Supporting informations

An Unexpected Stereochemistry in the "Lithium Salt Catalyzed" Ring Expansion of non Racemic Oxaspiropentanes. Formal Synthesis of (-)-(4R,5R)-Muricatacin and the Pheromone (*R*)-Japonilure.

Angela M. Bernard, * Angelo Frongia, Pier P. Piras, * Francesco Secci

Dipartimento di Scienze Chimiche, Università degli studi di Cagliari,Cittadella Universitaria di Monserrato, S.S 554,Bivio per Sestu, I-09042 Monserrato (Cagliari), Italy. pppiras@unica.it (2*R*)-2-[(4*S*)-2,2-Dimethyl-[1,3]dioxolan-4-yl-cyclobutanone. (*R*,*S*)-3. A solution of the oxaspiropentane (*R*,*R*)-2 (200 mg, 1.2 mmol), with a catalytic amount (1%) of LiI in CH₂Cl₂ (10mL) was refluxed for 5 h. The solution after cooling and filtration was evaporated under vacuum to give the crude cyclobutanone which was purified by flash chromatography (silica gel, diethyl ether / light petroleum, 1/1). Colourless oil. Yield 81 %. $[\alpha]_D^{23} = +5.38$ (c, 0.14, CH₂Cl₂). ¹H NMR (CDCl₃) δ : 1.35 (s, 6H), 1.91-2.22 (m, 2H), 2.99 (t, 2H, *J* = 8.4 Hz), 3.39-3.46 (m, 1H), 3.81 (t, 1H, *J* = 8.1 Hz)), 3.91 (dd, 1H, *J* = 8.1 Hz and *J* = 6 Hz), 4.15-4.19 (m, 1H). ¹³C NMR δ : 13.53, 25.56, 26.12, 45.32, 61.12, 66.50, 74.24, 109.15, 208.56. IR (neat, cm⁻¹): 1780. MS m/z: 155 (M⁺ -15 (2)), 113 (17), 95 (4), 84 (26), 72(25), 43 100).. Anal. Calcd. for C₉H₁₄O₃: C, 63.51; H, 8.29. Found: C, 63.64; H, 8.24.

(2*S*)-2-[(4*S*)-2,2-Dimethyl-[1,3]dioxolan-4-yl-cyclobutanone. (*S*,*S*)-3. A solution of the oxaspiropentane (*S*,*R*)-2 (200 mg, 1.2 mmol), with LiClO₄ (254 mg, 2.4 mmol) in benzene (10 mL) was refluxed for 24 h. The solution after cooling and filtration, was evaporated under vacuum to give a 10 : 90 mixture of (*R*,*S*)-3 and (*S*,*S*)-3. Repeated chromatographies (silica gel, diethyl ether / light petroleum 1/1) gave a pure sample of (*S*,*S*)-3 as a colourless oil. Yield 85 %. $[\alpha]_D^{23} = -6.55$ (c, 0.61, CH₂Cl₂). ¹H NMR (CDCl₃) δ : 1.33 (s, 3H), 1.35 (s, 3H), 2.08-2.14 (m, 2H), 294-3.03 (m, 2H), 3.43-3.47 (m, 1H), 3.61 (t, 1H, *J* = 7.8 Hz), 4.05 (dd, 1H, *J* = 6.6 Hz and *J* = 7.8 Hz), 4.37 (q, 1H, *J* = 6.6 Hz). ¹³C NMR δ : 12.77, 25.34, 26.46, 45.61, 62.53, 67.43, 73.32, 109.21, 208.57. IR (neat, cm⁻¹): 1780. MS m/z: 155 (M⁺- 15 (5)), 113. (25), 95 (4), 84 (26), 72 (25), 43 (100).. Anal. Calcd. for C₉H₁₄O₃: C, 63.51; H, 8.29. Found: C, 63.44; H, 8.19.

(4'*R*,5*R*)-5-(2,2-Dimethyl-1,3-dioxolan-4-yl)-4,5-dihydro-2(3H)-furanone. (*R*,*R*)-4. To a stirred solution of the cyclobutanone (*R*,*S*)-3 (1g, 5.9 mmol) in CH₂Cl₂ (30mL) at 0°C was added 1.44 g of MCPBA (5.9 mmol). The resulting white suspension was stirred at room temperature for 2 h and then diluted with CH₂Cl₂, filtered and washed with 10 % NaHCO₃ solution. The organic solution was dried and concentrated under vacuum to give the crude lactone which was purified by column chromatography (silica gel, diethyl ether / light petroleum, 3/1). Colourless oil. Yield 68 %. $[\alpha]_D^{24} = -18$ (c 7.71, CHCl₃). Lit³⁷: $[\alpha]_D^{19} = -20$ (c 1.0, CHCl₃).

(4*R*,5*R*)-5,6-Dihydroxy-4-hexanolide (5). A mixture of the γ -lactone (*R*,*R*)-4 (200 mg, 1.07 mmol) and FeCl₃-SiO₂ reagent (21 mg) in CH₂Cl₂ (12 mL) was stirred at room temperature for 48 h. Filtration of the organic layer and evaporation of the solvent under vacuum left a residue that was purified by column chromatography on silica gel (dichloromethane/methanol, 10/1) to give the product (*R*,*R*)-5. Colourless oil. Yield 96 %.[α]_D²³ = - 38.62 (c, 1.86, CH₃OH). Lit.^{26a} [α]_D = - 43.38 (c 0.9, CH₂Cl₂).

(1*S*,4*R*,5*S*)-1-Methoxy-2-oxabicyclo[3.2.0]-2-eptanol (8). A solution of (*R*,*S*)-3 (1 g, 6.2 mmol) in methanol with a catalytic amount of p-toluensulfonic acid was refluxed for 3 h. The solution was then washed with 10 % NaHCO₃, dried and evaporated. The crude product was chromatographed on silica gel (diethyl ether / light petroleum, 3/1). Colourless oil. Yield 68 %. $[\alpha]_D^{29} = + 14$ (c 7.93, CHCl₃). ¹H NMR (CDCl₃) δ: 1.66-1.89 (m, 2H), 2.08-2-36 (m, 3H, 1H exchange with D₂O), 2.90 (q, 1H, *J* = 7.2 Hz), 3.22 (s, 3H), 3.76 (dd,1H, *J* = 6 Hz and *J* = 9.3 Hz), 4.19 (dd, 1H, *J* = 6 Hz and *J* = 9.3 Hz), 4.55 (q, 1H, *J* = 7.2Hz). ¹³C NMR (CDCl₃) δ: 8.76, 30.19, 45.92, 49.97, 71.45, 73.86, 109.57. IR (neat, cm⁻¹): 3430. MS m/z: 145 (M⁺-15 (6)), 127 (38), 113 (76), 99(100). Anal. Calcd. For C₇H₁₂O₃: C, 58.33; H, 8.33. Found: C, 57.93, H, 8.38.

(5*R*)-5-Hydroxymethyl-2-oxotetrahydrofuran (10). To a stirred suspension of silica gel (4g) in CH_2Cl_2 (32 mL) a solution of NaIO₄ (428 mg, 2 mmol) in water (4 mL) was added dropwise at room temperature. Then a solution of (*R*,*R*)-5 (300 mg, 2 mmol) in CH_2Cl_2 (4 mL) was added dropwise to the suspension at 0°C. The mixture was stirred for 30 minutes at same temperature and then diluted with CH_2Cl_2 and the produced solid was filtered off. The organic solvent was dried and concentrated under vacuum to give the crude aldehyde 9 which was used immediately for the next step.

NaBH₄ (64 mg, 1.7 mmol) was added in small portions to an ice cooled solution of crude **9** (220 mg, 1.7 mmol) in CH₃OH (10 mL) and the mixture was stirred for 10 min. Then the reaction was quenched with sat. KHSO₄ and evaporated under vacuum to remove CH₃OH. The residue was extracted with THF and the organic layer dried and concentrated to afford the crude alcohol **10** which was purified by column chromatography (silica gel, CH₂Cl₂ / CH₃OH, 20/1). Colourless oil. Yield 40 % for the two steps. $[\alpha]_D^{24} = -5.9$ (c 1.5, EtOH). IR, ¹H NMR and ¹³C NMR spectra were in good agreement with those reported in ref 40 for this compound.