Supporting Information

Diastereoselective Palladium-Catalyzed Formate Reduction of Allylic Carbonates as a New Entry into Propionate Units.

Mark Lautens,* and Jean-François Paquin
Department of Chemistry, University of Toronto
Toronto, Ontario Canada M5S 3H6

The following includes experimental procedures for the synthesis of the allylic carbonates, general experimental procedures for the formate reduction, isolation and spectroscopic information as well as ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for the new compounds prepared. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated chloroform using tetramethylsilane or residual chloroform as internal standard at ambient temperature. High resolution mass spectra were obtained either by electron impact (EI) or electrospray (ES) ionisation. The dr (ratio syn/anti) of all the reactions was estimated by ${ }^{1} \mathrm{H}$ NMR or ${ }^{13} \mathrm{C}$ spectroscopy. For the purpose of this study, $>15: 1 \mathrm{dr}$ indicates that the other diastereomer was present in less than 6% (typically $4-6 \%$) whereas $>20: 1 \mathrm{dr}$ specify that the other diastereomer was not detectable.

Synthesis of the precursor aldehyde

(2E)-4-ethoxycarbonyloxy-2-methylbut-2-enal To a solution of 4-ethoxycarbonyloxy-2-methyl-2-butene ${ }^{1}(2.0 \mathrm{~g}, 12.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{SeO}_{2}(2.93 \mathrm{~g}, 26.5$ mmol) and tert-butylhydroperoxide ($4.46 \mathrm{~mL}, 31.5 \mathrm{mmol}, 70 \%$ soln in $\mathrm{H}_{2} \mathrm{O}$) and the resulting mixture was stirred for 72 h (necessary for good conversion). Satd NaHCO_{3} was carefully added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were washed with brine, dried over MgSO_{4} to give a mixture of alcohol and aldehyde $(\sim 1: 1)$ as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 40 \mathrm{~mL})$ that was used without further purification. TPAP $(221 \mathrm{mg}, 0.63 \mathrm{mmol})$ and NMO $(1.48 \mathrm{~g}, 12.6 \mathrm{mmol})$ were added to the above solution and stirred until the reaction was completed as judged by TLC ($\sim 3 \mathrm{hrs}$). The solvent was evaporated and the residue was purified by flash chromatography using $25 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to give the desired product as a slightly volatile colorless liquid ($1.12 \mathrm{~g}, 52 \%$). IR (film) $\mathrm{v}=2985,2937,1754,1692,1271,1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{dt}, 1 \mathrm{H}, J=6.0,1.5 \mathrm{~Hz}), 4.97(\mathrm{dd}, 2 \mathrm{H}, J=$ $6.0,1.5 \mathrm{~Hz}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.81(\mathrm{~d}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz}), 1.33(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.7$, 154.7, 144.8, 140.4, 64.3, 63.6, 14.0, 9.3; MS-EI $(m / z) 99\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 83\left[\mathrm{M}-\mathrm{OCO}_{2} \mathrm{Et}\right]^{+}$.

[^0]
Synthesis of 12

(2E)-(4R*,5R*)-1-ethoxycarbonyloxy-3,5-dimethyl-4-hydroxy-2-octen-6-one (12) To a $-78^{\circ} \mathrm{C}$ solution of 3-pentanone ($656 \mu \mathrm{~L}, 6.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise $\mathrm{TiCl}_{4}\left(6.72 \mathrm{~mL}, 6.72 \mathrm{mmol}, 1 \mathrm{M} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give a yellow slurry. After 5 min , $i-\operatorname{Pr}_{2} \operatorname{EtN}(1.26 \mathrm{~mL}, 7.24 \mathrm{mmol})$ was added dropwise to give a red solution that was stirred 45 min at $-78^{\circ} \mathrm{C}$. A solution of $(2 E)$-4-ethoxycarbonyloxy-2-methylbut-2-enal (890 mg , $5.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added slowly and the resulting mixture was stirred 90 min. The reaction was quenched by the addition of satd NaHCO_{3} at $-78^{\circ} \mathrm{C}$ and warmed to rt. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and the solvent was evaporated to yield a yellow liquid that was purified by flash chromatography using $40 \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to give the desired aldol product ($958 \mathrm{mg}, 72 \%$) as a slightly yellow liquid. IR (neat) $\mathrm{v}=$ 3492, 2982, 2937, 1745, 1727, 1711, 1255, $1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.70(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=$ 7.2 Hz), $1.06(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.7,155.1,140.3,119.4,74.3$,
63.8 (2C), 47.6, 34.8, 14.1, 13.6, 9.8, 7.4; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ 240.1362 , found 240.1366 .

Synthesis of 6b

(2E)-(4R*,5R*)-1-ethoxycarbonyloxy-3,5-dimethyl-4-triethylsiloxy-2-octen-6-one

(6b) To a $-10^{\circ} \mathrm{C}$ solution of $12(512 \mathrm{mg}, 1.98 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added successively 2,6 -lutidine $(254 \mu \mathrm{~L}, 2.18 \mathrm{mmol})$ and TESOTf ($471 \mu \mathrm{~L}, 2.08 \mathrm{mmol}$) and the resulting mixture was stirred until the reaction was completed as judged by TLC (~ 45 $\min)$. Satd NaHCO_{3} was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were washed with brine, dried over MgSO_{4}, and the solvent was evaporated to yield the crude product that was purified by flash chromatography using $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to afford the desired product ($648 \mathrm{mg}, 88 \%$) as a colorless liquid. IR (neat) $v=2958,2880,1745,1715,1255,1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.53(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.63(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.19(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{q}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.95(\mathrm{~m}$, $12 \mathrm{H}), 0.56(\mathrm{q}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.2,155.0,142.2$, $120.4,78.3,63.7,63.6,50.5,35.6,14.1,12.3,12.1,7.2,6.6,4.6$; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{SiO}_{5}\left[\mathrm{M} \mathrm{-} \mathrm{Et]}{ }^{+}\right.$343.1941, found 343.1942.

Synthesis of 9

(2E)-(4R*,5R*)-1-acetoxy-3,5-dimethyl-4-hydroxy-2-octen-6-one Using the same protocol as for $\mathbf{1 2}$ using (2E)-4-acetoxy-2-methyl-2-butenal ${ }^{2}$ ($394 \mathrm{mg}, 2.77 \mathrm{mmol}$) gave, after purification by flash chromatography using $50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane, the aldol product ($511 \mathrm{mg}, 81 \%$) as a colorless liquid. IR (neat) $v=3471,2978,2944,1743,1725,1380$, $1236,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.64(\mathrm{tt}, 1 \mathrm{H}, J=6.9,1.5 \mathrm{~Hz}), 4.62(\mathrm{~d}$, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.34(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 214.9, 170.7, 139.7, 119.7, 74.7, 60.5, 47.9, 34.6, 20.5, 13.0, 10.0, 7.1; HRMS-ES cald for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$251.1253, found 251.1244.

[^1]
$(2 E)-\left(4 R^{*}, 5 R^{*}\right)$-1-acetoxy-3,5-dimethyl-4-triethylsiloxy-2-octen-6-one Using the same protocol as for $\mathbf{6 b}$ on a 2.12 mmol scale, the desired product ($607 \mathrm{mg}, 84 \%$) was obtained as a colorless liquid after purification by flash chromatography using $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane . IR (neat) $v=2957,2887,1744,1708,1232,1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.47(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.57(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.72(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.00-0.90(\mathrm{~m}$, $12 \mathrm{H}), 0.56(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.3,170.7,141.6,120.9,78.6$, $60.4,50.6,35.8,20.7,12.6,11.9,7.2,6.6,4.6$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{SiO}_{4}[\mathrm{M}-\mathrm{Et}]^{+}$ 313.1835, found 313.1841.

(2E)-(4R*,5R*)-3,5-dimethyl-6-oxo-4-triethylsiloxy-2-octen-1-ol To a $0^{\circ} \mathrm{C}$ solution of the acetate ($595 \mathrm{mg}, 1.74 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(264 \mathrm{~m}, 1.91$ mmol) and the resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The solvent was evaporated, water was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and the solvent was evaporated to give the desired product ($472 \mathrm{mg}, 90 \%$) as a colorless liquid that was used without further
purification. IR (neat) $v=3428,2958,2878,1710,1462,1240,1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.16(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 3 \mathrm{H}), 1.62$ $(\mathrm{s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.96(\mathrm{~m}, 12 \mathrm{H}), 0.58(\mathrm{q}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(74.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.0,138.2,126.4,78.9,58.7,51.0,35.6,12.8,11.6,7.2,6.6,4.6 ;$ HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{SiO}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$283.2093, found 283.2090.

(2E)-(4R*,5R*)-1-benzyloxycarbonyloxy-3,5-dimethyl-4-triethylsiloxy-2-octen-6-one

(9) To a $0^{\circ} \mathrm{C}$ solution of the alcohol ($438 \mathrm{mg}, 1.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added pyridine $(177 \mu \mathrm{~L}, 2.19 \mathrm{mmol})$ and benzylchloroformate $(250 \mu \mathrm{~L}, 1.75 \mathrm{mmol})$ and the reaction mixture was warmed to rt . Additional benzylchloroformate $(2 \times 250 \mu \mathrm{~L})$, pyridine $(2 \times 177 \mu \mathrm{~L})$, and DMAP $(\sim 10 \mathrm{mg})$ were added in order to drive the reaction to completion. Satd NaHCO_{3} was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined organic layers were washed with brine, dried over MgSO_{4}, and the solvent was evaporated to yield the crude product that was purified by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to afford the desired product ($449 \mathrm{mg}, 71 \%$) as a colorless liquid. IR (neat) $v=3038,2957,2881,1746,1711,1460,1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.53(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 0.55(\mathrm{q}, 6 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 213.2,155.0,142.4,135.1,128.4,128.3,128.1,120.2,78.2,69.3,63.9,50.5$, 35.6, 12.3, 12.2, 7.2, 6.6, 4.6; HRMS-EI calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{SiO}_{5}[\mathrm{M}-\mathrm{Et}]^{+} 405.2097$, found 405.2105.

Synthesis of 10

(2E)-(4R*,5R*)-4-tert-butyldimethylsiloxy-1-ethoxycarbonyloxy-3,5-dimethyl-2-

octen-6-one (10) To a $0^{\circ} \mathrm{C}$ solution of $\mathbf{1 2}(205 \mathrm{mg}, 0.794 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 2,6-lutidine ($139 \mu \mathrm{~L}, 1.19 \mathrm{mmol}$) and TBSOTf ($219 \mu \mathrm{~L}, 0.953 \mathrm{mmol}$) and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and warmed to rt overnight. Water was added and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$ and the combined organic layers were washed with brine, dried over MgSO_{4}, and the solvent was evaporated to give the crude product that was purified by flash chromatography using $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to afford the desired product ($228 \mathrm{mg}, 77 \%$) as a colorless liquid. IR (neat) $v=3085,2933,2859,1712,1462,1255,1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.14(\mathrm{~m}, 3 \mathrm{H}), 2.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $0.95(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 213.3,155.1,142.2,120.6,78.5,63.8,63.6,50.6,35.8,25.7,18.0,14.2,12.5$, 12.2, 7.3, -4.7, -5.3; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{SiO}_{5}[\mathrm{M}]^{+} 372.2332$, found 372.2326.

Synthesis of 11

$(2 E)-\left(4 R^{*}, 5 R^{*}\right)-4$-acetoxy-1-ethoxycarbonyloxy-3,5-dimethyl-2-octen-6-one (11) To a $0^{\circ} \mathrm{C}$ solution of $\mathbf{1 2}(141 \mathrm{mg}, 0.546 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added pyridine ($53 \mu \mathrm{~L}$, $0.655 \mathrm{mmol})$ and acetyl chloride ($43 \mu \mathrm{~L}, 0.600 \mathrm{mmol}$) and the reaction was warmed to rt. After 4 h , additional pyridine ($53 \mu \mathrm{~L}$) and acetyl chloride ($43 \mu \mathrm{~L}$) were added and the reaction was stirred for 2 h . Water was added, the layers were separated, and the organic layer was washed with $10 \% \mathrm{HCl}$, satd NaHCO_{3}, brine, dried over MgSO_{4}, and the solvent was evaporated to give the crude product that was purified by flash chromatography using $25 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to afford the desired product $(141 \mathrm{mg}, 86 \%)$ as a colorless liquid. IR (neat) $v=2982,2939,1744,1371,1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{t}$, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.41(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.14(\mathrm{q}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.03$ $(\mathrm{d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.0$, $169.6,154.9,137.7,121.1,76.6,63.9,63.5,47.8,34.7,20.8,14.1,13.6,11.2,7.4$; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}-\mathrm{OAc}]^{+}$241.1440, found 241.1441.

Synthesis of 16

(2E)-(4R*,5R*)-3,5-dimethyl-1-ethoxycarbonyloxy-4-hydroxy-6-phenyl-2-hexan-6-

 one Using the same protocol as for $\mathbf{1 2}$ using propiophenone ($354 \mu \mathrm{~L}, 2.66 \mathrm{mmol}$) gave, after purification by flash chromatography using $50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane, the aldol product (303 mg, 40\%) as a pale yellow liquid. IR (neat) $v=3500,2983,2939,1745,1680,1449$, 1253, $971 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{tt}, 1 \mathrm{H}, J=7.5,2.1$ $\mathrm{Hz}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{tt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 4.72(\mathrm{dd}, 2 \mathrm{H}, J=7.2,2.7 \mathrm{~Hz}), 4.49(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}$, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.9,155.0$, $140.0,135.6,133.4,128.6,128.2,119.7,74.5,63.8,63.7,42.3,14.1,13.8,10.9$; HRMSES calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 329.1370$, found 329.1380.

(2E)-(4R*,5R*)-3,5-dimethyl-1-ethoxycarbonyloxy-6-phenyl-4-triethylsiloxy-2-

hexan-6-one (16) Following the same protocol as for $\mathbf{6 b}$ on a 0.519 mmol scale using

TESOTf (1.1 eq.) and 2,6-lutidine (1.5 eq), the desired product ($193 \mathrm{mg}, 88 \%$) was obtained as a colorless liquid after purification by flash chromatography using 10% $\mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=2957,2877,1746,1682,1256,967 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{tt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 4.55(\mathrm{dd}, 1 \mathrm{H}, J=12.9,7.8 \mathrm{~Hz}), 4.42(\mathrm{dd}, 1 \mathrm{H}, J=12.9,6.6 \mathrm{~Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 4.13(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, 9 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 0.54(\mathrm{q}, 6 \mathrm{H}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.7,155.0,141.8$, $137.0,132.8,128.5,128.1,121.1,78.9,63.8,63.7,45.6,14.2,13.9,12.1,6.7,4.7$; HRMS-ES calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{SiO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 443.2224$, found 443.2235 .

Synthesis of 18

(2E)-(4R*,5S*)-1-ethoxycarbonyloxy-3,5-dimethyl-4-hydroxy-2-octen-6-one To a $-78^{\circ} \mathrm{C}$ solution of $c-\mathrm{Hex}_{2} \mathrm{BCl}(530 \mu \mathrm{~L}, 2.42 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(363$ $\mu \mathrm{L}, 2.60 \mathrm{mmol}$) followed by a solution of 3-pentanone ($236 \mu \mathrm{~L}, 2.23 \mathrm{mmol}$). After stirring at $-78^{\circ} \mathrm{C}$ for 1 h a solution of (2E)-4-ethoxycarbonyloxy-2-methylbut-2-enal (320 $\mathrm{mg}, 1.86 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and placed in the freezer for 16 h . The reaction mixture was then partitioned
between $\mathrm{Et}_{2} \mathrm{O}$ and a 1 M pH 7 buffer, the organic extract was concentrated to give an oil which was taken up in $\mathrm{MeOH}(7.5 \mathrm{~mL})$ and 1 M pH 7 buffer $(7.5 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$. $\mathrm{H}_{2} \mathrm{O}_{2}\left(2.5 \mathrm{~mL}, 30 \%\right.$ soln in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added dropwise. After stirring at rt for 2 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were washed with satd $\mathrm{Na}_{2} \mathrm{CO}_{3}$, brine, dried over MgSO_{4}, and the solvent and cyclohexanol were evaporated under reduce pressure and heating $\left(\sim 80^{\circ} \mathrm{C}\right)$ to give the crude product that was purified by flash chromatography using $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to yield the desired anti aldol product ($259 \mathrm{mg}, 49 \%$) as a colorless liquid. IR (neat) $v=3491$, 2979, 2935, 1745, 1722, 1711, 1460, 1378, 1255, $1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.61(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.68(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.18(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H})$, $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.06(\mathrm{t}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.4,155.0$, $141.1,121.9,79.2,63.9,63.7,48.2,36.3,14.1,14.0,11.3,7.3$; HRMS-ES calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$281.1359, found 281.1349.

(2E)-(4R*, $\left.5 S^{*}\right)$-4-tert-butyldimethylsiloxy-1-ethoxycarbonyloxy-3,5-dimethyl-2-

octen-6-one (18) Following the same protocol as for 10 on a 0.588 mmol scale, the desired product ($198 \mathrm{mg}, 90 \%$) was obtained as a colorless liquid after purification by flash chromatography using $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=2956,2934,2853,1747$,
$1720,1256,1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54(\mathrm{td}, 1 \mathrm{H}, J=6.9,0.9 \mathrm{~Hz}), 4.67$ $(\mathrm{dd}, 2 \mathrm{H}, J=6.9,2.4 \mathrm{~Hz}), 4.17(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.68(\mathrm{~s}$, $3 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.3,155.1,141.5,122.0,81.2,64.0,63.7,48.9$, 37.9, 25.6, 17.9, 14.2, 13.8, 10.8, 7.2, -4.8, -5.6 ; HRMS-EI calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{SiO}_{5}$ $[\mathrm{M}-t-\mathrm{Bu}]^{+} 315.1628$, found 315.1623.

Synthesis of 20a

Ethyl (4E)-6-ethoxycarbonyloxy-3-hydroxy-4-methyl-4-hexenoate To a $0^{\circ} \mathrm{C}$ solution of diisopropylamine $(518 \mu \mathrm{~L}, 3.70 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise $n-\mathrm{BuLi}$ ($2.3 \mathrm{~mL}, 3.70 \mathrm{mmol}, 1.6 \mathrm{M} /$ hexane). The mixture was warmed to rt for 15 min and cooled to $-78^{\circ} \mathrm{C}$. Ethyl acetate ($389 \mu \mathrm{~L}, 4.00 \mathrm{mmol}$) was added dropwise and the resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. A solution of ($2 E$)-4-ethoxycarbonyloxy-2-methylbut-2-enal ($530 \mathrm{mg}, 3.08 \mathrm{mmol}$) in THF (2 mL) was added dropwise and stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched by the addition of satd NaHCO_{3}. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$ and the combined organic layers were washed with brine, dried over MgSO_{4}, and the solvent was evaporated to give the crude
product ($590 \mathrm{mg}, 74 \%$) that can be used without further purification. Analytically pure sample can be obtained by flash chromatography using $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=$ 3497, 2985, 1744, 1371, 1268, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.72(\mathrm{tt}, 1 \mathrm{H}, J=$ $6.9,1.2 \mathrm{~Hz}), 4.69(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~d}, 1 \mathrm{H}, J=3.6$ $\mathrm{Hz}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (74.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,155.0,141.8,119.3,72.2,63.9,63.7,60.7,39.8,14.1,14.0,12.4 ;$ HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}-\mathrm{OH}]^{+} 243.1232$, found 243.1234.

Ethyl (4E)-6-ethoxycarbonyloxy-4-methyl-3-triethylsiloxy-4-hexenoate

Following the same protocol as for $\mathbf{6 b}$ on a 0.423 mmol scale using TESOTf (3 eq.) and 2,6-lutidine (3.3 eq), the desired product ($127 \mathrm{mg}, 80 \%$) was obtained as a colorless liquid after purification by flash chromatography using $15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=$ 2956, 2912, 2877, 1745, 1254, $1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.64(\mathrm{tt}, 1 \mathrm{H}, J$ $=6.9,0.9 \mathrm{~Hz}), 4.66(\mathrm{dd}, 2 \mathrm{H}, J=6.9,3.0 \mathrm{~Hz}), 4.54(\mathrm{dd}, 1 \mathrm{H}, J=8.7,4.2 \mathrm{~Hz}), 4.15(\mathrm{~m}$, $4 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, 3 \mathrm{H}, J=0.9 \mathrm{~Hz}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, 9 \mathrm{H}, J=8.1 \mathrm{~Hz}), 0.56$ $(\mathrm{q}, 6 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,155.1,143.1,119.3,74.3$, 63.9, 63.8, 60.4, 42.3, 14.2, 14.1, 11.6, 6.6, 4.6; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{SiO}_{6}[\mathrm{M}-\mathrm{Et}]^{+}$ 345.1733, found 345.1740.

Synthesis of 20b

Ethyl (4E)-6-ethoxycarbonyloxy-3-hydroxy-2,2,4-trimethyl-4-hexenoate Following the same protocol as for 20 a using ethyl isobutyrate ($561 \mu \mathrm{~L}, 4.20 \mathrm{mmol}$), the desired product was obtained as a colorless liquid ($372 \mathrm{mg}, 40 \%$) after purification by flash chromatography using $30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane. IR (neat) $v=3514,2984,2935,1745,1725$, $1468,1254,1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.58(\mathrm{tt}, 1 \mathrm{H}, J=6.6,0.9 \mathrm{~Hz}), 4.69$ $(\mathrm{d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.18(\mathrm{~m}, 5 \mathrm{H}), 3.32(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H})$, $1.21(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6,155.0,140.5,122.6$, 81.5, 63.9, 63.8, 60.9, 46.2, 23.6, 20.7, 14.2, 13.9, 13.4; HRMS-ES calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 311.1465$, found 311.1478 .

Ethyl (4E)-6-ethoxycarbonyloxy-2,2,4-trimethyl-3-triethylsilyloxy-4-hexenoate (20b)

Following the same protocol as for $\mathbf{6 b}$ on a 0.503 mmol scale using TESOTf (1.1 eq.) and 2,6-lutidine (1.5 eq), the desired product ($185 \mathrm{mg}, 92 \%$) was obtained as a colorless
liquid after purification by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane. IR (neat) $v=$ 2957, 2874, 1746, 1467, 1255, $1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.56(\mathrm{t}, 1 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 4.67(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, 9 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 0.55(\mathrm{q}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.6,155.1,141.4$, 122.3, 81.1, 63.9, 63.8, 60.4, 48.6, 21.4, 21.2, 14.2, 14.0, 13.9, 6.8, 4.6; HRMS-ES calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{SiO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 425.2329$, found 425.2333 .

Synthesis of 22

83\%
(2Z)-2-iodo-4-(4-methoxybenzyloxy)-2-butene To a solution of (2Z)-3-iodo-2-buten-1$\mathrm{ol}^{3}(1.66 \mathrm{~g}, 8.39 \mathrm{mmol})$ and p-methoxybenzyl trichloroacetamidate $(3.56 \mathrm{~g}, 12.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and cyclohexane $(10 \mathrm{~mL})$ was added camphorsulfonic acid monohydrate ($210 \mathrm{mg}, 0.84 \mathrm{mmol}$). The resulting mixture was stirred 16 h . Satd NaHCO_{3} was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The organic layers were combined, washed with brine, dried over MgSO_{4}, the solvent was evaporated, and the crude product that was purified by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane

[^2]to give the protected alcohol ($2.21 \mathrm{~g}, 83 \%$) as an orange liquid. IR (neat) $v=3006,2959$, 2912, 2836, 1612, 1513, 1248, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{dd}, 2 \mathrm{H}, J=6.0,1.5$ $\mathrm{Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,132.2$, $130.0,129.4,113.7,102.3,74.2,72.0,55.2,33.6$; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}]^{+}$ 318.0117, found 318.0116.

Methyl (2Z)-4-(4-methoxybenzyloxy)-2-methyl-2-butenoate To a stirred solution of the protected alcohol ($623 \mathrm{mg}, 1.96 \mathrm{mmol}$) and triethylamine ($820 \mu \mathrm{~L}, 5.88 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(146 \mathrm{mg}, 0.20 \mathrm{mmol}) . \mathrm{CO}$ was bubbled through the reaction mixture for 6 h . The dark mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $10 \% \mathrm{HCl}$, brine, dried over MgSO_{4}, and the solvent was evaporated to give the crude product that was purified by flash chromatography using $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to give the desired ester ($335 \mathrm{mg}, 68 \%$) as a colorless liquid. IR (neat) $v=3004,2952,2839,1712$, 1613, 1514, $1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.88(\mathrm{~d}$, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.17(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{q}, 3 \mathrm{H}, J=$ $1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,159.3,142.3,130.2,129.5,127.2,113.9$,
72.5, 68.7, 55.3, 51.6, 19.9; HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]^{+}$250.1205, found 250.1210.

(2Z)-2-methyl-4-(4-methoxybenzyloxy)-2-buten-1-ol To a $-78^{\circ} \mathrm{C}$ solution of the ester ($335 \mathrm{mg}, 1.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly DIBAL ($2.94 \mathrm{ml}, 2.94 \mathrm{mmol}$, $1 \mathrm{M} /$ heptane). The reaction mixture was stirred 45 min at $-78^{\circ} \mathrm{C}$ and poured into a $0^{\circ} \mathrm{C}$ solution of $10 \% \mathrm{HCl}(5 \mathrm{~mL})$ and stirred 30 min . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and the solvent was evaporated to yield the crude alcohol (300 mg , 100%) that was used without further purification. IR (neat) $v=3411,2942,2915,2858$, $1612,1514,1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.87(\mathrm{~d}$, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.54(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.00(\mathrm{~d}$, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, 3 \mathrm{H}, J=0.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, CDCl_{3}) $\delta 159.3,140.9,130.1,129.6,123.7,113.9,72.1,65.4,61.9,55.3,21.7$; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}]^{+}$222.1256, found 222.1261.

(2Z)-4-(4-methoxybenzyloxy)-2-methyl-2-butenal To a solution of the alcohol (300 $\mathrm{mg}, 1.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added TPAP ($47 \mathrm{mg}, 0.135 \mathrm{mmol}$) followed by NMO ($239 \mathrm{mg}, 2.03 \mathrm{mmol}$), and the resulting mixture was stirred for 4 h . The solvent was evaporated and the crude product was purified by flash chromatography using 40% $\mathrm{Et}_{2} \mathrm{O} /$ hexane to yield the desired aldehyde ($234 \mathrm{mg}, 79 \%$) as a colorless liquid. IR (neat) $v=3007,2930,2839,1679,1514,1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.07(\mathrm{~s}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.58(\mathrm{tq}, 1 \mathrm{H}, J=6.3,1.2 \mathrm{~Hz})$, $4.51(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{dd}, 2 \mathrm{H}, J=6.3,1.5 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{q}, 3 \mathrm{H}, J=1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.2,159.4,149.6,143.6,137.6,129.5,113.9,72.5,64.2$, 55.2, 16.3; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}]^{+} 220.1099$, found 220.1100 .

(2Z)-(4R*,5R*)-3,5-dimethyl-4-hydroxy-1-(4-methoxybenzyloxy)-2-octen-6-one
Following the same protocol describe earlier for 12, using (2Z)-4-(4-methoxybenzyloxy)-2-methyl-2-butenal ($234 \mathrm{mg}, 1.06 \mathrm{mmol}$), the desired product ($275 \mathrm{mg}, 85 \%$) was
obtained as a colorless liquid after purification by flash chromatography using $40 \rightarrow 50 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=3436,2972,2937,1710,1613,1514,1249,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.46(\mathrm{t}, 1 \mathrm{H}$, $J=6.6 \mathrm{~Hz}), 4.54(\mathrm{dd}, 1 \mathrm{H}, J=7.2,3.0 \mathrm{~Hz}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 3.05(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.2,195.1,139.7,130.0$, $129.4,124.5,113.6,72.0,70.9,65.4,55.1,49.5,35.5,18.9,12.8,7.3 ;$ MS-EI $(\mathrm{m} / \mathrm{z}) 289$ $[\mathrm{M}-\mathrm{OH}]^{+}$.

(2Z)-(4R*,5R*)-3,5-dimethyl-1-(4-methoxybenzyloxy)-4-triethylsiloxy-2-octen-6-one Following the same protocol describe earlier for $\mathbf{6 b}$ but using a 4 -fold excess of both TESOTf and 2,6-lutidine on a 0.894 mmol scale, the desired product ($233 \mathrm{mg}, 62 \%$) was obtained as a colorless liquid after purification by flash chromatography using 15% $\mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=2956,2874,1712,1613,1514,1461,1248,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.37(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, 3 \mathrm{H}, J$ $=0.9 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.93(\mathrm{~m}, 12 \mathrm{H}), 0.56(\mathrm{q}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (74.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.3,159.1,138.7,130.5,129.3,124.7,113.6,72.3,71.8,66.1$,
$55.1,50.4,36.8,18.0,14.4,7.2,6.7,4.6$; HRMS-EI calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{SiO}_{4}[\mathrm{M}-\mathrm{Et}]^{+}$ 391.2305, found 391.2303.

(2Z)-(4R*,5R*)-3,5-dimethyl-6-oxo-4-triethylsiloxy-2-octen-1-ol To a solution of the protected diol $(150 \mathrm{mg}, 0.357 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ was added DDQ ($122 \mathrm{mg}, 0.535 \mathrm{mmol}$). After 15 min , satd NaHCO_{3} was added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The organic layers were combined, washed with satd NaHCO_{3}, brine, dried over MgSO_{4}, and the solvent was evaporated to give the crude product that was purified by flash chromatography using $30 \rightarrow 35 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexane to afford the desired product ($86 \mathrm{mg}, 80 \%$) as a colorless liquid. IR (neat) v $=3447,2957,2881,1710,1461,1075,1008 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.45$ $(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.95(\mathrm{~m}, 12 \mathrm{H}), 0.58(\mathrm{q}, 6 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (74.5 MHz, CDCl_{3}) $\delta 215.8,139.1,126.6,71.3,58.2,51.0,37.0$, 17.9, 15.0, 7.2, 6.7, 4.7; HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{SiO}_{3}[\mathrm{M}-\mathrm{OH}]^{+}$271.1729, found 271.1738.

(2Z)-(4R*,5R*)-1-ethoxycarbonyloxy-3,5-dimethyl-4-triethylsiloxy-2-octen-6-one

(22) To $0^{\circ} \mathrm{C}$ solution of the alcohol ($80.8 \mathrm{mg}, 0.269 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added pyridine ($52 \mu \mathrm{~L}, 0.645 \mathrm{mmol}$) and ethyl chloroformate ($31 \mu \mathrm{~L}, 0.323 \mathrm{mmol}$). The mixture was allowed to warm to rt overnight. The reaction was quenched by the addition of satd NaHCO_{3} and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and the solvent was evaporated to give the crude product that was purified by flash chromatography using $20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to afford the desired product ($90.4 \mathrm{mg}, 90 \%$) as a colorless liquid. IR (neat) $v=2958,2881,1746,1715,1460,1382,1257,1080 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.34(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.77(\mathrm{dd}, 1 \mathrm{H}, J=12.9,8.4 \mathrm{~Hz}), 4.49(\mathrm{~m}$, $2 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.86(\mathrm{dq}, 1 \mathrm{H}, J=8.4,6.9 \mathrm{~Hz}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.95(\mathrm{~m}, 12 \mathrm{H}), 0.60(\mathrm{q}, 6 \mathrm{H}, J=7.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.2,155.0,141.5,121.3,71.9,63.8,63.7,50.7,36.8$, $18.5,14.4,14.2,7.2,6.7,4.6$; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{SiO}_{5}[\mathrm{M}-\mathrm{Et}]^{+} 343.1941$, found 343.1930 .

Diastereoselective palladium-catalyzed formate reduction

 solution of $\mathrm{Pd}(\mathrm{OAc})_{2} /\left[n-\mathrm{Bu}_{3} \mathrm{PH}\right] \mathrm{BF}_{4}(1: 1)\left(83 \mu \mathrm{~L}, 0.06 \mathrm{M} / \mathrm{CH}_{3} \mathrm{CN}\right)$ under nitrogen was added a solution of $\mathbf{6 b}(75.2 \mathrm{mg}, 0.202 \mathrm{mmol})$ and $\mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}(1: 2)(606 \mu \mathrm{~L}, 1 \mathrm{M}$ $\left./ \mathrm{CH}_{3} \mathrm{CN}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(3.35 \mathrm{~mL})$ via canula. The resulting mixture was heated to $40^{\circ} \mathrm{C}$ until the reaction turned dark ($\sim 1 \mathrm{~h}$). Water was added and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, and the solvent was evaporated to yield the crude product ($>15: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) that is pure enough to be used without further purification. An analytical pure sample ($48.3 \mathrm{mg}, 84 \%$ yield, $>15: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) can be obtained by flash chromatography using $2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. The spectral data were identical to those reported before. ${ }^{4}$

[^3]
$\left(4 R^{*}, 5 S^{*}, 6 R^{*}\right)-4,6-d i m e t h y l-5-t r i e t h y l s i l o x y-7-o c t e n-3-o n e ~(7) ~ F o l l o w i n g ~ t h e ~ g e n e r a l ~$ procedure on a 0.201 mmol scale using 9 , the desired product $(48.0 \mathrm{mg}, 84 \%,>15: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. The spectral data were identical to those reported before. ${ }^{4}$

$\left(4 R^{*}, 5 S^{*}, 6 R^{*}\right)$-5-tert-butyldimethylsiloxy-4,6-dimethyl-7-octen-3-one (15) Following the general procedure on a 0.200 mmol scale using 10, the desired product (48.4 mg , $84 \%,>15: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. The spectral data were identical with those previously reported. ${ }^{5}$

[^4]
(4R*,5S*,6R*)-5-acetoxy-4,6-dimethyl-7-octen-3-one and (4R*,5S*,6S*)-5-acetoxy-
4,6-dimethyl-7-octen-3-one (14) Following the general procedure on a 0.201 mmol scale using 11, the inseparable mixture of diastereomers $\left(30.7 \mathrm{mg}, 72 \%, 1.4: 1 \mathrm{dr}\right.$ by ${ }^{13} \mathrm{C}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=3077$, 2978, 2937, 2887, 1743, 1712, 1462, 1373, 1235, $1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.23-$ $4.97(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~m}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{s}=\operatorname{syn} ; \mathrm{a}=$ anti) $\delta 212.2^{\mathrm{a}}, 211.9^{\mathrm{s}}, 173.6^{\mathrm{a}}, 170.5^{\mathrm{s}}, 139.5^{\mathrm{s}}, 139.3^{\mathrm{a}}, 116.1^{\mathrm{s}}$, $116.0^{\mathrm{a}}, 76.1^{\mathrm{a}}, 75.6^{\mathrm{s}}, 47.7^{\mathrm{a}}, 47.6^{\mathrm{s}}, 40.7^{\mathrm{s}, \mathrm{a}}, 34.9^{\mathrm{a}}, 34.5^{\mathrm{s}}, 20.7^{\mathrm{s}, \mathrm{a}}, 17.3^{\mathrm{a}}, 16.4^{\mathrm{s}}, 12.0^{\mathrm{a}}, 9.9^{\mathrm{s}}, 7.7^{\mathrm{s}}$, $7.6^{\text {a }} ; \operatorname{MS}-E S(m / z) 235[\mathrm{M}+\mathrm{Na}]^{+}, 251[\mathrm{M}+\mathrm{K}]^{+}, 213[\mathrm{M}+\mathrm{H}]^{+}$; HRMS-EI calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}$157.0865, found 157.0857. The spectral data were identical to an authentic sample (syn isomer only) prepared from the acetylation $\left(\mathrm{AcCl}, \mathrm{py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right.$ to rt) of alcohol 15 obtained from deprotection of 7 (PTSA, THF/ $\mathrm{H}_{2} \mathrm{O}$).

$\left(4 R^{*}, 5 S^{*}, 6 R^{*}\right)-4,6$-dimethyl-5-hydroxy-7-octen-3-one and $\left(4 R^{*}, 5 S^{*}, 6 S^{*}\right)-4,6-$ dimethyl-5-hydroxy-7-octen-3-one (15) Following the general procedure on a 0.202 mmol scale using 12, the desired product ($20.4 \mathrm{mg}, 60 \%, 2.7: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. Careful flash chromatography using 40% $\mathrm{Et}_{2} \mathrm{O} /$ hexane allows for isolation of a clean sample of $\operatorname{syn}-15$ ($10.1 \mathrm{mg}, 30 \%$). IR (neat) v $=3488,3078,2977,2935,1707,1460,977 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60(\mathrm{~m}$, $1 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{dt}, 1 \mathrm{H}, J=9.0,2.7 \mathrm{~Hz}), 2.94(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 2.73(\mathrm{dq}, 1 \mathrm{H}, J$ $=7.2,2.7 \mathrm{~Hz}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=3.0 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=2.7$ $\mathrm{Hz}), 1.05(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.1,140.5,115.2,73.9$, 47.3, 41.5, 34.7, 17.0, 9.3, 7.6; HRMS-EI calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 171.1385$, found 171.1392. The spectral data were identical to an authentic sample prepared from the deprotection of 7 (PTSA, $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$).

$\left(2 R^{*}, 3 S^{*}, 4 R^{*}\right)-2,4-d i m e t h y l-1-p h e n y l-3-t r i e t h y l s i l o x y-5-h e x e n-1-o n e ~(17) ~ F o l l o w i n g ~$ the general procedure on a 0.200 mmol scale using $\mathbf{1 6}$, the crude product ($>15: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was purified by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane to give $\mathbf{1 7}$ ($56.9 \mathrm{mg}, 86 \%,>20: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) as a slightly yellow liquid. IR (neat) $v=3065,2957,2877,1681,1459,1117,1003,969 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{tt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}$, $1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 5.02(\mathrm{dt}, 1 \mathrm{H}, J=6.8,1.6 \mathrm{~Hz}), 4.09(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.65(\mathrm{~m}, 1 \mathrm{H})$, $2.33(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.93(\mathrm{~m}, 12 \mathrm{H}), 0.57(\mathrm{q}, 6 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 203.1, 141.4, 136.6, 132.8, 128.6, 128.4, 114.9, 77.1, 44.5, 43.2, 15.3, 13.3, 7.0, 5.4; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{SiO}_{2}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$317.1937, found 317.1930. The stereochemistry was established based on a comparison of spectral data and the selectivity observed with similar compounds.

$\left(4 S^{*}, 5 S^{*}, 6 R^{*}\right)-5-$ tert-butyldimethylsilyl-4,6-dimethyl-7-octen-3-one (19) Following the general procedure on a 0.188 mmol scale using 18 and $5 \mathrm{~mol} \%$ the catalyst system,
the crude product ($>15: 1$ dr by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was purified by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give the desired product ($47.8 \mathrm{mg}, 89 \%$, $>20: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) as a colorless liquid. IR (neat) $v=2953,2935,2853$, $1720,1462,1255,1037,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{dd}, 1 \mathrm{H}, J=7.2,3.6 \mathrm{~Hz}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~m}$, $9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 213.7, $141.5,114.5,77.5,50.3,41.2,36.7,26.0,18.2,13.8,13.4,7.3,-4.2,-4.4$; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{SiO}_{2}[\mathrm{M}]^{+}$285.2244, found 285.2255. Compound 19 was submitted to ozonolysis ((i) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ (ii) $\mathrm{Ph}_{3} \mathrm{P},-78^{\circ} \mathrm{C}$ to rt$)$. The spectral data were different from the previously reported anti-anti triad. ${ }^{6}$ Some epimerized (10-15\%) material was also present and matches the spectral data reported further supporting the assignment as anti-syn.

Ethyl $\left(3 R^{*}, 4 R^{*}\right)$-4-methyl-3-triethylsiloxy-5-hexenoate and ethyl (3 $\left.R^{*}, 4 S^{*}\right)$-4-

 methyl-3-triethylsiloxy-5-hexenoate (21) Following the general procedure on a 0.201 mmol scale using 20, the inseparable mixture of diastereomers ($50.1 \mathrm{mg}, 87 \%, 3: 1 \mathrm{dr}{ }^{13} \mathrm{C}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $3 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane. IR (neat) $v=3077,2858,2880,1739,1462$,[^5]1377, 1180, 1085, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 2 \mathrm{H})$, $4.13(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.98(\mathrm{~m}, 12 \mathrm{H}), 0.60(\mathrm{q}, 6 \mathrm{H}, J=7.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.2,140.2,139.8,115.3,114.9,72.9,72.4,60.3$, $43.8,43.7,40.0,39.4,14.9,14.1,6.8,5.0,4.9$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{SiO}_{3}[\mathrm{M}-\mathrm{Et}]^{+}$ 257.1573, found 257.1572. Compound 21a was reduced ((i) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ (ii) $10 \% \mathrm{HCl})$ to give the diol. The spectral data of the minor isomer (anti) were identical to the previously reported compound. ${ }^{7}$

Ethyl ($3 S^{*}, 4 R^{*}$)-2,2,4-trimethyl-3-triethylsilyloxy-5-hexenoate (21b) Following the general procedure on a 0.200 mmol scale using $\mathbf{2 0 b}$ and $5 \mathrm{~mol} \%$ of the catalyst system, the desired product ($50.7 \mathrm{mg}, 81 \%,>20: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane. IR (neat) $v=2958,2878,1735,1463,1264,1113,1085,1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.73(\mathrm{ddd}, 1 \mathrm{H}, J=17.2,10.4,8.0 \mathrm{~Hz}), 4.95(\mathrm{dt}, 1 \mathrm{H}, J=17.2,1.6 \mathrm{~Hz}), 4.90$ (ddd, $1 \mathrm{H}, J=10.4,1.6,0.8 \mathrm{~Hz}), 4.07(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.95(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 2.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~m}, 12 \mathrm{H}), 0.63(\mathrm{q}, 6 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) δ 177.2, 143.0, 113.4, 79.7, 60.2, 48.4, 41.4, 24.7, 29.0, 16.2, 14.0, 7.1, 5.5; HRMS-ES calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{SiO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 337.2169$,

[^6]found 337.2174 . The spectral data were identical to an authentic sample prepared from ethyl 2,2-dimethyl-3-oxopropanoate ${ }^{8}$ by crotylation ((Z)-crotyltrifluroborate, $\mathrm{Bu}_{4} \mathrm{NI}$ (10 $\mathrm{mol} \%$), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(1: 1)\right)^{9}$ followed by protection (TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt).

$\left(4 R^{*}, 5 S^{*}, 6 R^{*}\right)-4,6$-dimethyl-5-triethylsiloxy-7-octen-3-one (7) Following the general procedure on a 0.200 mmol scale using 22 and $5 \mathrm{~mol} \%$ of the catalyst system, the desired product ($50.4 \mathrm{mg}, 89 \%, 4: 1 \mathrm{dr}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was isolated as a colorless liquid after purification by flash chromatography using $10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane. The spectral data are identical to those previously reported. ${ }^{4}$

[^7]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
OHC $\mathrm{OCO}_{2} \mathrm{Et}$

16

20a

20b

14 (1.4:1 dr)

21a (3:1 dr)

21b (>20:1 dr)

[^0]: ${ }^{1}$ Matsuhashi, H.; Asai, S.; Hirabayashi, K.; Hatanaka, Y.; Mori, A.; Hiyama, T. Bull. Chem. Soc. Jpn. 1997, 70, 1943.

[^1]: ${ }^{2}$ Tietze, L. F.; Eicher, T. Syntheses and Transformations of Functional Groups. In Reactions and Syntheses; University Science Books; Mill Valley, CA, 1989; Chapter G, p. 102.

[^2]: ${ }^{3}$ Dakoji, S.; Li, D.; Agnihotri, G.; Zhou, H.-Q.; Liu, H.-W. J. Am. Chem. Soc. 2001, 123, 9749.

[^3]: ${ }^{4}$ Hughes, G.; Lautens, M.; Wen, C. Org. Lett. 2000, 2, 107.

[^4]: ${ }^{5}$ White, J. D.; Hanselmann, R.; Jackson, R. W.; Porter, W. J.; Ohba, Y.; Tiller, T.; Wang, S. J. Org. Chem. 2001, 66, 5217.

[^5]: ${ }^{6}$ Hoffmann, R. W.; Dahmann, G.; Andersen, M. W. Synthesis 1994, 629.

[^6]: ${ }^{7}$ Drouet, K.E.; Theodorakis, E.A. Chem. Eur. J. 2000, 6, 1987.

[^7]: ${ }^{8}$ Chaganti P, R.; Tanimoto, S. Synthesis 1987, 575.
 ${ }^{9}$ Thadani, A. N.; Batey, R. A. Org. Lett. 2002, 4, 3827.

