}, 4.34$. Found: C , 48.25; H, 5.68; N, 4.36.

2d: Initially formed tetrafluoroborate salt was stirred in acetone with NaPF_{6} (1 equiv) for 12 h , then the reaction was filtered, solvent was removed, and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to give white prisms, mp $110-112{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}=+8.6^{\circ}\left(\mathrm{c}=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr) $2970,1743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right) \delta 7.58-$ $7.51(\mathrm{~m}, 5 \mathrm{H}), 5.12\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=6.0 \mathrm{~Hz}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}\right.$ $=13.2 \mathrm{~Hz}), 4.76(\mathrm{dq}, 1 \mathrm{H}, J=8.7,6.0 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{AB}}=6.0 \mathrm{~Hz}\right), 4.65\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=13.2 \mathrm{~Hz}\right), 4.27(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.7 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, 3 \mathrm{H}, J=6.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 75 \mathrm{MHz}\right) \delta 164.8,133.8,132.5$, $130.9,128.2,93.2,77.6,75.4,67.0,55.3,45.0,19.3$;

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{PNO}_{3}$: $\mathrm{C}, 42.54 ; \mathrm{H}, 5.10 ; \mathrm{N}$, 3.54. Found: C, 42.57 ; H, 5.18; N, 3.59.

2e: Initially formed tetrafluoroborate salt was stirred in THF with NaPF_{6} (1 equiv) for 12 h , then the reaction was filtered, solvent was removed, and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to give a white solid (isolated as a 4.4:1 mixture of diastereomers); IR (KBr) 2972, $1747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right.$, major diastereomer) $\delta 5.40-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=6.0\right.$ $\mathrm{Hz}), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=6.0 \mathrm{~Hz}\right), 4.67(\mathrm{dq}, 1 \mathrm{H}, J=8.7,6.0$ $\mathrm{Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.38-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, 3 \mathrm{H}$, $J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 75 \mathrm{MHz}\right) \delta 164.3,150.2$, $111.0,92.6,77.2,73.8,61.5,54.5,44.3,26.2,18.6$, 18.2.

Rearrangement products $\mathbf{3 b}, \mathbf{d}, \mathbf{e}$ were prepared from $\mathbf{2 b}, \mathbf{d}, \mathbf{e}$ via the procedure given in footnote 12 for $\mathbf{3 a}$. Characterization data for $\mathbf{3 b}, \mathbf{d}, \mathbf{e}$ are given below:

3b: colorless oil, $[\alpha]^{22}{ }_{D}=-50.8^{\circ}\left(\mathrm{c}=0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{R}_{f} 0.33$ (1:8 EtOAc/hexanes); IR (neat) $2970,1728 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.37-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.30$ $(\mathrm{dd}, 1 \mathrm{H}, J=17.7,10.8 \mathrm{~Hz}), 5.02(\mathrm{dd}, 1 \mathrm{H}, J=17.7,1.5$ $\mathrm{Hz}), 4.98(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.5 \mathrm{~Hz}), 4.29\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=\right.$ $14.4 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.49\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}\right), 3.04-$ $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, 1 \mathrm{H}, J=17.1,8.7 \mathrm{~Hz}), 2.29(\mathrm{dt}$, $1 \mathrm{H}, J=12.9,8.4 \mathrm{~Hz}$), 2.01 (ddd, $1 \mathrm{H}, J=13.5,7.2,7.2$ $\mathrm{Hz}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 174.8,146.0,140.8,128.1$, $127.4,126.3,111.675 .8,56.1,53.5,50.7,43.5,34.2$, 24.9, 23.0, 22.9; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 75.22; H, 8.77; N, 4.87. Found: C, 75.09; H, 8.73; N, 4.86 .

3d: colorless oil, 2.8:1 mixture of partially separable diastereomers; $\mathrm{R}_{f} 0.32$ (1:3 EtOAc/hexanes); IR (neat) 2956, $1736 \mathrm{~cm}^{-1}$; major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 7.29-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$, $4.41(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 3.11\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=14.1 \mathrm{~Hz}\right), 3.04\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=\right.$ $14.1 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.0,137.0,128.8,128.1$,
$126.4,85.9,80.5,71.9,51.7,37.2,33.8,16.6$; minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.29-7.18$ $(\mathrm{m}, 5 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.08$ (s, 2H), 2.38 (s, 3H), 1.12 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 172.7,136.2,130.7,127.8$, 126.5, 86.2, 78.7, 72.9, 51.4, 36.0, 32.1, 15.2; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$: C, 67.45; H, 7.68; N, 5.62. Found: C, 67.51; H, 7.63; N, 5.57.

3e: yellow oil, inseparable 4.1:1 mixture of diastereomers; $\mathrm{R}_{f} 0.35$ (3:7 EtOAc/hexanes); IR (neat) 2938, $1730 \mathrm{~cm}^{-1}$; major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.26(\mathrm{dd}, 1 \mathrm{H}, J=17.4,10.8 \mathrm{~Hz}), 5.01(\mathrm{dd}$, $1 \mathrm{H}, J=17.4,1.2 \mathrm{~Hz}$), $4.98(\mathrm{dd}, 1 \mathrm{H}, J=10.8,1.2 \mathrm{~Hz})$, $4.66(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.43(\mathrm{q}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.10$ $(\mathrm{d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}$, $3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 172.1,145.1,111.5,85.0,81.4,70.6$, 51.0, 40.8, 33.7, 26.5, 18.5, 18.0.

Enantiomeric analysis of 3a by conversion to MTPA ester. A solution of $\mathbf{3 a}(280 \mathrm{mg}, 1.20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2$ mL) was added dropwise to an ice-cooled suspension of $\mathrm{LiAlH}_{4}(140 \mathrm{mg}, 3.71 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. After stirring for 20 min , the reaction was quenched by slow addition of water $(1.0 \mathrm{~mL})$ and filtered through a Celite plug. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and the filtrate was concentrated to give a yellow residue which was purified via flash chromatography silica gel, 2.5$\mathrm{cm} \times 4-\mathrm{cm}$ column, 1:1 EtOAc/hexanes) to give 179 mg (73\%) of N-methyl-2-benzylprolinol as a yellow oil: R_{f} 0.10 (1.1 EtOAc/hexanes); IR (neat) 3401, $2939 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.22-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.01$ $(\mathrm{m}, 2 \mathrm{H}), 3.41\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=9.9 \mathrm{~Hz}\right), 3.25-3.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.22\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=9.9 \mathrm{~Hz}\right), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}$, $1 \mathrm{H}, J=17.4,8.1 \mathrm{~Hz}), 2.58\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=12.9 \mathrm{~Hz}\right), 2.47$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{AB}}=12.9 \mathrm{~Hz}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.55(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 138.0,130.1,128.1,126.1$, 66.1, 63.1, 53.8, 35.9, 33.4, 30.1, 21.4.
(R)-(-)- α-Methoxy- α-(trifluoromethyl)phenylacetyl chloride ($26 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) was added to a solution of
the alcohol ($15 \mathrm{mg}, 0.07 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(29 \mu \mathrm{~L}, 0.21$ $\mathrm{mmol})$ and DMAP (ca. 1 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and the reaction was stirred for 12 h . Excess acid chloride was quenched by addition of 1 drop sta. Aq. NaHCO_{3}, and the reaction mixture was filtered through a silica gel plug. Removal of solvent gave $20 \mathrm{mg}(63 \%)$ of the ester product as a pale yellow oil: 3.3:1 mixture of diastereomers by NMR; ${ }^{19}$ F NMR $\left(\mathrm{CFCl}_{3}, 281 \mathrm{MHz}\right) \delta 105.54(\mathrm{~s}), 105.45$ (s).

Enantiomeric analysis of 3b by conversion to MTPA ester. Rearrangement product 3b ($248 \mathrm{mg}, 0.86 \mathrm{mmol}$) was subjected to the reduction procedure described above for 3a to give 126 mg (57\%) of N-benzyl-2-(1,1dimethylallyl)prolinol as a colorless oil: $[\alpha]^{22}{ }_{D}=+12.1^{\circ}$ (c $=0.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) $3428,2960 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.7,10.8 \mathrm{~Hz}), 5.01(\mathrm{dd}, 1 \mathrm{H}, J=17.7,1.5 \mathrm{~Hz}), 4.98$ (dd, $1 \mathrm{H}, J=10.8,1.5 \mathrm{~Hz}), 4.24\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}\right), 4.06$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{AB}}=11.1 \mathrm{~Hz}\right), 3.84\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}\right), 3.57$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{\mathrm{AB}}=11.1 \mathrm{~Hz}\right), 2.98-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, 1 \mathrm{H}, J$ $=15.6,8.7 \mathrm{~Hz}), 2.03-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.71-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 146.6,141.4,128.2,127.6,126.4$, 111.7, 69.8, 64.7, 54.9, 54.4, 44.9, 31.7, 24.1, 23.9, 23.2; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 78.72 ; \mathrm{H}, 9.71$; N , 5.40. Found: C, 78.52; H, 9.71; N, 5.34.
(R)-(-)- α-Methoxy- α-(trifluoromethyl)phenylacetyl chloride ($18 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added to a solution of the alcohol ($12 \mathrm{mg}, 0.046 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(20 \mu \mathrm{~L}, 0.14$ mmol) and DMAP (ca. 1 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and the reaction was stirred for 12 h . Excess acid chloride was quenched by addition of 1 drop sta. Aq. NaHCO_{3}, and the reaction mixture was filtered through a silica gel plug. Removal of solvent gave $13 \mathrm{mg}(62 \%)$ of the ester product as a colorless oil: single diastereomer by NMR; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CFCl}_{3}, 281 \mathrm{MHz}\right) \delta 106.05(\mathrm{~s})$.

