Supporting Information

Iridium Complex-Catalyzed Highly Selective Cross [2+2+2] Cycloaddition of Two Different Monoynes: 2:1 Coupling versus 1:2 Coupling

Ryo Takeuchi*† and Yoshihiko Nakaya

Department of Chemistry, Graduate School of Integrated Science, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
${ }^{\dagger}$ Present Address: Department of Chemistry, Aoyama Gakuin University,
5-10-1 Fuchinobe, Sagamihara, 229-8558, Japan

General Methods. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Brucker AVANCE-400 spectrometer using Me4Si as an internal standard. Samples were dissolved in CDCl_{3}. GC analyses were performed on a Shimadzu GC-14A using 3-mm x 2-m glass columns packed with 5% OV-17 on $60 / 80$ mesh chromosorb w AW-DMCS. Capillary GC analyses were performed on a Shimadzu GC-17A Ver. 2 using $\mathrm{SP}^{\mathrm{TM}}-2331(0.32 \mathrm{~mm}$ i.d. x 60 m$)$. Column chromatography was carried out on 70-230 mesh silica gel (Merk; Silica Gel 60). Medium-pressure column chromatography was carried out on a YFLC-540 using an ultrapack Si column. Elemental analyses were carried out on a Yanaco MT-5 CHN analyzer. HRMS measurements were performed on a JEOL SX102A spectrometer.

Materials. All reagents and the solvents were dried and purified before use by the usual procedures. Dimethyl acetylenecarboxylate, methyl 2-octynoate, 1-hexyne, 1-decyne, phenylacetylene, 3-phenyl-1-propyne, 5-chloro-1-pentyne, 5-cyano-1-pentyne, 3-methoxy-1-propyne, trimethylsilylacetylene, N, N-dimethylpropargylamine, 3-hexyne, 5,7-dodecadiyne, 2-propyn-1-ol, 3-butyn-2-ol, 2-butyn-1-ol were purchased. 1,4-Dimethoxy-2-butyne was prepared by the reaction of disodio-2-butyn-1,4-diol with iodomethane. $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$ was prepared according to the published method. Triphenylphosphine, 1,1'-bis(diphenylphosphino)ferrocene, bis(diphenylphosphino)methane 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane and 1,2-bis(dipentafluorophenylphosphino)ethane were purchased.

Cross [2+2+2] cycloaddition of 1 with monoyne. A typical procedure is described (Table 1, entry 2). To a toluene solution $(5 \mathrm{~mL})$ of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(13.4 \mathrm{mg}$, $0.02 \mathrm{mmol})$ and dppe ($15.9 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added 1-hexyne ($0.099 \mathrm{~g}, 1.2 \mathrm{mmol}$) via a syringe. Dimethyl acetylenedicarboxylate ($0.284 \mathrm{~g}, 2 \mathrm{mmol}$) was then added to the solution by a syringe. The reaction mixture was stirred under reflux for 1 h . The progress of the reaction was monitored by GLC. After dimethyl
acetylenedicarboxylate was consumed, toluene was evaporated in vacuo. Column chromatography of the residue gave 3a as a colorless oil (n-hexane/AcOEt $=80 / 20,0.359$ g , yield 98%) and $\mathbf{4 a}$ as a colorless oil (n-hexane/ $\mathrm{AcOEt}=60 / 40,0.003 \mathrm{~g}$, yield 2%).

Tetramethyl 5-(n-butyl)-1,2,3,4-benzenetetracarboxylate (3a): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36$ (sixtet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.59 (quintet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.897(\mathrm{~s}, 3 \mathrm{H}), 3.909(\mathrm{~s}, 3 \mathrm{H}), 3.913(\mathrm{~s}, 3 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.5\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{2}\right), 32.85\left(\mathrm{CH}_{2}\right)$, $32.95\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{OCH}_{3}\right), 52.7(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 129.7$ (arom), 129.9 (arom), 132.8 (arom), 133.6 (arom), 136.6 (arom), 142.7 (arom), 165.0 (C=O), 165.7 (C=O), $167.32(\mathrm{C}=\mathrm{O}), 167.40(\mathrm{C}=\mathrm{O})$. This compound was reported in Reference 3(d) in the text. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=23.64 \mathrm{~min}$ (OV-17; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-(n-octyl)-1,2,3,4-benzenetetracarboxylate (3b): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.58-1.62(\mathrm{~m}, 2 \mathrm{H})$, 2.68-2.72 (m, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.908(\mathrm{~s}, 3 \mathrm{H}), 3.912(\mathrm{~s}, 3 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.2$ $\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{OCH}_{3}\right), 52.7(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 52.9$ $\left(\mathrm{OCH}_{3}\right), 129.7$ (arom), 129.9 (arom), 132.9 (arom), 133.6 (arom), 136.6 (arom), 142.8 (arom), $165.0(\mathrm{C}=\mathrm{O}), 165.7(\mathrm{C}=\mathrm{O})$, $167.3(\mathrm{C}=\mathrm{O})$, $167.4(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O} 8: \mathrm{C}, 62.55 ; \mathrm{H}, 7.16 ; \mathrm{O}, 30.30$. Found: C, $62.76 ; \mathrm{H}, 7.27$. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=33.84 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-phenyl-1,2,3,4-benzenetetracarboxylate (3c): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.43 (m, 3H), $8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 52.5\left(\mathrm{OCH}_{3}\right)$, $52.90\left(\mathrm{OCH}_{3}\right), 52.92\left(\mathrm{OCH}_{3}\right), 53.1\left(\mathrm{OCH}_{3}\right), 128.1(2 \mathrm{C})$ (arom), 128.5 (3C) (arom), 130.0 (arom), 130.1 (arom), 133.85 (arom), 133.97 (arom), 136.6 (arom), 137.9 (arom),
142.1 (arom), $164.8(\mathrm{C}=\mathrm{O}), 165.6(\mathrm{C}=\mathrm{O}), 167.3(2 \mathrm{C})(\mathrm{C}=\mathrm{O})$. This compound was reported in Reference 3(d) in the text. This compound was analyzed by GLC. $t_{R}=$ 32.04 min (OV-17; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-phenylmethyl-1,2,3,4-benzenetetracarboxylate (3d): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H})$, 7.10-7.12 (m, 2H), 7.19-7.21 (m, 1H), 7.22-7.29 (m, 2H), $7.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 38.7\left(\mathrm{CH}_{2}\right), 52.6\left(\mathrm{OCH}_{3}\right), 52.8(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 126.7$ (arom), 128.6 (2C) (arom), 128.9 (2C) (arom), 130.1 (arom), 130.2 (arom), 133.4 (arom), 134.5 (arom), 136.9 (arom), 138.3 (arom), 141.0 (arom), 164.9 (C=O), 165.7 $(\mathrm{C}=\mathrm{O}), 167.2(\mathrm{C}=\mathrm{O}), 167.4(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}: \mathrm{C}, 63.00 ; \mathrm{H}, 5.03 ; \mathrm{O}$, 31.97. Found: C, 63.15; H, 5.17. This compound was analyzed by GLC. $t_{R}=38.03$ $\min \left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-(3-choloropropyl)-1,2,3,4-benzenetetracarboxylate (3e): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.2 \mathrm{~Hz}$, 2 H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.6\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 43.9\left(\mathrm{CH}_{2}\right), 52.84\left(\mathrm{OCH}_{3}\right), 52.90\left(\mathrm{OCH}_{3}\right), 52.94\left(\mathrm{OCH}_{3}\right)$, $53.10\left(\mathrm{OCH}_{3}\right), 130.1$ (arom), 130.2 (arom), 133.5 (arom), 134.0 (arom), 136.9 (arom), 141.0 (arom), $164.9(\mathrm{C}=\mathrm{O})$, $165.6(\mathrm{C}=\mathrm{O})$, $167.3(\mathrm{C}=\mathrm{O}), 167.4(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClO}_{8}: \mathrm{C}, 52.79 ; \mathrm{H}, 4.95 ; \mathrm{Cl}, 9.17 ; \mathrm{O}, 33.09$. Found: C, $52.57 ; \mathrm{H}, 4.92 ; \mathrm{Cl}, 9.09$. This compound was analyzed by GLC. $t_{R}=30.12 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-(3-cyanopropyl)-1,2,3,4-benzenetetracarboxylate (3f): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99$ (quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.84-2.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 9 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.6$ $\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 52.82\left(\mathrm{OCH}_{3}\right), 52.86\left(\mathrm{OCH}_{3}\right), 52.89\left(\mathrm{OCH}_{3}\right)$,
$53.0\left(\mathrm{OCH}_{3}\right), 118.8(\mathrm{CN}), 130.2$ (arom), 130.3 (arom), 133.6 (2C) (arom), 136.7 (arom), 140.0 (arom), $164.6(\mathrm{C}=\mathrm{O})$, $165.5(\mathrm{C}=\mathrm{O}), 167.0(\mathrm{C}=\mathrm{O})$, $167.1(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{8}$: C, 57.29 ; H, 5.08; N, 3.71; O, 33.92. Found: C, 57.13; H, 5.08; N, 3.70. This compound was analyzed by GLC. $t_{R}=37.36 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-(methoxymethyl)-1,2,3,4-benzenetetracarboxylate (3g): ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 4.58(\mathrm{~s}$, $2 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.7\left(\mathrm{OCH}_{3}\right), 52.84\left(\mathrm{OCH}_{3}\right), 52.86$ $\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 58.5\left(\mathrm{OCH}_{3}\right), 70.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 130.2$ (arom), 130.3 (arom), 131.6 (arom), 134.2 (arom), 135.0 (arom), 139.0 (arom), 164.9 (C=O), 165.6 (C=O), 166.7 $(\mathrm{C}=\mathrm{O}), 167.3(\mathrm{C}=\mathrm{O})$. This compound was reported in Reference 3(d) in the text. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=22.92 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-trimethylsilyl-1,2,3,4-benzenetetracarboxylate (3h): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.34(\mathrm{~s}, 9 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $8.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.8(3 \mathrm{C})\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{OCH}_{3}\right), 52.8(2 \mathrm{C})$ $\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 129.3$ (arom), 130.2 (arom), 134.9 (arom), 138.0 (arom), 141.4 (arom), 142.3 (arom), $165.4(\mathrm{C}=\mathrm{O})$, $166.4(\mathrm{C}=\mathrm{O}), 167.3(\mathrm{C}=\mathrm{O}), 168.4(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 53.39$; H, 5.80 ; O, 33.47; Si, 7.34. Found: C, 53.35; H, 5.84. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=21.28 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-(N, N-dimethylaminomethyl)-1,2,3,4-benzenetetracarboxylate (3i): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.18(\mathrm{~s}, 6 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.9(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{OCH}_{3}\right), 52.69$ $\left(\mathrm{OCH}_{3}\right), 52.72\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 60.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 129.7$ (arom), 130.3 (arom), 133.0 (arom), 133.8 (arom), 136.8 (arom), 140.3 (arom), 165.0 (C=O), 165.7 (C=O), 167.1 $(\mathrm{C}=\mathrm{O}), 167.3(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{8}: \mathrm{C}, 55.58 ; \mathrm{H}, 5.76 ; \mathrm{N}, 3.81 ; \mathrm{O}$,
34.84. Found: C, $55.57 ; H, 5.77 ; \mathrm{N}, 3.65$. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=$ 21.76 min (OV-17; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl

5-((N-methoxycarbonyl)aminomethyl)-1,2,3,4-benzenetetracarboxylate (3j): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 4.40(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{br}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.8\left(\mathrm{CH}_{2}\right)$, $52.3\left(\mathrm{OCH}_{3}\right), 52.96(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 53.06\left(\mathrm{OCH}_{3}\right), 53.12\left(\mathrm{OCH}_{3}\right), 130.9$ (arom), 131.1 (arom), 133.4 (arom), 134.2 (arom), 135.3 (arom), 139.3 (arom), 156.8 (C=O), 164.7 $(\mathrm{C}=\mathrm{O})$, $165.7(\mathrm{C}=\mathrm{O})$, $167.1(2 \mathrm{C})(\mathrm{C}=\mathrm{O}) ; \mathrm{R}_{\mathrm{f}}=0.20$ (n-hexane : AcOEt=1:6). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{10}: \mathrm{C}, 51.39 ; \mathrm{H}, 4.82$; N, 3.53; O, 40.27. Found: C, 51.31; H, 4.89; N, 3.54.

Tetramethyl 5,6-bis(methoxymethyl)-1,2,3,4-benzenetetracarboxylate (3k): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.27$ ($\mathrm{s}, 3 \mathrm{H} \times 2$), 3.85 ($\mathrm{s}, 3 \mathrm{H} \times 2$), 3.88 ($\mathrm{s}, 3 \mathrm{H} \times 2$), 4.61 (s, $2 \mathrm{H} \mathrm{x} \mathrm{2)}$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.8(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 53.0(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 58.2$ (2C) $\left(\mathrm{OCH}_{3}\right), 68.2(2 \mathrm{C})\left(\mathrm{OCH}_{2}\right), 130.9$ (2C) (arom), 135.1 (2C) (arom), 138.7 (2C) (arom), $166.2(2 \mathrm{C})(\mathrm{C}=\mathrm{O}), 167.3(2 \mathrm{C})(\mathrm{C}=\mathrm{O})$. HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{10}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z$ 399.1291. Found 399.1286. This compound was reported in Reference 3(d) in the text. This compound was analyzed by GLC. $t_{R}=26.28 \mathrm{~min}(\mathrm{OV}-17$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5,6-bis(acetoxymethyl)-1,2,3,4-benzenetetracarboxylate (31): ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 2.01$ ($\mathrm{s}, 3 \mathrm{H} \times 2$), 3.86 ($\mathrm{s}, 3 \mathrm{H} \mathrm{x} \mathrm{2)}$,3.91 ($\mathrm{s}, 3 \mathrm{H} \times 2$), 5.38 (s , $2 \mathrm{Hx} 2) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.4(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 53.0(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 53.1(2 \mathrm{C})$ $\left(\mathrm{OCH}_{3}\right), 59.5(2 \mathrm{C})\left(\mathrm{CH}_{2} \mathrm{O}\right), 131.9$ (2C) (arom), 135.5 (2C) (arom), 136.8 (2C) (arom), 165.9 (2C) (C=O), 166.6 (2C) (C=O), 169.9 (2C) (C=O). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{12}$: C, 52.87 ; H, 4.88; O, 42.25. Found: C, $52.71 ; \mathrm{H}, 4.97$. This compound was analyzed by GLC. $t_{R}=36.62 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then
elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).
Tetramethyl 5,6-diethyl-1,2,3,4-benzenetetracarboxylate (3m): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} x 2), 2.74(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H} \times 2), 3.84(\mathrm{~s}, 3 \mathrm{H} x$ 2), $3.89(\mathrm{~s}, 3 \mathrm{H} \times 2) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.3(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 23.5(2 \mathrm{C})\left(\mathrm{CH}_{2}\right)$, $52.6(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 52.8(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 129.0(2 \mathrm{C})$ (arom), 134.9 (2C) (arom), 143.4 (2C) (arom), $166.6(2 \mathrm{C})(\mathrm{C}=\mathrm{O}), 167.9(2 \mathrm{C})(\mathrm{C}=\mathrm{O})$. HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{8}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z$ 367.1393. Found 367.1391. This compound was reported in Reference 3(d) in the text. This compound was analyzed by GLC. $t_{R}=22.26 \mathrm{~min}(\mathrm{OV}-17$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Tetramethyl 5-(n-butyl)-6-(1-hexynyl)-1,2,3,4-benzenetetracarboxylate (3n):

 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39$ (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.48 (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.57-1.61 (m, 4H), 2.48 (t, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.86(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.4\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$, $19.3\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right)$, $32.1\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 52.59\left(\mathrm{OCH}_{3}\right), 52.63\left(\mathrm{OCH}_{3}\right), 52.9(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 75.2(\mathrm{C} \equiv \mathrm{C})$, 102.1 ($\mathrm{C} \equiv \mathrm{C}$), 125.3 (arom), 128.1 (arom), 129.7 (arom), 134.1 (arom), 137.7 (arom), 146.3 (arom), 165.8 ($\mathrm{C}=\mathrm{O}$), 166.3 (C=O), 166.9 ($\mathrm{C}=\mathrm{O}$), 167.1 (C=O). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{8}: \mathrm{C}, 64.56$; H, 6.77; O, 28.67. Found: C, $64.26 ; \mathrm{H}, 6.78$. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=38.95 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).Tetramethyl 5-methyl-6-phenyl-1,2,3,4-benzenetetracarboxylate (30): ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8\left(\mathrm{CH}_{3}\right)$, $52.16\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 52.91\left(\mathrm{OCH}_{3}\right), 52.95\left(\mathrm{OCH}_{3}\right), 128.11$ (arom), 128.17 (arom), 128.22 (2C) (arom), 128.7 (2C) (arom), 130.1 (arom), 134.9 (arom), 135.3 (arom), 136.8 (arom), 138.0 (arom), 143.2 (arom), 166.2 (C=O), 166.5 (C=O), 167.1 $(\mathrm{C}=\mathrm{O}), 167.7(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{8}: \mathrm{C}, 63.00 ; \mathrm{H}, 5.03$; O, 31.97. Found:
$\mathrm{C}, 62.82 ; \mathrm{H}, 5.15$. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=35.90 \mathrm{~min}(\mathrm{OV}-17$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate (6a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.18\left(\mathrm{OCH}_{3}\right), 53.22\left(\mathrm{OCH}_{3}\right), 53.26\left(\mathrm{OCH}_{3}\right), 69.1$ $\left(\mathrm{OCH}_{2}\right), 124.9$ (arom), 125.5 (arom), 131.8 (arom), 132.6 (arom), 135.6 (arom), 148.5 (arom), $164.5(\mathrm{C}=\mathrm{O}), 165.2(\mathrm{C}=\mathrm{O})$, $165.8(\mathrm{C}=\mathrm{O}), 166.8(\mathrm{C}=\mathrm{O})$. HRMS (FAB) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 309.0610$. Found 309.0602. This compound was reported in Reference $3(\mathrm{~d})$ in the text. This compound was analyzed by GLC. $t_{R}=27.76 \mathrm{~min}$ (OV-17; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Trimethyl 1-hydro-1-methyl-3-oxo-4,5,6-isobenzofurantricarboxylate (6b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.00$ $(\mathrm{s}, 3 \mathrm{H}), 5.62(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.9$ $\left(\mathrm{CH}_{3}\right), 53.22\left(\mathrm{OCH}_{3}\right), 53.26\left(\mathrm{OCH}_{3}\right), 53.32\left(\mathrm{OCH}_{3}\right), 77.2(\mathrm{OCH}), 124.2$ (arom), 125.6 (arom), 132.1 (arom), 132.8 (arom), 136.0 (arom), 152.9 (arom), 164.6 (C=O), 165.3 $(\mathrm{C}=\mathrm{O}), 165.8(\mathrm{C}=\mathrm{O}), 166.1(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{8}: \mathrm{C}, 55.90 ; \mathrm{H}, 4.38 ; \mathrm{O}$, 39.72. Found: C, 55.99; H, 4.41. This compound was analyzed by GLC. $t_{R}=24.65$ \min (OV-17; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Trimethyl 1,3-dihydro-3-oxo-7-methyl-4,5,6-isobenzofurantricarboxylate ($\mathbf{6 c}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $5.30(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.1\left(\mathrm{CH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 53.19\left(\mathrm{OCH}_{3}\right)$, $53.25\left(\mathrm{OCH}_{3}\right), 68.7\left(\mathrm{OCH}_{2}\right), 123.5$ (arom), 128.8 (arom), 131.3 (arom), 132.3 (arom), 139.3 (arom), 149.4 (arom), 164.7 ($\mathrm{C}=\mathrm{O}$), 165.2 ($\mathrm{C}=\mathrm{O}$), 167.0 ($\mathrm{C}=\mathrm{O}$), 167.4 ($\mathrm{C}=\mathrm{O}$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{8}$: C, 55.90; H, 4.38; O, 39.72. Found: C, 56.09; H, 4.39. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=29.71 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 5 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Cross [2+2+2] cycloaddition of 7 with $\mathbf{2 k}$. To a THF solution (5 mL) of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(13.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and dppe $(15.9 \mathrm{mg}, 0.04 \mathrm{mmol})$ was added $\mathbf{2 k}(0.137$ $\mathrm{g}, 1.2 \mathrm{mmol})$ via a syringe. Ester $7(0.308 \mathrm{~g}, 2 \mathrm{mmol})$ was then added to the solution using a syringe. The reaction mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$. The progress of the reaction was monitored by GLC. After 7 was consumed, THF was evaporated in vacuo. Column chromatography of the residue gave a mixture of two trimers of 7 as a colorless oil (n-hexane/AcOEt=98/2, 34 mg , yield 11%) and a mixture of $\mathbf{8}$ and 9 as a colorless oil (n-hexane/ $\mathrm{AcOEt}=90 / 10,0.347 \mathrm{~g}$, yield 82%). The ratio of $\mathbf{8}$ to $\mathbf{9}$ was determined using capillary GC. Separation 8 and 9 was carried out using medium-pressure column chromatography. Eluent for $\mathbf{8}$ was n-hexane/ $\mathrm{AcOEt}=90 / 10$. Eluent for 9 was n-hexane/AcOEt=80/20.

Dimethyl 4,5-bis(methoxymethyl)-2,6-di(n-pentyl)-1,3-benzenedicarboxylate (8): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27-1.29 (m, 4H), 1.32-1.38 (m, 4H), 1.48-1.65 (m, 4H), 2.44-2.49 (m, 2H), 2.57-2.60 $(\mathrm{m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.75\left(\mathrm{CH}_{3}\right), 13.80\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right)$, $31.3(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 32.16\left(\mathrm{CH}_{2}\right), 32.22\left(\mathrm{CH}_{2}\right), 51.7(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 56.1(2 \mathrm{C})$ $\left(\mathrm{OCH}_{3}\right), 67.2\left(\mathrm{OCH}_{2}\right), 69.3\left(\mathrm{OCH}_{2}\right), 132.82$ (arom), 132.89 (arom), 135.1 (arom), 136.5 (arom), 136.6 (arom), 140.4 (arom), 169.7 ($\mathrm{C}=\mathrm{O}$), 170.0 ($\mathrm{C}=\mathrm{O}$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6}$: C, 68.22; H, 9.06; O, 22.72. Found: C, 68.45; H, 9.01. HRMS (GC-EI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6}\left([\mathrm{M}]^{+}\right) m / z 422.2668$. Found 422.2673. This compound was analyzed by capillary GLC. $\quad \mathrm{t}_{\mathrm{R}}=13.89 \mathrm{~min}\left(\mathrm{SP}^{\mathrm{TM}}-2331\right.$; Holding at $\left.250^{\circ} \mathrm{C}\right)$.

Dimethyl 2,3-bis(methoxymethyl)-5,6-di(n-pentyl)-1,4-benzenedicarboxylate (9): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H} \times 2), 1.26-1.40(\mathrm{~m}, 4 \mathrm{H} \times 2)$, $1.47-1.53(\mathrm{~m}, 2 \mathrm{H} x 2), 2.51-2.55(\mathrm{~m}, 2 \mathrm{H} x 2), 3.28(\mathrm{~s}, 3 \mathrm{H} \times 2), 3.89(\mathrm{~s}, 3 \mathrm{H} \times 2), 4.45(\mathrm{~s}$, $2 \mathrm{Hx} 2) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 22.2(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 30.6(2 \mathrm{C})$ $\left(\mathrm{CH}_{2}\right), 31.0(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 32.4(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 51.9(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 58.1(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 69.1$
(2C) $\left(\mathrm{OCH}_{2}\right), 131.9$ (2C) (arom), 136.2 (2C) (arom), 138.1 (2C) (arom), 170.2 (2C) $(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6}$: C, 68.22; H, 9.06; O, 22.72. Found: C, 68.09; H, 8.86. This compound was analyzed by capillary GLC. $t_{R}=13.12 \mathrm{~min}\left(\mathrm{SP}^{\mathrm{TM}}-2331\right.$; Holding at $250^{\circ} \mathrm{C}$).

Assignment of 8

The 2D NOESY spectrum reveals a cross-peak of methylene proton $\mathrm{H}-1$ with methylene proton H-6. This suggests a short distance between H-1 and H-6. The reaction of 7 with $\mathbf{2 k}$ can give three isomers. Two of these three isomers have a symmetrical aromatic ring. The ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{8}$ reveals that six aromatic carbons are magnetically nonequivalent. From the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, it is clear that $\mathbf{8}$ has an unsymmetrical aromatic ring. Product $\mathbf{8}$ can be assigned as above.

$\mathrm{R}=n$-Pentyl $\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

Assignment of 9

The 2D NOESY spectrum reveals a cross-peak of methyl proton H-8 with methylene
proton H-6. This suggests a short distance between H-6 and H-8.

Dimethyl 3,4,5,6-tetrakis(methoxymethyl)-1,2-benzenedicarboxylate (11k): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.27$ ($\mathrm{s}, 3 \mathrm{H} \times 2$), 3.38 ($\mathrm{s}, 3 \mathrm{H} \times 2$), 3.84 ($\mathrm{s}, 3 \mathrm{H} \times 2$), 4.59 (s, $2 \mathrm{H} \times 2$), $4.62(\mathrm{~s}, 2 \mathrm{H} \times 2) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.2(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 57.9$ (2C) $\left(\mathrm{OCH}_{3}\right), 58.1(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right), 67.1(2 \mathrm{C})\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.1(2 \mathrm{C})\left(\mathrm{CH}_{2} \mathrm{O}\right), 133.1(2 \mathrm{C})$ (arom), 136.1 (2C) (arom), 138.6 (2C) (arom), 168.2 (2C) (C=O). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O} 8: \mathrm{C}, 58.37 ; \mathrm{H}, 7.08$; O, 34.56. Found: C, $58.16 ; \mathrm{H}, 7.01$. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=19.54 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 3 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Dimethyl 3,4,5,6-tetraethyl-1,2-benzenedicarboxylate (11m): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H} x 2), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H} \times 2), 2.69(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H} \times 2$), 2.71 ($\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H} \times 2$), $3.84(\mathrm{~s}, 3 \mathrm{H} \times 2),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.4(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 15.9(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 22.0(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 23.4(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 52.0(2 \mathrm{C})$ $\left(\mathrm{OCH}_{3}\right), 130.4$ (2C) (arom), 138.0 (2C) (arom), 143.1 (2C) (arom), 169.6 (2C) (C=O). This compound was reported in Reference 3(a) in the text. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=15.52 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 3 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Dimethyl 3,4-di(n-butyl)-1,2-benzenedicarboxylate (12a): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.40$ (sixtet, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$), 1.57 (quintet, $J=7.3 \mathrm{~Hz}$, 4H), 2.63-2.67 (m, 4H), $3.88(\mathrm{~s}, 6 \mathrm{H}), 7.49(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.8$ (2C) $\left(\mathrm{CH}_{3}\right), 22.6(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 32.2(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 32.9(2 \mathrm{C})\left(\mathrm{CH}_{2}\right), 52.4(2 \mathrm{C})\left(\mathrm{OCH}_{3}\right)$, 129.3 (2C) (arom), 129.6 (2C) (arom), 144.2 (2C) (arom), 168.3 (2C) (C=O). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$: C, 70.56 ; H, 8.55; O, 20.89. Found: C, 70.68 ; H, 8.42. This compound was analyzed by GLC. $\mathrm{t}_{\mathrm{R}}=16.23 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 3 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Assignment of 12a

The 2D NOESY spectrum reveals cross-peaks of proton $\mathrm{H}-2$ with methyl proton $\mathrm{H}-1$ and methylene proton $\mathrm{H}-3$. This suggests a short distance between $\mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3$.

Dimethyl 3,5-di(n-butyl)-1,2-benzenedicarboxylate (12b): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.62$ (m, 4H), 2.59 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 7.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.8$ (2C) $\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 52.29$ $\left(\mathrm{OCH}_{3}\right), 52.33\left(\mathrm{OCH}_{3}\right), 127.5$ (arom), 128.0 (arom), 132.3 (arom), 133.7 (arom), 140.5 (arom), 144.1 (arom), $166.6(\mathrm{C}=\mathrm{O}), 170.0(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$: C, 70.56 ; H, 8.55 ; O, 20.89. Found: C, 70.60; H, 8.55. This compound was analyzed by GLC. $t_{\mathrm{R}}=15.48 \mathrm{~min}\left(\mathrm{OV}-17\right.$; Holding at $140^{\circ} \mathrm{C}$ for 3 min , then elevating temperature $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}$).

Assignment of 12b

The 2D NOESY spectrum reveals cross-peaks of proton $\mathrm{H}-2$ with methyl proton $\mathrm{H}-1$ and methylene proton $\mathrm{H}-3$. This suggests a short distance between $\mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3$. Cross-peaks of proton $\mathrm{H}-4$ with methylene proton $\mathrm{H}-3$ and methylene proton $\mathrm{H}-5$ were observed. This suggests a short distance between H-3, H-4 and H-5. The reaction of one molecule of DMAD with two molecule of 1-hexyne can give three isomers. Two
of these three isomers have a symmetrical aromatic ring. The ${ }^{13} \mathrm{C}$ spectrum of $\mathbf{1 2 b}$ reveals that six aromatic carbons are magnetically nonequivalent. From the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, it is clear that $\mathbf{1 2 b}$ has an unsymmetrical aromatic ring. Product $\mathbf{1 2 b}$ can be assigned as above.

$\mathrm{R}=n$-Butyl $\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

