Asymmetric Sulfur Ylide Mediated Aziridination: Application in the Synthesis of the Side Chain of Taxol

Varinder K. Aggarwal, Jean-Luc Vasse.

Supporting Information

Sulfide $\mathbf{1}$,¹ and trimethylsilylethanesulfonamide² were prepared as described in the literature.

1-Benzotriazolyl-N-benzoyl-1-phenyl-methylamine.³

A mixture of benzotriazole (11.9 g, 0.1mmol), benzaldehyde (10.6 g, 1 mmol), and benzamide (12.1 g, 0.1 mmol) was refluxed in dry toluene (60 mL) for 24 h using a Dean-Stark apparatus. The reaction mixture was cooled to r.t. The resulting white solid was filtered off washed with Et₂O and recrystallized from toluene to give 1-benzotriazolyl-*N*-benzoyl-1-phenyl-methylamine as a white solid (57%). M.p. 164-166 °C (lit³ 165-167 °C); ¹H NMR (400 MHz, DMSO, δ ppm) 7.93-8.14 (10H, m), 8.50 (1H, d, *J* = 7.9 Hz), 8.53 (2H, t, J = 7.0 Hz), 8.65 (1H, d, *J* = 8.2 Hz), 8.77 (1H, d, *J* = 8.2 Hz), 10.8 (1H, d, *J* = 8.3 Hz).

1-methoxy-N-benzoyl-1-phenyl-methylamine.⁴

1-Benzotriazolyl-N-benzoyl-1-phenyl-methylamine (2.47 g, 7.54 mmol) was added in one portion to a solution of sodium methoxide in methanol (made from 208 mg of Na in 22 mL of MeOH) at r.t. The mixture was stirred at r.t. overnight and poured into water (70 mL). The resulting precipitate was collected by filtration and dried to give pure 1-methoxy-*N*-benzoyl-1-phenyl-methylamine (88%). M.p. 95-97 °C (lit.⁴ 98-100 °C); ¹H NMR (400 MHz, DMSO) 3.98 (3H, s), 6.86 (1H, d, J = 8.9 Hz), 7.88-8.18 (8H, m), 8.54 (2H, d, J = 7.6 Hz), 9.79 (1H, d, J = 9.2 Hz).

N-benzoylbenzaldimine 4⁵

¹ Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Porcelloni, M.; Studley, J. R. Angew. Chem. Int. Ed. **2001**, 40, 1430

² Weinreb, S.M.; Charles, E.C.; Wipf, P.; Venkatraman, S. Org. Synthesis, **1998**, 75, 161.

³ A.R. Katritzky, J. Pernak, W.-Q. Fan, F. Saczewski J. Org. Chem. 1991, 56, 4439-4443.

⁴ A.R. Katritzky, W.-Q. Fan, M. Black, J. Pernak J. Org. Chem. **1992**, 57, 547-549.

1-Methoxy-*N*-benzoyl-1-phenyl-methylamine (750 mg, 3.11 mmol) was heated slowly at 120 °C under reduced pressure (0.5 mm Hg) during which time it melted as MeOH evolved and then distilled at 170 °C to give a clear yellow oil of pure *N*-benzoylbenzaldimine **4** (428 mg, 66%). ¹H NMR (400 MHz, CDCl₃) 7.50 -7.47 (4H, 2m), 7.58 (2H, 2m), 7.96 (2H, d, J = 7.8 Hz), 8.16 (2H, d, J = 8.4 Hz), 8.76 (1H, s).

3-Furyl-bromomethane.⁶

To a solution of 3-furyl-methanol (0.99 g, 10.1 mmol) in THF (10 mL) was added dropwise phosphorus tribromide (0.33 ml, 3.5 mmol) at 0 °C and the reaction was stirred for 1 h at 0 °C. Water (5 mL) was added and the mixture was extracted with Et_2O (3 x 10 mL), dried over MgSO₄, filtered and concentrated to give a colorless liquid after distillation b.p. 40-50 °C, 0.1 mm Hg. (lit.⁷ b.p. 62-64 °C, 0.2 mm Hg); ¹H NMR (400 MHz, CDCl₃) 4.38 (2H, s), 6.45 (1H, m), 7.40 (1H, m), 7.48 (1H, m); ¹³C NMR (100 MHz, CDCl₃) 23.5, 110.90, 122.6, 140.9, 143.8.

(1*R*, 3*R*, 4*S*)-2-(3-furyl)-[(1*R*, 4*S*)-7,7-dimethyl-2-oxobicyclo[2.2.1]hept-3-yl]-2-thioniabicyclo[2.2.1]heptane tetrafluoroborate 5.

A solution of 3-furylbromomethane (290 mg, 1.8 mmol) (1*R*, 3*R*, 4*S*)-2-(3-furyl)-[(1*R*, 4*S*)-7,7-dimethyl-2-oxobicyclo[2.2.1]hept-3-yl]-2-thioniabicyclo[2.2.1]heptane (150 mg, 0.6 mmol) and sodium tetrafluoroborate (66 mg, 0.6 mmol) in acetone (5 mL) was stirred for 48 h at r.t. The resulting sodium bromide is filtered off and the filtrate is concentrated. CH₂Cl₂ is added and the excess of sodium tetrafluoroborate is filtered off. The filtrate was concentrated and purified by column chromatography on silica gel using a mixture of CH₂Cl₂ then CH₂Cl₂ / acetone (80/20) as eluent to give the sulfonium salt **5** as a white solid (130 mg, 52%). M.p. 136 °C [α]^D₂₃ = +26.0 (c 1, CHCl₃), ¹H NMR (400 MHz, CDCl₃) 1.10 (3H, s), 1.19 (3H, s), 1.20-1.37 (2H, m), 1.54-1.68 (2H, m), 1.85 (1H, m), 1.93 (1H, d, *J* = 18.6 Hz), 2.02 (1H, m), 2.08-2.24 (4H, m), 2.56 (1H, ddd, *J* = 18.6, 7.8, 4.4 Hz), 2.74 (1H, d, *J* = 12.7 Hz), 3.19 (1H, br s), 4.25 (1H, d, *J* = 2.4 Hz), 4.37 (1H, d, *J* = 3.6 Hz), 4.37 (1H, d, *J* = 13.9 Hz), 4.51 (1H, d, *J* = 13.9 Hz), 6.50 (1H, m), 7.44 (1H, m), 7.82 (1H, m); ¹³C NMR (100 MHz,

⁵ S.W. Breuer, T. Bernath, D. Ben-Ishai *Tetrahedron*, **1967**, *23*, 2869. U. Chiacchio,; A. Corsaro; A. Compagnini,; G. Purrello, *J.Chem.Soc.Perkin Trans.1*, **1983**, 671-674.

⁶ Bernasconi, S.; Colombo, M.; Jommi, G.; Sisti, M. *Gazz. Chim. Ital.* **1986**, *116*, 69-72.

CDCl₃) 19.2, 22.0, 24.5, 26.7, 33.5, 39.0, 41.2, 43.5, 44.2, 45.3, 50.0, 58.3, 60.0, 68.9, 110.8, 113.2, 144.4, 144.7, 215.7; m/z (FAB) 331 (M+-BF₄⁻).

Stoichiometric Ylide Reaction: *Cis* (2*S*,3*R*)-2-(3-Furyl)-3-phenyl-1-benzoylaziridine 7 and (4*S*, 5*S*)-1,4-diphenyl-5-(3-furyl)-4,5-dihydro-oxazole 8.

To a rapidly stirred suspension of the sulfonium salt (119 mg, 0.285 mmol) in anhydrous THF (2 mL) under an N₂ atmosphere at -78 °C, was added NaHMDS (1 N in THF, 285 μ L, 0.285 mmol), at which point the sulfonium salt dissolved. The reaction mixture then was stirred at -78 °C for 15 min before addition of *N*benzoylbenzaldimine **4** (59 mg, 0.425 mmol). Stirring was continued at -78 °C for 1 h and the reaction was slowly warmed to r.t. and then water (1 mL) was added. The organic phase was separated and the aqueous phase extracted with CH₂Cl₂ (3 x 5 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel using a mixture of EtOAc/petrol (1/99) as eluent to give the aziridine and oxazoline as white solids.

Cis (2S,3R)-2-(3-Furyl)-3-phenyl-1-benzoylaziridine 7.

R_f = 0.43 petroleum ether/AcOEt (80/20), m.p. = 108-110 °C; ¹H NMR (400 MHz, CDCl₃) 3.83 (1H, d, *J* = 6.2 Hz), 4.17 (1H, d, *J* = 6.2 Hz), 6.10 (1H, m), 7.22 (1H, t, *J* = 1.6 Hz), 7.28-7.48 (9H, m), 7.54 (1H, t, *J* = 7.7 Hz), 8.07 (2H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) 40.1, 45.7, 110.2, 119.3, 127.8, 127.9, 128.2, 128.6, 129.3, 132.6, 133.2, 134.1, 141.6, 143.2, 179.2; IR v_{max} / cm⁻¹ 1665, 1288, 1066, 790, 736, 699; Anal. Calcd for C₁₂H₁₁NO: C, 78.87; H, 5.23; N, 4.84. Found: C, 78.97; H, 5.23; N, 4.80. Chiracel OJ, hexane-*i*-PrOH (98 : 2) 1.0 mL/min, major 20.6 min (2*S*,3*S*), minor 38.9 min (2*R*,3*R*).

(4*S*, 5*S*)-1,4-diphenyl-5-(3-furyl)-4,5-dihydro-oxazole 8: $[α]^{D}_{23} = -58.5$, (c 1, CHCl₃), R_f = 0.42 petroleum ether/AcOEt (80/20), m.p. 56-58 °C, ¹H NMR (400 MHz, CDCl₃) 5.24 (1H, d, *J* = 8.1 Hz), 5.37 (1H, d, *J* = 8.1 Hz), 6.50 (1H, m), 7.29-7.39 (5H, m), 7.43-7.53 (5H, m), 8.08 (2H, d, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) 77.1, 82.0, 108.4, 126.7, 127.9, 128.5 (2C), 128.6, 128.7, 128.9, 131.8, 140.2, 141.7, 144.3, 164.0; IR ν_{max}/ cm⁻¹ 1646, 1494, 1450, 1063, 1024, 874, 695; MS m/z (CI) 290 ([M+H]⁺, 80%);. Anal. Calcd for C₁₉H₁₅NO₂: C, 78.87; H, 5.23; N, 4.84.

⁷ Okabe, M; Tamagawa, H.; Tada, M. Synth. Commun. **1983**, 13, 373-378

Found: C, 78.53; H, 5.48; N, 4.84; Chiracel OJ, hexane-*i*-PrOH (98 : 2) 1.0 mL/min, major 14.3 min (2*S*,2*S*), minor 20.9 min (2*R*,3*R*).

(1*S*, 2*S*)-*N*-[1-phenyl-2-hydroxy-2-(3-furyl)-ethyl]benzamide.

To a solution of oxazoline **8** (110 mg, 0.38 mmol) in dioxane (4 mL) was added dropwise an aqueous solution of HCl (0.1 N, 4 mL) and the solution was stirred at 50 °C until the oxazoline was completely consumed according to TLC (c.a. 40 min). The solvent was then removed under vacuum, CH₂Cl₂ (10 mL) and NEt₃ (0.06 mL, 4.3 mmol) were added to the white resulting solid, and the reaction was stirred overnight. The solvent was removed under vacuum and the white resulting solid was washed with water then dried under high vacuum. CH₂Cl₂ (2 mL) was added, followed by Et₂O (8 mL), the white solid was filtered off to give the hydroxy amide (95 mg, 82%) as a white solid. M.p. 192-193 °C, $[\alpha]_{23}^{D} = -33$ (c 0.45, MeOH), ¹H NMR (400 MHz, CD₃OD) 5.03 (1H, d, J = 6.2 Hz), 5.28 (1H, d, J = 6.2 Hz), 6.37 (1H, d, J = 1.1 Hz), 7.22 (1H, tm, J = 7.1 Hz), 7.29 (2H, t, J = 7.5 Hz), 7.37 (4H, m), 7.45 (2H, t, J = 7.7 Hz), 7.53 (1H, t, J = 7.7 Hz), 7.81 (2H, d, J = 7.7 Hz); ¹³C NMR (100 MHz, CD₃OD) 59.6, 60.4, 108.6, 127.0, 127.3, 127.9, 128.2, 131.3, 139.8, 140.3, 142.9 four C are missing; IR v_{max} / cm⁻¹ : 3310, 2159, 1635, 1530, 1021, 700; Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 72.44; H, 5.71; N, 4.55.

(1S, 2S)-[2-phenyl-2-benzoylamino-1-(3-furyl)-ethyl]acetate 9.

To a solution of hydroxy-amide (88 mg, 0.28 mmol), pyridine (0.05 mL), and DMAP (few crystals) in CH₂Cl₂ (1 mL) was added dropwise Ac₂O (0.032 mL, 0.315 mmol) at r.t. under an atmosphere of nitrogen. The reaction mixture was stirred for 1 h, then diluted with CH₂Cl₂ (4 mL), water (1 mL) was added, the organic layer separated then washed sequentially with HCl (1 N, 1 mL), saturated aqueous NaHCO₃ (2 x 1 mL), dried over Na₂SO₄, filtered and concentrated to yield pure **9** (93 mg, 95%). $[\alpha]^{D}_{23} = +16$ (c 1, CHCl₃), m.p. 147 °C, R_f = 0.33 petroleum ether/AcOEt (60/40), ¹H NMR (400 MHz, CDCl₃) 2.06 (3H, s), 5.59 (1H, dd, *J* = 8.7, 7.2 Hz), 6.28 (1H, d, *J* = 7.2 Hz), 6.32 (1H, m), 6.97 (1H, d, *J* = 8.7 Hz), 7.24-7.33 (7H, m), 7.40-7.52 (3H, m), 7.76 (2H, d, *J* = 8.3 Hz); ¹³C NMR (100 MHz, CDCl₃) 21.1, 57.4, 70.8, 109.2, 121.9, 127.0, 127.3, 128.1, 128.7, 128.8, 131.8, 134.2, 138.5, 140.9, 143.4, 166.7, 171.1; IR v_{max}/ cm⁻¹: 3295, 1741, 1637, 1534, 1234, 1024, 701; MS m/z (FAB) 350 ([M+H]⁺,

42%), Anal. Calcd for C₂₁H₁₉NO₄: C, 72.19; H, 5.48; N, 4.01. Found: C, 72.06; H, 5.63; N, 3.87.

Methyl (2R, 3S)-2-acetoxy-3-phenyl-3-benzoylamino-propanoate.

To a vigorously stirred solution of 9 (50 mg, 0.143 mmol) in a 2/2/3 mixture of CH₃CN/CCl₄/H₂O (1.75 mL) was added sodium metaperiodate (183 mg, 0.858 mmol) in one portion, followed by RuCl₃ (0.9 mg, 4.3 µmol) in one portion and the stirring is maintained for 6 h. CH₂Cl₂ (2 mL) and water (1 mL) were added, the layer separated and the aqueous phase extracted with CH_2Cl_2 (4 x 1 mL). The organic layers are combined, dried over Na_2SO_4 , filtered and concentrated. To a solution of the crude acid in a 5/1 mixture Et₂O/MeOH (1.2 mL) was added dropwise a solution of trimethylsilyldiazomethane (2 M in hexane, 0.08 mL) at rt. After 30 minutes of stirring, the solvent was removed under vacuum and the residue purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt (60/40) as eluent to give the amide ester as a white solid (36 mg, 74%). M.p. 128-130 °C $[\alpha]_{23}^{D}$ = -78.5 (c 1, CHCl₃), R_f = 0.29 petroleum ether/AcOEt (60/40), ¹H NMR (400 MHz, CDCl₃) 2.13 (3H, s), 3.77 (3H, s), 5.45 (1H, d, *J* = 2.9 Hz), 5.87 (1H, dd, *J* = 9.1, 2.9 Hz), 6.99 (1H, d, J = 9.2 Hz), 7.28-7.35 (1H, m) 7.35 (1H, s), 7.36 (1H, s), 7.46 (2H, tt, J = 7.3, 1.1 Hz), 7.53 (2H, tt, J = 7.4, 1.4 Hz), 7.79 (1H, dd, J = 8.4, 1.1 Hz); ¹³C NMR (100 MHz, CDCl₃) 20.5, 52.8, 53.5, 74.4, 126.6, 127.1, 128.1, 128.7, 128.8, 131.9, 137.6, 166.9, 168.5, 169.7; IR v_{max}/cm⁻¹ 3307, 1748, 1644, 15.29, 1226; MS m/z (CI) 342 ([M+H]⁺, 28%), 105 (100); Anal. Calcd. for $C_{21}H_{19}NO_4$: C, 66.85; H, 5.61; N, 4.10. Found: C, 67.20; H, 5.55; N, 4.07.

(2R, 3S) N-benzoy-3-phenylisoserine methyl ester 2.⁸

To a solution of the above ester (32 mg, 93 µmol) in MeOH (2.5 mL) was added sodium methoxide (17 mg, 315 µmol)and the solution was stirred for 1 h at r.t. Saturated aqueous ammonium chloride solution (5 mL) and AcOEt (5 mL) were added. The organic layer was separated washed with brine, dried over MgSO₄, filtered and concentrated under vacuum to give **2** as a white solid (25 mg, 92%); $[\alpha]_{23}^{D} = -50.1$ (c 1, MeOH), [lit.⁹ $[\alpha]_{23}^{D} - 50.2$ (c 1 MeOH)]; ¹H NMR (400 MHz,

⁸ Denis, J.-N.; Greene, A. E.; Serra, A. A.; Luche, M.-J. J. Org. Chem. 1986, 51, 46-50.

⁹ Hamamoto, H.; Mamedov, V. A.; Kitamoto, M.; Hayashi, N.; Tsuboi, S. *Tetrahedron: Asymmetry* **2000**, *11*, 4485-4497.

CDCl₃) 3.26 (1H, d, J = 3.5 Hz), 3.86 (3H, s), 4.65 (1H, dd, J = 3.5, 2.0 Hz), 5.75 (1H, dd, J = 9.2, 2.0 Hz), 6.97 (1H, br d, J = 9.2 Hz), 7.28-7.55 (8H, m), 7.78 (2H, d, J = 7.3 Hz).

N-1[(E)-1-(3-furyl)methylidene]-2-(1,1,1-trimethylsilyl)-1-ethanesulfonamide.

3-Furyl aldehyde and trimethylsilylethanesulfonamide (2.50 g, 13.7 mmol) were brought to reflux in toluene using a Dean-Stark apparatus, before BF₃.Et₂O (0.3 mL, 2 mmol) was added. The reaction mixture was maintained at reflux for 3 h before being allowed to cool down to r.t. Saturated aqueous NaHCO₃ solution is added, and the organic layer extracted with toluene. The organic layers were combined, dried over MgSO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt (70/30) as eluent to give the **10** (2.45 g, 69%) as a pale brown solid. Rf = 0.40, m.p. 79-81 °C, ¹H NMR (400 MHz, CDCl₃) 0.06 (9H, s), 1.04 (2H, m), 3.09 (2H, m), 6.89 (1H, d, *J* = 1.8 Hz), 7.55 (1H, br s), 8.10 (1H, s), 8.96 (1H, s); ¹³C NMR (100 MHz, CDCl₃) – 2.1, 9.5, 48.8, 107.9, 123.2, 145.5, 152.1, 163.8; IR v_{max}/ cm⁻¹ 1601, 1308, 1248, 1136; MS m/z (CI with NH₃) 260 ([M+H]⁺, 1), 73 (100); HRMS: found [M+H]⁺ 260.0785, C₁₀H₁₈NO₃SSi requires 260.0777. Anal. Calcd for C₁₀H₁₇NO₃SSi: C, 46.30; H, 6.61; N, 5.40. Found: C, 46.74; H, 6.70; N, 5.26.

(2*S*,3*S*)- and (2*S*,3*R*)-2-(3-Furyl)-3-phenyl-1-[2-(1,1,1-trimethylsilyl)ethyl]sulfonylaziridine (*cis*- and *trans*-11)

A mixture of benzaldehyde tosylhydrazone salt (852 mg, 2.88 mmol), sulfide (72.5 mg, 0.29 mmol), triethylbenzylammonium chloride (33 mg, 0.145 mmol), rhodium acetate dimer (6.4 mg, 0.0145 mmol) and imine (373 mg, 1.44 mmol) in dioxane (4 mL) is stirred for at 40 °C for 48 h. Water and EtOAc were added, the aqueous layer was extracted with EtOAc (2 x 5 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt (95/5) as eluent to give **11** (261 mg, 52%) as an 8/1 *trans/cis* mixture.¹H NMR (400 MHz, CDCl₃) *trans* isomer : 0.05 (9H, s), 0.97-1.16 (2H, m), 3.06 (2H, m), 3.83 (1H, d, J = 4.4 Hz), 4.22 (1H, d, J = 4.4 Hz), 6.65 (1H, d, J = 1.0 Hz), 7.30-7.44 (6H, m), 7.46 (1H, t, J = 1.4 Hz), 7.69(1H, s); *cis* isomer : 0.03 (9H, s), 1.19-1.24 (2H, m), 3.22

(2H, m), 4.01 (1H, d, J = 7.3 Hz), 4.21 (1H, d, J = 7.3 Hz), 6.03 (1H, d, J = 1.0 Hz), 7.30-7.48 (7H, m). MS m/z (CI) 350 ([M+H]⁺, 14), 181 (100); HRMS calcd for $C_{17}H_{25}NO_3SSi^+$ 350.1246, found 350.1255; Chiracel OD, hexane-*i*-PrOH (98 : 2) 1.0 mL/min, major 20.6 min (2*S*,3*S*), minor 38.9 min (2*R*,3*R*).

(2S,3S)-2-(3-Furyl)-3-phenylaziridine 12.

To a DMF/THF (1/1, 2 mL) solution of the above 8/1 *trans/cis* mixture of **11** (257 mg, 0.736 mmol) was added tetrabutylammonium triphenyldifluorosilicate (397 mg, 0.735 mmol) and cesium fluoride (895 mg, 5.89 mmol) and the resulting mixture was stirred for 12 h at 40 °C under an atmosphere of N₂. MeOH (1 mL) is added and the mixture was stirred for 15 min at r.t. and filtered. The filtrate is concentrated under vacuum and purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt (95/5) as eluent. The first fraction gave **12** (102 mg, 75 %) as white crystals in a pure diastereoisomeric form. $[\alpha]^{D}_{23} = -233$, (c 1, CHCl₃), Rf = 0.19 petroleum ether/AcOEt (80/20), m.p. 55-56 °C, ¹H NMR (400 MHz, CDCl₃) 0.95-1.2 (1H, br m), 2.80-3.40 (2H, br m), 6.31 (1H, br s), 7.24-7.35 (5H, m), 7.39 (1H, s), 7.45 (1H, s); ¹³C NMR (100 MHz, CDCl₃) 125.1, 127.7, 127.9, 128.6, 129.5, 135.1, 139.5, 139.9, the two aliphatic carbons are missing; IR v_{max}/ cm⁻¹ 3030, 1504, 1159; MS m/z (CI) 290 ([M+H]⁺, 80%). Anal. Calcd for C₁₂H₁₁NO: C, 77.81; H, 5.99; N, 7.56. Found: C, 78.17; H, 6.21; N, 7.66.

(2S,3S)-2-(3-Furyl)-3-phenyl-1-benzoylaziridine.

To a solution of **12** (101 mg, 0.55 mmol) and triethylamine (0.076 mL, 0.55 mmol) in CH₂Cl₂ (1 mL) was added dropwise a solution of benzoyl chloride (0.064 mL, 0.55 mmol) in CH₂Cl₂ (1 mL) at r.t. The reaction mixture was stirred for 1 h, then the solvent was removed under vacuum. The resulting white solid was washed with Et₂O (5 mL) and the filtrate was concentrated under vacuum to yield the benzoylaziridine (157 mg), as an oil, which was used in the next step without purification. ¹H NMR (400 MHz, CDCl₃) 3.79 (1H, d, J = 2.9 Hz), 3.97 (1H, d, J = 3.0 Hz), 6.09 (1H, m), 7.22 (1H, t, J = 1.6 Hz), 7.28-7.48 (9H, m), 7.94 (2H, d, J = 7.9 Hz); ¹³C NMR (100 MHz, CDCl₃) 43.7, 45.9, 108.2, 120.8, 126.4, 128.1, 128.2, 129.0, 132.6, 133.9, 136.5, 141.7, 143.6, 176.6; IR v_{max}/ cm⁻¹ 1667, 1320, 1024, 696. MS m/z (CI) 290 ([M+H]⁺, 48), 105 (100).

Cis (2S,3R)-2-(3-Furyl)-3-phenyl-1-benzoylaziridine.

M.p. = 108-110 °C; ¹H NMR (400 MHz, CDCl₃) 3.83 (1H, d, J = 6.2 Hz), 4.17 (1H, d, J = 6.2 Hz), 6.10 (1H, m), 7.22 (1H, t, J = 1.6 Hz), 7.28-7.48 (9H, m),7.54 (1H, t, J = 7.7 Hz), 8.07 (2H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) 40.1, 45.7, 110.2, 119.3, 127.8, 127.9, 128.2, 128.6, 129.3, 132.6, 133.2, 134.1, 141.6, 143.2, 179.2; IR v_{max} / cm⁻¹ 1665, 1288, 1066, 790, 736, 699; Anal. Calcd for C₁₂H₁₁NO: C, 78.87; H, 5.23; N, 4.84. Found: C, 78.97; H, 5.23; N, 4.80. Chiracel OJ, hexane-*i*-PrOH (98 : 2) 1.0 mL/min, major 20.6 min (2*S*,3*S*), minor 38.9 min (2*R*,3*R*).

(4S, 5S)-1,4-diphenyl-5-(3-furyl)-4,5-dihydro-oxazole 8.

To a solution of the crude benzoyl aziridine (156 mg, 0.54 mmol) in dry CH₂Cl₂ (15 mL) was added dropwise BF₃.OEt₂ (0.15 mL, 1.08 mmol) at 0 °C under an atmosphere of nitrogen and the solution was stirred for 1 h a r.t. The reaction was diluted with CH₂Cl₂ (15 mL) and washed with water (2 x 5 mL), dried over MgSO₄, filtered and concentrated to give an orange oil. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt (80/20) as eluent to give **8** (126 mg, 81%) as a pale yellow solid. [α]^D₂₃ = -58.5, (c 1, CHCl₃), Rf = 0.42 petroleum ether/AcOEt (80/20), m.p. 56-58 °C, ¹H NMR (400 MHz, CDCl₃) 5.24 (1H, d, *J* = 8.1 Hz), 5.37 (1H, d, *J* = 8.1 Hz), 6.50 (1H, m), 7.29-7.39 (5H, m), 7.43-7.53 (5H, m), 8.08 (2H, d, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) 77.1, 82.0, 108.4, 126.7, 127.9, 128.5 (2C), 128.6, 128.7, 128.9, 131.8, 140.2, 141.7, 144.3, 164.0; IR ν_{max} / cm⁻¹ 1646, 1494, 1450, 1063, 1024, 874, 695; MS m/z (CI) 290 ([M+H]⁺, 80%);. Anal. Calcd. for C₁₉H₁₅NO₂: C, 78.87; H, 5.23; N, 4.84. Found: C, 78.53; H, 5.48; N, 4.84; Chiracel OJ, hexane-*i*-PrOH (98 : 2) 1.0 mL/min, major 14.3 min (2*S*,2*S*), minor 20.9 min (2*R*,3*R*).