Supporting Information

$\mathbf{R h}(\mathbf{I})$-Catalyzed Direct ortho-Alkenylation of Aromatic Ketimines with Alkynes and Its Application to the Synthesis of Isoquinoline Derivatives

Sung-Gon Lim, Jun Hee Lee, Choong Woon Moon, Jun-Bae Hong, and Chul-Ho Jun*
Department of Chemistry, Yonsei University, Seoul 120-749, Korea

1. General Methods

Flash column chromatography was performed using E. Merck 230-400 mesh silica gel. Reaction progress and column chromatography were monitored by analytical thin-layer chromatography (TLC) carried out on 0.25 mm E. Merk silica gel plates ($60 \mathrm{~F}-254$) using UV light as a visualizing agent and p anisaldehyde solution, and heat as developing agent. Infrared spectra were obtained on a Nicolet Impact 400 spectrometer. Gas chromatographic analyses were performed on a Donam DS 6200 instrument with FID detector and a Hewlett Packard HP-5 capillary column. Low- resolution mass spectra were measured on a Hewlett-Packard HP G1800A GCD system equipped with a Hewlett Packard HP-5 capillary column. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Advance/DPX $250\left(250 \mathrm{MHz}{ }^{1} \mathrm{H}, 62.9 \mathrm{MHz}{ }^{13} \mathrm{C}\right.$ NMR) and a Bruker AMX 500 NMR ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR) spectrometers with chemical shifts reported relative to residual deuterated solvent peaks. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) as an internal standard and are reported as follows: chemical shift, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the residual $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$. High Resolution Mass spectra were provided by the National Center for Inter-University Facilities, Seoul National University (Seoul 151-742, Korea) and by the Regional Mass Spectrometry Center of the Korea Basic Science Institute (Seoul 136-701, Korea).

2. Materials

All commercially available reagent grade chemicals were purchased from Aldrich Chemical Company and used as received without further purification unless otherwise stated. All aromatic ketimines (1) were prepared by the condensation of the corresponding ketones with benzylamine using a Dean-Stark apparatus according to the known procedures and purified by bulb-to-bulb distillation followed by recrystallization from appropriate solvents if necessary. Diphenylacetylene (2i) was recrystallized from ethanol, dried under reduced pressure, and stored in a refrigerator. Tetrahydrofuran and toluene were distilled from sodium/benzophenone ketyl under nitrogen atmosphere prior to use. Carbon tetrachloride was distilled from calcium hydride under nitrogen atmosphere prior to use. Chlorotris(triphenylphosphine)rhodium (3, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, Wilkinson catalyst) was prepared according to
the literature procedure and stored in a refrigerator under N_{2} atmosphere. ${ }^{1}$

3. General Procedure for the $\mathbf{R h}(\mathbf{I})$-catalyzed ortho-alkenylation of aromatic ketimines (1) with alkynes (2).

A screw-capped pressure vial (1 ml) equipped with a magnetic stirring bar was charged with aromatic ketimine ($\mathbf{1}, 0.324 \mathrm{mmol}$), alkyne ($\mathbf{2}, 0.389 \mathrm{mmol}$), $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(\mathbf{3}, 6.48 \mu \mathrm{~mol})$, and toluene (400 mg). The vial was closed and heated at 130 . with a vigorous stirring for 2 h . After cooling to room temperature, the reaction mixture was hydrolyzed with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed successively with water, saturated aqueous solution of NaHCO_{3}, water, and then brine. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated using a rotatory evaporator. The crude mixture was purified by column chromatography (n-hexane/EtOAc) on silica gel. For a GC analysis, the crude mixture was filtered on a small plug of silica gel to remove the catalyst. The ratio of 4:5 was determined by a GC analysis.

(E)-1-[2-(1-Hexenyl)phenyl]ethanone ($\mathbf{4 a f}$): $:^{2}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.84(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}=\mathrm{C}), 6.11\left(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.27-2.21(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}$), 1.50-1.45 (m, 2H), 1.40-1.36(m, 2H), $0.93\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, CDCl_{3}) $\delta 203.0$ (CO), 137.9, 137.7, 134.8, 131.5, 128.7, 128.5, 127.7, 126.8, 33.12, 31.61, 30.36, 22.55, 14.19. MS (EI, 70 eV) m/z (relative intensity) $202\left(\mathrm{M}^{+}, 3\right), 159(3), 145(100), 131$ (4), 115 (11), 77 (4), 43 (40). IR (neat): 3062, 2965, 2923, 2863, 1690 (CO), 1599, 1569, 1467, 1358, 1243, 1056, 965, $766 \mathrm{~cm}^{-1}$.

[^0]
(E)-1-[2-(1-Octenyl)phenyl]ethanone (4ag): ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.43-$ $7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.84(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{C}), 6.12(\mathrm{dt}, J=15.7,6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.27-2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 1.48-1.26(\mathrm{br} \mathrm{m}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198(\mathrm{CO}), 137.6,137.4,134.6,131.3,128.4,128.2$, $127.5,126.5,33.20,31.71,30.11,29.16,28.92,22.61,14.08$. MS (EI, 70 eV) m/z (relative intensity) 230 ($\mathrm{M}^{+}, 2$), 159 (3), 145 (100), 132 (4), 115 (8), 103 (2), 91 (3), 77 (3), 43 (34). IR (neat) 3068, 2959, 2929, 2857, 1684 (CO), 1606, 1569, 1473, 1364, 1243, 965, 911, $7421 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}$ (MH^{+}) 231.1749, found 231.1752.

(E)-1-[2-(3,3-Dimethyl-1-butenyl)phenyl]ethanone (4ah): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArCH}=\mathrm{C}), 6.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, CDCl_{3}) $\delta 203.1$ (CO), 145.3, 138.2, 137.9, 131.5, 128.8, 127.8, 126.8, 123.9, 33.95, 30.41, 29.72. MS (EI, 70 eV) m/z (relative intensity) $202\left(\mathrm{M}^{+}, 1\right), 169$ (4), 159 (3), 145 (100), 128 (5), 115 (5), 91 (2), 77 (3), 43 (33). IR (neat): 3072, 2967, 2875, 1683 (CO), 1644, 1598, 1473, 1361, 1249, 973, 913 , $729 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}\left(\mathrm{M}-\mathrm{H}^{+}\right)$203.1436, found 203.1436.

(E, E)- N-Benzyl- N-\{1-[2,6-bis-(3,3-dimethyl-1-butenyl)phenyl]ethylidene\}amine (5ah): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square \delta 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.32-7.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 6.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, $6.13(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, CDCl_{3}) $\delta 169.7,144.7,144.0,140.3,137.0,134.3,128.5,128.3,126.7,124.5,123.9$, 122.7, 122.0, 57.82, 33.80, 29.75, 28.73. MS (EI, 70 eV) m/z (relative intensity) $373\left(\mathrm{M}^{+}, 3\right), 358(15)$, 316 (98), 282 (80), 167 (4), 91 (100), 57 (6), 41 (4). IR (neat) 3058, 2987, 2920, 1424, 1266. 914, 756, $706 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}\left(\mathrm{M}-\mathrm{H}^{+}\right) 374.2848$, found 374.2850.

4ai
(E)-1-[2-(1,2-Diphenylvinyl)phenyl]ethanone (4ai): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.28-7.21(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{C})$, 6.97-6.94 (m, 2H, Ar), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2$ (CO), 142.5-126.9 (Cs in phenyl group and vinyl group), 28.70. MS (EI, 70 eV) m/z (relative intensity) 298 ($\mathrm{M}^{+}, 35$), 283 (8), 265 (8), 252 (17), 239 (11), 221 (100), 202 (7), 193 (22), 178 (19), 141 (10), 126 (12), 105 (16). IR (neat) $3065,3026,1696$ (CO), 1598, 1499, 1446, 13610, 1282, 1256, 913, $736 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}\left(\mathrm{M}-\mathrm{H}^{+}\right) 299.1436$, found 299.1434 .

4bh
(E)-1-[2-(3,3-Dimethyl-1-butenyl)-4-trifluoromethylphenyl]ethanone (4bh): ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \square \delta 7.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.72(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.19(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.4(\mathrm{CO}), 147.1-122.4$ (Cs of aromatic ring, vinyl group and CF_{3}), 34.06, 30.48, 29.44. MS (EI, 70 eV) m/z (relative intensity) 255 ($\mathrm{M}^{+}, 0.8$), 227 (6), 213 (100), 200 (8), 172 (2), 128 (2), 43 (13). IR (neat) 3058, 2961, 2865, 1698 (CO), 1418, 1337. 1271, 1179, 1133, 1093, 970, 899, $741 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}\left(\mathrm{M}-\mathrm{H}^{+}\right)$271.1310, found 271.1320 .

(E, E)- N-Benzyl- N-\{1-[2,6-bis-(3,3-dimethyl-1-butenyl)-4-trifluoromethylphenyl]ethylidene\}amine (5bh): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square \delta 7.63$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}$), $7.31-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 6.31$ (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 6.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,146.5-120.3$ (Cs of aromatic rings, vinyl group and CF_{3}), 57.91, 34.00, 29.60, 28.34. MS (EI, 70 eV) m/z (relative intensity) 422 (0.2), 384 (40), 350 (5), 236 (1), 91 (100), 57 (5), 29 (1). IR (neat) 3058, 2966, 1652, 1429, 1352. 1271, 1169, 1128, 981, 909, $746 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}\left(\mathrm{M}-\mathrm{H}^{+}\right) 442.2722$, found 442.2704 .

(E)-1-[2-(3,3-Dimethyl-1-butenyl)-4-methoxyphenyl]ethanone (4ch): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square \delta$ $7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.97(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.78(\mathrm{dd}, J=$ 8.6, 2.4 Hz, 1H, Ar), 6.07 (d, J=16.0 Hz, 1H, C=CH), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.14$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4$ (CO), 162.2, 144.8, 141.7, 132.0, 129.9, 124.8, 113.1, 111.8, 55.56, 33.86, 29.78, 29.72. MS (EI, 70 eV) m/z (relative intensity) 217 ($\mathrm{M}^{+}, 0.5$), 189 (1), 175 (100), 162 (2), 115 (3), 91 (2), 43 (7); IR (neat) 3058, 2987, 2966, 1673 (CO), 1602, 1561. 1424, 1266, 1037, 899, 741, $706 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$233.1542, found 233.1537.

(E, E)- N-Benzyl- N - $\left\{1\right.$-[2,6-bis-(3,3-dimethyl-1-butenyl)-4-methoxyphenyl]ethylidene\}amine $\quad(\mathbf{5 c h}):{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \square 8.27-7.18 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \underline{H}_{5}$), $6.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 6.22(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 6.09 (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05(\mathrm{~s}$, $\left.18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,159.6,144.7,140.3,135.7,130.1,128.5,126.7$, $121.9,109.3,57.81,55.57,33.80,29.71,29.14$. MS (EI, 70 eV) m/z (relative intensity) $403\left(\mathrm{M}^{+}, 6\right), 388$ (25), 346 (100), 312 (8), 198 (2), 130 (3), 91 (53), 57 (4). IR (neat) 3062, 2990, 1417, 1266, 1112, 912, $746 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}\left(\mathrm{M}^{+}\right) 403.2875$, found 403.2879.

4dh
(E)-1-[2-(3,3-Dimethyl-1-butenyl)phenyl]-1-propanone (4dh): ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square \delta 7.48-7.47$ (m, 2H, Ar), $7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.67(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, $6.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 2.87\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.18\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.8(\mathrm{CO}), 145.2,133.1,131.0,129.2,127.5,126.7$, 126.3, 123.3, 42.78, 31.70, 30.27, 29.69, 24.46, 22.75, 14.24. MS (EI, 70 eV) m/z (relative intensity) 216 $\left(\mathrm{M}^{+}, 0.1\right), 160(14), 159$ (100), 144 (2), 131 (11), 128 (6), 57 (10), 29 (4). IR (neat) 3056, 2962, 2910, 2859,1687 (CO), 1463, 1265, 1222, 1153, 1045, 955, 8932, $739 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}$ (MH^{+}) 217.1592, found 217.1598.

(E, E)- N-Benzyl- N - $\left\{1\right.$-[2,6-bis(3,3-dimethyl-1-butenyl)phenyl]propylidene\}amine (5dh): ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.50-7.15(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 6.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, 6.09 (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), $4.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.53\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17(\mathrm{t}, J=7.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,144.2,140.6,136.8$, 134.6, 128.4, 128.2, 128.1, 126.6, 123.7, 122.3, 57.31, 35.06, 33.79, 29.72, 10.70. MS (EI, 70 eV) m/z (relative intensity) 387 (M^{+}, 4), 331 (27), 330 (100), 316 (2), 131 (6), 91 (82). IR (neat) 3053, 2961, 2905, 2864, 1642, 1469, 1423, 1362, 1271, 914, 741, $660 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}\left(\mathrm{M}^{+}\right) 387.2926$, found 387.2917 .

4eh
(E)-1-[2-(3,3-Dimethyl-1-butenyl)phenyl]-1-hexanone (4eh): ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square \delta 7.51-7.47$ (m, 1H, Ar), 7.43-7.38 (m, 1H, Ar), 7.27-7.22 (m, 2H, Ar), 6.65 (d, J=16.0 Hz, 1H, C=CH), 6.12 (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 2.85\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.68-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 1.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88(\mathrm{t}, J=7.40 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 206.8(\mathrm{CO}), 145.2$, 133.1, 131.0, 127.9, 127.5, 126.7, 123.3, 42.78, 31.70, 29.95, 29.69, 24.46, 22.74, 14.24. MS (EI, 70 eV) m / z (relative intensity) $258\left(\mathrm{M}^{+}, 0.1\right), 243$ (0.6), 201 (100), 157 (1), 131 (11), 103 (2), 57 (3). IR (neat) 2960, 2927, 2855, 1683 (CO), 1466, 1374. 1098, 913, 736, $650 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 258.1984, found 258.2002.

4. General Procedure for the Tandem ortho-Alkenylation-Cyclization Reaction of 1.

A screw-capped pressure vial (5 mL) equipped with a magnetic stirring bar was charged with aromatic ketimine (1, 0.324 mmol), diphenylacetylene ($\mathbf{2 i}, 0.389 \mathrm{mmol}$), $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(\mathbf{3}, 6.48 \mu \mathrm{~mol})$, and toluene $(400 \mathrm{mg})$. The vial was closed and heated at 150 . with a vigorous stirring for 24 h . After cooling to room temperature, the reaction mixture was purified by column chromatography (n-hexane/EtOAc) on
silica gel. For a GC analysis, the crude mixture was filtered on a small plug of silica gel to remove the catalyst. The ratio of $\mathbf{9 : 1 0}$ was determined by a GC analysis.

1-Methyl-3,4-diphenylisoquinoline (9a): ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.22-8.18 (m, 1H, Ar), 7.66$7.56(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.38-6.70\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \underline{H}_{5}\right), 3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9$, 149.6, 141.2, 137.8, 136.2, 131.6, 130.4, 130.1, 129.8, 129.6, 129.3, 128.7, 128.4, 127.9, 127.8, 127.3, 127.1, 126.7, 126.4, 125.7. MS (EI, 70 eV) m/z (relative intensity) 295 ($\mathrm{M}^{+}, 53$), 294 (M-1, 100), 252 (16), 146 (12). IR (KBr) 3058, 2987, 1434, 1266, 909, $741 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{M}-\mathrm{H}^{+}\right)$ 296.1439, found 296.1445.

1-Phenethyl-3,4-diphenylisoquinoline (10a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.68$ $7.656(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.37-7.16\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.74-3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.34-3.31 (m, 2H, CH2 $\mathrm{H}_{2} \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR ($125.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,149.2,142.2,141.0,137.7,136.4$, $131.4,130.4,129.7,129.1,128.5,128.4,128.2,127.5,127.1,126.9,126.5,126.4,126.0,125.5,124.9$, 121.8, 120.6, 39.92, 37.19. MS (EI, 70 eV) m/z (relative intensity) 385 ($\mathrm{M}^{+}, 100$), 370 (9), 369 (9), 308 (38), 280 (34), 252 (11), 216 (9), 204 (11), 189 (13), 154 (10), 91 (16), 77 (6). IR (KBr) 3055, 2985, 1600, $1495,1446,1415,1385,1265,1030,900,739,704 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}\left(\mathrm{M}^{+}\right) 385.1830$, found 385.1828.

1-Methyl-3,4-diphenyl-6-trifluoromethylisoquinoline (9b): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.38-7.11\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.09(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,151.1,150.7,140.7,136.7,135.7,131.5,130.5,129.9$, 129.5, 129.3, 127.9, 127.5, 127.1, 125.8, 124.1, 122.4, 23.00. MS (EI, 70 eV) m/z (relative intensity) 362 $\left(\mathrm{M}^{+}, 100\right), 252(16), 146(26)$. IR (KBr) 3054, 2987, 1423, 1265, 897, 739, $706 \mathrm{~cm}^{-1}$. HRMS (CI) calcd

[^1]for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}\left(\mathrm{M}-\mathrm{H}^{+}\right) 363.1235$, found 363.1318 .

1-Phenethyl-3,4-diphenyl-6-trifluoromethylisoquinoline (10b): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.72(\mathrm{dd}, J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.40-7.11\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \underline{H}_{5}\right), 3.78-3.71$ (m, 2H, C $\underline{H}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.36-3.29 (m, 2H, $\mathrm{CH}_{2} \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.3, 142.0, 140.7, 136.8, 136.0, 131.5-122.4 (Cs of aromatic rings), $37.40,35.39$. MS (EI, 70 eV) m/z (relative intensity) 377 (27), 376 (100), 348 (36), 280 (39), 252 (12), 189 (21), 152 (10), 91 (62), 77(14). IR (KBr) 3055, 2985,1602 , 1423, 1315, 1265, 1130, 897, 739, $706 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}\left(\mathrm{M}-\mathrm{H}^{+}\right)$ 454.1783, found 454.1776 .

9c
6-Methoxy-1-methyl-3,4-diphenylisoquinoline (9c): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 7.35-7.13(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}), 6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7,157.2,150.3,141.4,138.3,138.1,131.5,130.4,128.5,127.7,127.3,127.0$, 126.7, 126.5, 122.1, 118.9, 104.7. MS (EI, 70 eV) m/z (relative intensity) $325\left(\mathrm{M}^{+}, 57\right), 324(\mathrm{M}-1,100)$, 281 (21), 239 (4), 139 (9). IR (KBr) 3053, 2987, 1418, 1271, 894, $741 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{M}^{+}\right)$325.1467, found 325.1445 .

6-Methoxy-1-phenethyl-3,4-diphenylisoquinoline (10c): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.33-7.09(\mathrm{~m}, 17 \mathrm{H}, \mathrm{Ar}), 3.71$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.67-3.64 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.31-3.27 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR ($125.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.63,159.6,150.2,142.4,141.5,138.7,138.2,132.4$, $131.5,128.8,128.7,128.6,127.8,128.6,128.5,127.8,127.4,127.1,126.8,126.2,121.5,119.0,104.9$, 55.42, 37.46, 35.76. MS (EI, 70 eV) m/z (relative intensity) $415\left(\mathrm{M}^{+}, 100\right), 414$ (M-1, 67), 400 (89), 338 (33), 311 (12), 267 (13), 169 (16), 91 (15). IR (KBr) 3054, 2979, 1496, 1452, 1415, 1265, 739, $704 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}\left(\mathrm{M}^{+}\right) 415.1936$, found 415.1926.

1-Methyl-3,4-diphenyl-3,4-dihydroisoquinoline (16a): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69$ (d, $J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.19-6.97(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 6.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.01$ (br, $1 \mathrm{H}, \mathrm{PhCHN}=\mathrm{C}$), $4.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHC}=\mathrm{C}), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,141.7$, 138.1, 131.6, 129.7, 128.7, 128.4, 128.0, 127.8, 126.8, 126.6, 125.8, 65.61, 49.00, 23.62. MS (EI, 70 eV) m/z (relative intensity) $297\left(\mathrm{M}^{+}, 100\right), 294$ (14), 220 (18), 206 (22), 191 (159), 179 (23), 178 (24), 167 (16). IR (KBr) 3052, 29817, 1419, 1265, 891, $738,701 \mathrm{~cm}^{-1}$. HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+1)$ 298.1596, found 298.1593 .

1-Phenethyl-3,4-diphenyl-3,4-dihydroisoquinoline (18a): ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.63$ (m, $1 \mathrm{H}, \mathrm{Ar}), 7.35-6.85(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}), 4.89(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHN}=\mathrm{C}), 3.97(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCHC}=\mathrm{C}$), 3.29-3.26 (m, 2H, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 3.25-3.04 (m, 2H, PhCH_{2}). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $166.1,143.2,141.9,141.7,131.2,129.6,129.4,128.9,128.7,128.6,128.1,128.0,127.5,126.9,126.8$, 126.2, 125.0, 67.68, 50.86, 37.86, 33.57. MS (EI, 70 eV) m/z (relative intensity) 387 ($\mathrm{M}^{+}, 36$), 297 (25), 296 (100), 218 (9), 191 (19), 178 (16), 115 (16), 91 (37). IR (KBr) 3058, 2987, 2961, 2926, 1423, 1266, 904, $741,711 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}\left(\mathrm{M}^{+}\right) 387.1987$, found 387.1992.

5. Structural Confirmation of 1-Phenethyl-3,4-diphenylisoquinoline (10a)

Preparation of 1-Bromomethyl-3,4-diphenylisoquinoline (9ab): A mixture of 1-methyl-3,4diphenylisoquinoline 9a ($37.0 \mathrm{mg}, 0.125 \mathrm{mmol}$), benzoyl peroxide ($1.51 \mathrm{mg}, 6.25 \mu \mathrm{~mol}$), and N bromosuccimide ($23.4 \mathrm{mg}, 0.132 \mathrm{mmol}$) in dry $\mathrm{CCl}_{4}(1.2 \mathrm{~mL})$ was refluxed with a vigorous stirring for 8 h. After cooling to room temperature, the mixture was filtered on a Celite pad to remove succimide. The filtrate was concentrated under reduced pressure and the resulting crude product was used in the next step
without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.73-7.59(\mathrm{~m}, 3 \mathrm{H}$, Ar), 7.37-7.35 (m, 4H, Ar), 7.25-7.19 (m, 6H, Ar), 5.16 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, CDCl_{3}) δ 155.2-125.4 (Cs of aromatic rings), 32.28. MS (EI, 70 eV) m/z (relative intensity) 375 ($\mathrm{M}+2,11$), 373 ($\mathrm{M}^{+}, 11$), 294 (M-Br, 100), 265 (9), 252 (17), 216 (13), 189 (16), 146 (47). HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrO}\left(\mathrm{M}-\mathrm{H}^{+}\right) 374.0544$, found 374.0551 .

Preparation of 1-Phenethyl-3,4-diphenylisoquinoline (10a): To a stirred solution of 9ab (39.2 mg, $0.105 \mathrm{mmol})$ in dry THF (1.0 mL) was added a solution of benzylmagnesium chloride in THF (2.0 M solution in THF, $0.105 \mathrm{~mL}, 0.210 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm slowly to ambient temperature and stirred for 30 min at that temperature. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated using a rotatory evaporator. The crude mixture was purified by column chromatography (n-hexane/EtOAc) on silica gel to afford $\mathbf{1 0 a}(17 \mathrm{mg}, 42 \%)$, which is identical in all respects (${ }^{1} \mathrm{H}$ NMR, TLC behavior, and HRMS) to that obtained by the tandem ortho-alkenylation-cyclization reaction of 1a with $\mathbf{2 i}$.

6. General Procedure for the One-Pot Reaction of 11.

A screw-capped pressure vial (1 ml) equipped with a magnetic stirring bar was charged with aromatic ketone ($\mathbf{1 1}, 0.324 \mathrm{mmol}$), benzylamine ($\mathbf{1 2}, 0.972 \mathrm{mmol}$), diphenylacetylene ($\mathbf{2 i}, 0.972 \mathrm{mmol}$), $\operatorname{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(\mathbf{3}, 32.4 \mu \mathrm{~mol})$, and toluene $(200 \mathrm{mg})$. The vial was closed and heated at 170 . with a vigorous stirring for 12 h . After cooling to room temperature, the reaction mixture was purified by column chromatography (n-hexane/EtOAc) on silica gel. For a GC analysis, the crude mixture was filtered on a small plug of silica gel to remove the catalyst. The ratio of $\mathbf{9 : 1 0}$ was determined by a GC analysis.

[^0]: 1.Osborn, J. A.; Wilkinson, G. In Reagents for Transition Metal Complex and Organometallic Syntheses; Angelici, R., Ed.; Wiley: New York, 1989; Vol. 28, pp. 77-79.
 2. Darses, S.; Jeffery, T.; Brayer, J.-L.; Demoute, J.-P.; Genet, J.-P. Bull. Soc. Chim. Fr. 1996, 133, 1095.

[^1]: 3. (a) Rocha Gonsalves, A. M.; Pinho e Melo, M. V. D.; Gilchrist, T. L. Tetrahedron 1992, 48, 6821. (b) Kitamura, T.; Kobayashi, S.; Taniguchi, H. Chem. Lett. 1984, 1351.
