Supporting information

Cyclobutadiene Arene Complexes of Rhodium and Iridium

Nikita V. Shvydkiy, ${ }^{\dagger}$ Evgeniya A. Trifonova, ${ }^{\dagger}$ Andrey M. Shved, ${ }^{\dagger}$ Yulia V. Nelyubina, ${ }^{\dagger}$ Denis Chusov, ${ }^{\dagger}$ Dmitry S. Perekalin, ${ }^{*,+, \ddagger}$ Alexander R. Kudinov*, ${ }^{+}$
${ }^{\dagger}$ Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, 119991, Russia
${ }^{\ddagger}$ Department of Organic Chemistry, RUDN University, 6 Miklukho-Maklaya st., Moscow, 117198, Russia
E-mail: dsp@ineos.ac.ru, arkudinov@ineos.ac.ru

Details of X-ray diffraction experiments. Crystals of [1d] $\mathrm{BF}_{4}\left(\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{BF}_{4} \mathrm{O}_{2} \mathrm{Rh}, \mathrm{M}=560.27\right)$ are triclinic, space group $P-1$, at $120 \mathrm{~K}: ~ a=8.8170(7), b=8.9463(7), c=18.1443(14) \AA, \alpha=95.973(2), \beta=95.706(2), \gamma$ $=110.448(2)^{\circ}, \mathrm{V}=1319.52(18) \AA^{3}, \mathrm{Z}=2, \mathrm{~d}_{\text {calc }}=1.410 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=6.94 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=580$. Crystals of $[2] \mathrm{PO}_{2} \mathrm{~F}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{PRh}, \mathrm{M}=422.25\right)$ are orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, at 100 K : a $=$ $8.3540(13), b=9.2101(15), c=21.622(3) \AA, V=1663.6(5) \AA^{3}, Z=4, d_{\text {calc }}=1.686 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=11.46$ $\mathrm{cm}^{-1}, \mathrm{~F}(000)=864$. Intensities of 13855 and 19126 reflections for $[\mathbf{1 d}] \mathrm{BF}_{4}$ and $[\mathbf{2}] \mathrm{PO}_{2} \mathrm{~F}_{2}$, respectively, were measured with Bruker APEX2 and APEX2 DUO diffractometers both using graphite monochromated Mo-K α radiation ($\lambda=0.71073 \AA$, ω-scans). 5765 and 4001 independent reflections [$R_{\text {int }}$ 0.0520 and 0.0569] were used in further refinement for $[1 d] \mathrm{BF}_{4}$ and $[\mathbf{2}] \mathrm{PO}_{2} \mathrm{~F}_{2}$, respectively. The structures were solved by direct method and refined by the full-matrix least-squares against F^{2} in anisotropic approximation for non-hydrogen atoms. The positions of hydrogen atoms were calculated, and they were refined in isotropic approximation in riding model. For [1d] BF_{4} the refinement converged to $w R_{2}=0.0914$ and GOF $=1.021$ for all the independent reflections ($\mathrm{R}_{1}=0.0372$ was calculated against F for 4921 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$. For [2] $\mathrm{PO}_{2} \mathrm{~F}_{2}$ the refinement converged to $w \mathrm{R}_{2}=0.1589$ and GOF $=1.093$ for all the independent reflections $\left(R_{1}=0.0578\right.$ was calculated against F for 3512 observed reflections with $1>2 \sigma(\mathrm{I})$). All calculations were performed using the SHELXTL PLUS 5.0 software (G.M. Sheldrick, Acta Cryst. A 2008, 64, 112-122.). CCDC 1473047 and 1473048 contain the supplementary crystallographic data for $[\mathbf{1 d}] \mathrm{BF}_{4}$ and $[\mathbf{2}] \mathrm{PO}_{2} \mathrm{~F}_{2}$; those can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\right.$ (tert-butylbenzene) $] \mathrm{PF}_{6}\left([\mathbf{1 b}] \mathrm{PF}_{6}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\right.$ (3-mesityl-propionic acid) $\mathrm{PF}_{6}\left([1 \mathrm{~d}] \mathrm{PF}_{6}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\left(\mathrm{C}_{6} \mathrm{Et}_{6}\right)\right] \mathrm{PF}_{6}\left([\mathbf{1} \mathbf{e}] \mathrm{PF}_{6}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.
(

																						$\stackrel{\rightharpoonup}{\Phi}$				$\begin{aligned} & \text { T1 } \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \end{aligned}$			$\begin{aligned} & \text { T. } \\ & \stackrel{0}{\circ} \end{aligned}$	-	
T	,	1	1	1	1	1	1	1	1	1	1	1	1	,	+	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.1
7.4	7.2	7.0	6.8	6.6	6.4	6.2	6.0	5.8	5.6	5.4	5.2	5.0	4.8	4.6	4.4	$\begin{aligned} & 4.2 \quad 4.0 \\ & \mathrm{f} 1 \text { (Мд) } \end{aligned}$	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.00 .8

[^0]Figure S4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}(\mathrm{p}\right.$-methylaniline $\left.)\right] \mathrm{PF}_{6}\left([1 \mathrm{f}] \mathrm{PF}_{6}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

$\begin{array}{ll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5\end{array}$

Figure S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}(2\right.$-mesityl-acetonitrile $\left.)\right] \mathrm{PF}_{6}\left([1 \mathrm{~g}] \mathrm{PF}_{6}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\left[(\text { coe })_{2} \mathrm{Rh}(\mathrm{p}\right.$-xylene) $] \mathrm{PF}_{6}\left([3] \mathrm{PF}_{6}\right)$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}$.

Figure S7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\left[(\text { coe })_{2} \operatorname{Ir}(\mathrm{p}\right.$-xylene $\left.)\right] \mathrm{PF}_{6}\left([4] \mathrm{PF}_{6}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S8. ${ }^{1} \mathrm{H}$ (in CDCl_{3}) and ${ }^{13} \mathrm{C}$ (in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \mathrm{NMR}$ spectra of $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \operatorname{Ir}\left(\mathrm{C}_{6} \mathrm{Et}_{6}\right)\right] \mathrm{PF}_{6}\left([5] \mathrm{PF}_{6}\right)$.

Figure S9. ${ }^{1} \mathrm{H}\left(\right.$ in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ and ${ }^{13} \mathrm{C}\left(\right.$ in $\left.\mathrm{CD}_{3} \mathrm{NO}_{2}\right) \mathrm{NMR}$ spectra of $\left[\left(\mathrm{C}_{4} \mathrm{Ph}_{4}\right) \operatorname{Ir}(\mathrm{p}\right.$-xylene) $] \mathrm{PF}_{6}\left([6] \mathrm{PF}_{6}\right)$.

[^0]: $\begin{array}{lll}140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & -5\end{array}$

