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SUPPORTING INFORMATION

Fabrication of STM-patterned nanostructures

The atomic-scale wires (W1 and W2) have been patterned using STM lithography [1, 2] on the hydrogen terminated
Si(001)-2×1 reconstructed surfaces of n-type doped (P, 1−10 mΩcm) substrates. Following lithography, the wires were
exposed to phosphine (PH3) gas (5×10−8 mbar, 6 min), passivating the reactive silicon dangling bonds and protecting
the wire against contaminants during patterning of electrodes (S, D, V1, V2) and gates (G1, G2) connecting the wires
to micrometer-scale Si:P doped contacts (See image in Figure S1a) [1, 2]. A second exposure to PH3, followed by
annealing (350 0C, 1 min) and low-temperature silicon epitaxy (≃ 25 nm), selectively dopes the completed pattern
to density ≃ 2 × 1014 cm−2 with atomically sharp doping profiles and equivalent bulk density ∼ 1021 cm−3. The
quantum dots (D1 and D2) were fabricated using the similar technique of STM lithography and subsequent silicon
epitaxy. The quantum dot D2 has a surface gate on the silicon dioxide dielectric grown on the epitaxial silicon at
140 0C [3].

Measurement of low frequency noise

An AC four probe technique has been used for noise measurements, in which a constant current was passed through
the sample and the voltage was measured using the lock-in technique. The voltage fluctuations (in-phase X-component
and out-of-phase Y-component) are recorded as a function of time using a 16-bit digitizer (Gage Compuscope 1600).
The raw time series data is then digitally processed to obtain the power spectral density (PSD). The PSD of the
Y-component is the background noise (Johnson’s noise and amplifier noise) which is subtracted from the total noise
(PSD of X-component) to obtain the noise from the sample, SV . From SV and the known conductance G, SG/G

2 can
be calculated and integrated within the experimental bandwidth to obtain the variance of conductance fluctuations,
NG = ⟨δG2⟩/⟨G2⟩ =

∫
SG/G

2df . For the devices with very low conductance (≪ e2/h), a constant AC voltage was
applied across the device and the current was measured using a current amplifier. The fluctuations in current were
recorded and the PSD was calculated using the method described above.

Conductance fluctuations in wire W2

The scanning tunneling microscope image of the wire W2 is shown in Figure S1a. It has a diameter ≈ 4.6 nm and
is ≈ 47 nm long. The conductance, G, as a function of gate voltage, Vg, for wire W2 at temperature T = 4.2 K
is shown in Figure S1b. In the entire gate voltage range, the wire is metallic with G > e2/h and exhibits universal
conductance fluctuations as has been shown previously [2]. The time series of conductance fluctuations at different
gate voltages (−0.7,−0.1 and 0.8 V) is shown in Fig. S1c and corresponding power spectral density (PSD), SG/G

2, is
shown in Figure S1d. Towards positive gate voltages (for example Vg = 0.8 V), the time series appears to be random
without jumps or switches (orange line in Figure S1c) and the corresponding PSD is 1/f in nature as shown by orange
triangles in Figure S1d. At negative gate voltages, the time series shows jumps in conductance which leads to the
deviation of spectrum from 1/f (dark green squares in Figure S1d).

Gate voltage dependence of conductance fluctuations for wires W1 and W2

The normalized variance of conductance fluctuations, ⟨δG2⟩/⟨G2⟩ =
∫
SG/G

2df , obtained by integrating the PSD
over the experimental bandwidth has been compared with the transconductance, dG/dVg, of the wires W1 and W2
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FIG. S1: Conductance fluctuations in wire W2. (a) Scanning tunneling microscope image of Wire W2 of diameter 4.6 nm.
(b) The conductance, G, as a function of gate voltage, Vg, for Wire W2 at 4.2 K. (c) The time-series of conductance fluctuations
at different gate voltages for Wire W2 at 4.2 K. (d) The power spectral density, SG/G

2, obtained from the time series shown
in (c).

in Figure S2a and S2b respectively. It can seen that ⟨δG2⟩/⟨G2⟩ ∝ (dG/dVg)
2 for the entire gate voltage range for

both W1 and W2, indicating that the microscopic origin of conductance fluctuations is same for both the wires.

Calculation of Hooge parameter

In the main text, we have calculated the Hooge parameter by considering that fluctuations in conductance arise
solely from the one-dimensional wire. The resistance of the two-dimensional region (2D) at the ends of the 1D wire
is R2D ∼ 1900Ω. The resistance of wire W1 is in the range RW1 ∼ 20 − 200 kΩ while that of wire W2 is in the
range RW2 ∼ 5 − 12 kΩ at 4.2 K. Since R2D ≪ RW1,W2, in the constant current measurement, most of the voltage
drops across the 1D wire. Additionally, the dependence of the variance of conductance fluctuations (⟨δG2⟩/⟨G2⟩) on
transconductance (dG/dVg) also confirms that noise predominantly arises from the 1D wire since the transconductance
of the 2D regions is virtually zero. Hence we calculated the Hooge parameter γW

H of the wires as

γW
H =

SG

G2
Nfα (S1)

where α is the frequency exponent and N is the number of carriers. However, to be more precise, we do an exact
calculation of the Hooge parameter of the wires by considering that the measured fluctuations is due to the entire
system of 1D wires and 2D contact region. Considering ST

V to be the PSD of total measured voltage fluctuations (the
system of 1D wire and the 2D regions at both the ends) and SW

V and S2D
V to be the PSD of the voltage fluctuations

in 1D wire and 2D regions respectively, we have

ST
V = SW

V + S2D
V (S2)
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FIG. S2: Conductance fluctuations as a function of gate voltage The normalized variance, ⟨δG2⟩/⟨G2⟩ =
∫
SG/G

2df ,
as a function of gate voltage, Vg, for (a) Wire W1 and (b) Wire W2 at 4.2 K. The axis on the right shows the dependence of
square of transconductance (dG/dVg)

2 on Vg.

Using the phenomenological Hooge’s relation, γH = SV Nfα/V 2, we get

ST
V = γW

H

V 2
W

NW
f−α + γ2D

H

V 2
2D

N2D
f−α (S3)

where VW and V2D are the voltage bias across the 1D wire and 2D region respectively, while NW and N2D are the
total number of carriers in the 1D wire and the 2D region respectively. γW

H and γ2D
H represent the Hooge parameter of

the 1D wire and the 2D region respectively. Since we are calculating γH at f = 1 Hz, the factor f−α becomes unity.
Rearranging, we get

γW
H =

(
ST
V − γ2D

H

V 2
2D

N2D

)
NW

V 2
W

(S4)

In Eq. S4, ST
V has been measured experimentally, VW = IRW and V2D = IR2D where I is the current through the

device and RW and R2D can be determined as outlined in Ref. [2]. The number of carriers in the wire is NW = nδLW
where nδ ∼ 2 × 1014 cm−2 is the saturation doped density and L and W are the length and width of the wire
respectively. Similarly, N2D = nδA2D, where A2D is the total area of the 2D region at both ends of the wire, can be
calculated. For wire W1 we found that NW1 ≈ 147 and N2D ∼ 7600 while for wire W2, NW2 ≈ 432 and N2D ∼ 10600.
The Hooge parameter of the 2D region was calculated from noise measurements in the saturation doped 2D Si:P δ-
layers and lies in the range γ2D

H ∼ 10−6 − 10−5 [4, 5]. Substituting the values, the Hooge parameter of the 1D wire
γW
H was calculated using Eq. S4 and compared with the value evaluated using Eq. S1 in Figure S3a and S3b for wire

W1 and W2 respectively. It is evident that for wire W1 the Hooge parameter calculated using Eq. S1 and Eq. S4
are identical while for wire W2, the they differ by a factor of ∼ 2 − 3 towards positive gate voltages. This is due to
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FIG. S3: Hooge parameter of 1D Si:P wires. Comparison of Hooge parameter calculated using Eq. S1 and Eq. S4 for (a)
Wire W1 and (b) Wire W2 at 4.2 K. (c) Hooge parameter of W1 and W2 calculated using Eq. S4 plotted on the same scale.

appreciable voltage drop across the 2D contact region (∼ 25% of the total bias), whose resistance R2D ≈ 1.9 kΩ is
not negligible as compared to RW ∼ 5 kΩ at positive gate voltages. Nevertheless, the estimated Hooge parameter is
one of the lowest reported for a 1D system.
The noise magnitude of the wire W1 varies by ∼ 4 orders of magnitude (at negative gate voltage) as compared to

wire W2 where it changes by an order of magnitude. However, at large positive gate bias - where both wires enter
the metallic regime - the Hooge parameter is comparable as shown in Figure S3c.
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FIG. S4: Dimensionality dependence of Hooge parameter. The Hooge parameter, γH , as a function of planar area of
the device.

Comparison of Hooge parameter for 2D Si:P δ-layers and 1D wires

Figure S4 shows γH as a function of the area of the device. We have included the 1D wires W1 and W2 and the
2D Si:P δ-layers. For W1 and W2, here we have included the range of Hooge parameter in the positive gate voltage
(i.e. metallic) regime. Upon breakdown of metallic conduction however, the onset of Coulomb blockade oscillations at
negative gate voltages leads to regions of large transconductance and a concomitant increase in the Hooge parameter
(that of W1 is even greater than the 2D δ-layers). The increased noise in 2D can be understood as due to influence
of a large ensemble of charge traps. The correlation among charge traps would reduce beyond a distance 2d (d is the
thickness of epitaxial silicon) due to screening by the high density Si:P δ-layer. Because of the large size of the 2D
system, it is affected by the traps which are separated by distance greater than 2d as opposed to the 1D wires which
are affected only by a few fluctuators as discussed in Ref. [6].

Charge noise in quantum dots D1 and D2

We have estimated the power spectral density of charge fluctuations, SQ, for quantum dots D1 and D2 as shown
in Figure S5. For D1 we estimate SQ ∼ 3 × 10−9 e2Hz−1 while for D2 we get SQ ∼ 10−8 e2Hz−1 at f = 1 Hz
which compares favourably with the value of SQ ∼ 3 × 10−9 e2Hz−1 at f = 1 Hz in Ref. [7]. However, as a word
of caution we would like to mention a few points. Firstly, the measurement bandwidth for the devices D1 and D2
(1 mHz - 0.1 Hz) is different from Ref. [7] (0.2 Hz - 100 Hz). Hence we cannot directly compare the variance of charge
fluctuations. For devices D1 and D2, we have estimated the value at 1 Hz by extrapolating the curve for SQ vsf as
shown in Figure S5 since our bandwidth was restricted to 0.1 Hz. For both D1 and D2, we get SQ ∝ 1/f1.9 , which
is indicative of noise due to a single fluctuator as has also been observed Ref. [7]. However the corner frequency fc
(below which the PSD tends to become flat) is very different for our devices D1 and D2 (∼ 1− 3 mHz) as compared
to the devices in the Ref. [7] (fc ∼ 7 Hz). These differences between the devices and the measurement bandwidth
make the exact comparison difficult. Additionally we have not measured a detailed gate voltage dependence of noise
in quantum dots D1 and D2. The main motivation of studying the quantum dots was to see the sensitivity of the
device to the surface states which we did by recording successive gate voltage sweeps and measuring the horizontal
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FIG. S5: Charge noise in quantum dots D1 and D2 The power spectral density of charge fluctuations, SQ, as a function
of frequency, f , for quantum dots D1 and D2 at temperature 0.2 K. The dotted line shows 1/fα-type fits to the experimental
points.

shift of Coulomb blockade peaks.

[1] Weber, B.; Mahapatra, S.; Ryu, H.; Lee, S.; Fuhrer, A.; Reusch, T. C. G.; Thompson, D. L.; Lee, W. C. T.; Klimeck, G.;
Hollenberg, L. C. L.; Simmons, M. Y. Science 2012, 335, 64–67.

[2] Weber, B.; Ryu, H.; Tan, Y.-H. M.; Klimeck, G.; Simmons, M. Y. Phys. Rev. Lett. 2014, 113, 246802.
[3] Thompson, D. W. Ph.D. thesis, University of New South Wales, 2011.
[4] Shamim, S.; Mahapatra, S.; Polley, C.; Simmons, M. Y.; Ghosh, A. Phys. Rev. B 2011, 83, 233304.
[5] Shamim, S.; Mahapatra, S.; Scappucci, G.; Klesse, W. M.; Simmons, M. Y.; Ghosh, A. Phys. Rev. Lett. 2014, 112, 236602.
[6] Clément, N.; Nishiguchi, K.; Fujiwara, A.; Vuillaume, D. Nat. Commun. 2010, 1, 92.
[7] Zimmerman, N. M.; Huber, W. H.; Simonds, B.; Hourdakis, E.; Fujiwara, A.; Ono, Y.; Takahashi, Y.; Inokawa, H.;

Furlan, M.; Keller, M. W. J. Appl. Phys. 2008, 104, 033710.


