A Second-Chance Rearrangement Route to Novel 5(6)-syn,anti-Difunctional

2-Azabicyclo[2.1.1]hexanes.

Grant R. Krow, * Guoliang Lin, Fang Yu, and Philip E. Sonnet

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

Supporting Information Available:

All experimental procedures, spectroscopic data, as well as copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for compounds 10a-g.

Experimental procedures and spectroscopic data: pages 2-5

	${ }^{1} \mathrm{H}-\mathrm{NMR}$	${ }^{13} \mathrm{C}$ NMR
$\mathbf{1 0 a}$	page 6	page 7
$\mathbf{1 0 b}$	page 8	page 9
$\mathbf{1 0 c}$	page 10	page 11
$\mathbf{1 0 d}$	page 12-13	page 14
$\mathbf{1 0 e}$	page 15	page 16
$\mathbf{1 0 f}$	page 17	page 18
$\mathbf{1 0 g}$	page 20	
i and ii calculations	pages 21-22	

Krow et al. "Second-Chance Rearrangement"

Supporting Information page 2

Experimental Section

General Procedures. Thin layer chromatography was performed on precoated plates of silica gel GF 250 microns (Analtec, Inc.). Column chromatography was performed on silica gel, Merck grade 60 (230-400 mesh) purchased from Aldrich Chemical Co. N-(benzyloxycarbonyl)-6-exo-bromo-5-endo-hydroxy-2azabicyclo[2.2.0]hexane (7a), N-(benzyloxycarbonyl)-5-endo-hydroxy-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7b), and N-(benzyloxycarbonyl)-5-endo-fluoro-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7c) have been prepared previously. ${ }^{6}$ Reagent chemicals were obtained from commercial suppliers and chemical grade solvents were used without further purification. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 or 400 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 or 100 MHz in CDCl_{3}, unless otherwise noted. The NMR spectra are often complicated by the presence of carbamate rotamers and pairs of ${ }^{13} \mathrm{C}$ NMR lines due to a single carbon, identified using proton-carbon correlation experiments, have been presented as pairs. Chemical shifts are expressed in parts per million related to internal TMS. High resolution mass spectra were performed at Drexel University. For purposes of nomenclature 5(6)-syn orientation on a 2azabicyclo[2.1.1]hexane refers to the 5 -substituent oriented toward the bridge containing the nitrogen atom.

General Procedure for reactions of 6-exo-bromides 7 a and 6 -exo-iodides $7 \mathrm{~b}-\mathrm{c}$ with silver halides

 and mercury halides. To a stirred solution of bromohydrin $\mathbf{7 a}(100 \mathrm{mg}, 0.32 \mathrm{mmol})$, iodohydrin $\mathbf{7 b}(100$ $\mathrm{mg}, 0.28 \mathrm{mmol}$), or iodofluoride $7 \mathrm{c}(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ was added silver fluoride (2.5 eq), mercuric chloride (2.5 eq), or mercuric fluoride (2.5 eq). The solution was heated at $60{ }^{\circ} \mathrm{C}$ for 24 h unless otherwise noted. The mixture was diluted with brine (5 mL) and extracted with ether ($4 \times 15 \mathrm{~mL}$). The ether extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, evaporated under reduced pressure and chromatographed to give products $\mathbf{1 0 a}, \mathbf{1 0} \mathbf{c} \mathbf{- e}$, and $\mathbf{1 0 g}$. For reactions with silver acetate, acetic acid (10 mL) was used as solvent. Acetic acid either was removed in vacuo prior to workup and chromatography to give product $\mathbf{1 0 b}$ or the reaction was worked up as with nitromethane to give $\mathbf{1 0 f}$.N -(Benzyloxycarbonyl)-5-anti-fluoro-6-syn-hydroxy-2-azabicyclo[2.1.1]hexane (10a). (a) From N -(benzyloxycarbonyl)-6-exo-bromo-5-endo-hydroxyl-2-azabicyclo[2.2.0]hexane (7a) (100.0 mg, 0.32

Krow et al. "Second-Chance Rearrangement"

$\mathrm{mmol})$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ and silver fluoride $(101.6 \mathrm{mg}, 0.80 \mathrm{mmol})$ at $85^{\circ} \mathrm{C}$ after 24 h was obtained 18 mg (22%) of fluorohydrin 10a, $R_{f}=0.29\left(1: 3\right.$ hexane/ether); $\mathrm{H}^{1} \mathrm{NMR}(400 \mathrm{~Hz}) \delta 7.28(\mathrm{~s}, 5 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H})$, $4.59(\mathrm{br}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=59.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{~b}, 1 \mathrm{H}), 2.88 \sim 2.50(\mathrm{~b}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{~Hz}) \delta 157.5,136.8,129.0,128.6,128.3,91.0(J=$ $212.0 \mathrm{~Hz}), 69.3,67.6,65.5,48.2,43.9$; HRMS $m / z 274.0853$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{FNa}(\mathrm{M}+\mathrm{Na}) 274.0855$. (b) From N-(benzyloxycarbonyl)-5-endo-hydroxy-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7b) (180 mg, $0.50 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ and silver fluoride $(159 \mathrm{mg}, 1.25 \mathrm{mmol})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained 73 $\mathrm{mg}(58 \%)$ of fluorohydrin 10a. (c) From iodohydrin 7b (100 mg, 0.28 mmol$)$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ and mercury difluoride $(167 \mathrm{mg}, 0.70 \mathrm{mmol})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained $46 \mathrm{mg}(65 \%)$ of fluorohydrin $\mathbf{1 0 a}$.
N-(Benzyloxycarbonyl)-5-anti-acetoxy-6-syn-hydroxy-2-azabicyclo[2.1.1]hexane (10b). From N -(benzyloxycarbonyl)-5-endo-hydroxy-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7b) (100 mg, 0.28 mmol) and $\operatorname{AgOAc}(116 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{HOAc}(10 \mathrm{~mL})$ at $60-65{ }^{\circ} \mathrm{C}$ after 36 h was obtained $46 \mathrm{mg}(60 \%)$ of acetoxyalcohol 10b, $R_{f}=0.25$ (3:1 ether/hexane); ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H})$, $4.53(\mathrm{br}, 1 \mathrm{H}), 4.47(\mathrm{arm}$ of d, 0.5 H$), 4.45(\mathrm{~s}, 1.5 \mathrm{H}), 3.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ $\left(\mathrm{m}, J_{l, 4}=6.9 \mathrm{~Hz}\right.$, by irradiation at $\left.\delta 4.53,1 \mathrm{H}\right), 2.50 \sim 2.30(\mathrm{~b}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.9,157.5,136.9,128.9,128.5,128.3,73.6,69.2,67.5,65.5,47.5,44.5,30.7$; HRMS $m / z 314.1004$, calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 314.1004$.
N-(Benzyloxycarbonyl)-5-anti-chloro-6-syn-hydroxy-2-azabicyclo[2.1.1]hexane (10c). From N -(benzyloxycarbonyl)-5-endo-hydroxy-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7b) (100 mg, 0.28 mmol) and mercury chloride $(190 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained $56 \mathrm{mg}(74 \%)$ of chloroalcohol 10c, $R_{f}=0.17$ (1:1 hexane/ether); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H})$, $4.70(\mathrm{~b}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 1H), $2.86(\mathrm{~b}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,135.1,127.5,127.2,127.0,70.0,67.7,67.6,55.0$, 50.3, 45.6; HRMS $m / z 290.0558$, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{35} \mathrm{ClNa}(\mathrm{M}+\mathrm{Na}) 290.0559$.
N-(Benzyloxycarbonyl)-5-anti-6-syn-difluoro-2-azabicyclo[2.1.1]hexane (10d). (a) From N -(benzyloxycarbonyl)-5-endo-fluoro-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7c) (100 mg, 0.28 mmol) and silver fluoride $(89.0 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained $47 \mathrm{mg}(67 \%)$ of difluoride 10d, $R_{f}=0.61$ (1:1 hexane/ether); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.21 \sim 5.07$ (br, 3 H,), $4.75 \sim 4.53$ (br, 2H), $3.54(\mathrm{br}, 1 \mathrm{H}), 3.33(\mathrm{br}, 1 \mathrm{H}), 3.11(\mathrm{br}, 1 \mathrm{H}),{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 70^{\circ} \mathrm{C}\right.$) $7.40(\mathrm{~s}, 5 \mathrm{H}), 5.40(\mathrm{~d}, J=61.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{br}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=58.1,22.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.1(\mathrm{br}, 1 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0,136.7,128.9,128.6,128.3,89.5(J=$ $210 \mathrm{~Hz}), 85.4(J=237 \mathrm{~Hz}), 67.8$, $(64.9,64.69,64.49,64.19,1 \mathrm{C}), 48.0,43.6$; HRMS $m / z 276.0820$, calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~F}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 276.0812. (b) From iodofluoride 7c and mercury difluoride ($167 \mathrm{mg}, 0.70$ $\mathrm{mmol})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained $38 \mathrm{mg}(54 \%)$ of difluoride $\mathbf{1 0 d}$.
N-(Benzyloxycarbonyl)-5-syn-fluoro-6-anti-hydroxy-2-azabicyclo[2.1.1]hexane (10e). From N -(benzyloxycarbonyl)-5-endo-fluoro-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7c) (100 mg, 0.28 mmol) and moist mercury difluoride ($167.0 \mathrm{mg}, 0.70 \mathrm{mmol}$) in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained 46 mg (65\%) of fluorohydrin 10e, $R_{f}=0.36$ (1:3 hexane/ether); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.14$ $(\mathrm{d}, J=67.2 \mathrm{~Hz}, 0.5 \mathrm{H}$ for one arm of the d), $5.07(\mathrm{br}, 2.5 \mathrm{H}), 4.38(\mathrm{~b}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=23.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{br}, 1 \mathrm{H}), 2.83$ and $2.47(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 157.2,136.9,128.9,128.5,128.3,86.5(J=233 \mathrm{~Hz}), 72.0,71.8,67.5,(66.0,65.8,65.5,65.4,1 \mathrm{C})$, 48.5, 44.6; HRMS m / z 274.0847, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{FNa}(\mathrm{M}+\mathrm{Na}) 274.0855$.
N-(Benzyloxycarbonyl)-6-anti-acetoxy-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (10f). From N -(benzyloxycarbonyl)-5-endo-fluoro-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7c) (100 mg, 0.28 mmol) and mercuric diacetate ($201 \mathrm{mg}, 0.70 \mathrm{mmol}$, moist) in $\mathrm{HOAc}(10 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained 57 mg (73%) of acetoxyfluoride $\mathbf{1 0 f}, R_{f}=0.33$ ($1: 1$ hexane/ether); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H})$, $5.07(\mathrm{br}, 2.5 \mathrm{H}$, arm of doublet), $4.92(\mathrm{~d}, J=67.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.58(\mathrm{br}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{br}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$170.5,157.2,136.8,128.9,128.6,128.3,85.16(J=206.0 \mathrm{~Hz}), 72.3,67.6,63.3,47.4,44.4,21.2$; HRMS m / z 316.0962, calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})$ 316.0961.
N-(Benzyloxycarbonyl)-6-anti-chloro-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (10g). From $\quad N$ -(benzyloxycarbonyl)-5-endo-fluoro-6-exo-iodo-2-azabicyclo[2.2.0]hexane (7c) ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$) and mercury dichloride ($190 \mathrm{mg}, 0.70 \mathrm{mmol}$) in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ after 24 h was obtained $48 \mathrm{mg}(63 \%)$ of chlorofluoride $\mathbf{1 0 g}, R_{f}=0.17$ (1:1 hexane/ether); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, J=$ $54.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.65$ and $3.55(\mathrm{two} \mathrm{d}, J=21.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br}, 1 \mathrm{H}), 3.37$ (two d, apparent t, J $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.3,135.8,128.9,128.6,128.3,84.4(J=234$ Hz), $65.7,63.5,51.5,48.6,44.2$ and 44.0; HRMS m / z 292.0509, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{35} \mathrm{ClFNa}(\mathrm{M}+\mathrm{Na})$ 292.0517.

Grant R. Krow, et al, "A Second-Chance Rearrangement Route..."
Supp. 8

Grant R. Krow, et al, "A Second-Chance Rearrangement Route..."
Supp. 14

Grant R. Krow, et al, "A Second-Chance Rearrangement Route..."
Supp. 16

훈

Computational Data for reference 7

The structures were optimized at the restricted Hartree Fock (RHF) level using the 631G* basis set with the Gaussian 98 suite of computational software.

Gaussian 98, Revision ;M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

Energies

Compound	Energy $^{\mathrm{a}}$	ZPE $^{\mathrm{b}}$	ZPE(corr) $^{\mathrm{c}}$	Energy(corr)	Relative Energy $^{\mathrm{d}}$
\mathbf{i}	-549.618650	0.185388	0.169352	-549.449298	0.0
$\mathbf{i i}$	-549.563159	0.185326	0.169295	-549.393864	+34.8

${ }^{a}$ Energy in Hartrees; 1 Hartree $=627.51 \mathrm{kcal} / \mathrm{mol}$; ${ }^{\mathrm{b}}$ Zero point energy; ${ }^{\mathrm{c}}$ ZPE scaled by $0.9135 ;{ }^{\mathrm{d}} \mathrm{Kcal} / \mathrm{mol}$.

Coordinates

Obtained from the logs of the optimized structures

i

C	0.159139	-0.338876	-2.335988
H	0.847636	-0.279949	-3.170010
C	0.976299	-0.476615	-1.057255
H	1.630842	-1.238600	-0.683681
C	1.030244	0.963982	-0.876345
H	1.772149	1.625368	-0.476056
C	-0.206819	1.077381	-1.825904
H	-0.418078	1.887893	-2.500509
C	-1.108628	0.790792	-0.623416
H	-1.382451	1.670389	-0.063146
H	-1.933000	0.109633	-0.747489
N	0.102363	0.184537	0.013472
C	0.355434	-0.106024	1.402719
O	1.436120	-0.404603	1.758328
O	-0.735812	0.029538	2.071620
C	-0.683866	-0.231480	3.494053
H	0.009707	0.452442	3.955446
H	-1.687530	-0.064730	3.841970

H	-0.378264	-1.252256	3.655794
O	-0.897403	-1.183900	-2.546234
H	-0.731614	-1.805188	-3.243521
$\mathbf{i i}$			
C	-0.188433	0.541769	-2.479871
H	-0.304794	1.144601	-3.360121
C	-1.129160	-0.268922	-1.720069
H	-2.170677	-0.489445	-1.850615
C	0.031827	-1.082054	-1.100406
H	-0.081671	-2.149696	-1.209217
C	1.023587	-0.210127	-1.910097
H	1.682543	-0.611782	-2.663272
C	1.604138	0.275191	-0.554621
H	2.618310	-0.052564	-0.383645
H	1.516177	1.328856	-0.333947
N	0.608778	-0.582329	0.108414
C	-0.116148	-0.386289	1.253752
O	-1.229574	-0.801916	1.363798
O	0.557957	0.296204	2.139602
C	-0.066064	0.519798	3.407589
H	-0.281809	-0.424790	3.881376
H	0.651014	1.080019	3.983129
H	-0.977045	1.083356	3.277891
O	-0.864257	1.142284	-1.254176
H	-1.584989	1.738979	-1.471933

