Supporting Information

Manganese(III)-Catalyzed Facile Direct Hydroperoxidation of Some Heterocyclic 1,3-Dicarbonyl Compounds

Md. Taifur Rahman ${ }^{\dagger}$ and Hiroshi Nishino*

Department of Materials and Life Sciences, Graduate School of Science and Technology, and Department of Chemistry, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN
nishino@aster.sci.kumamoto-u.ac.jp

1. A typical procedure is as follows. A mixture of 4-alkyl-1,2-diphenylpyrazolidine-3,5dione $1(1 \mathrm{mmol})$ and manganese(III) acetate dihydrate (0.1 mmol) in glacial acetic acid (30 mL) was stirred at $23^{\circ} \mathrm{C}$ for 2 h in air, and then the reaction was quenched by adding water (25 mL) to the mixture. The aqueous reaction mixture was extracted three times with dichloromethane (30 mL) and the combined extract was washed with water, a saturated aqueous solution of sodium hydrogencarbonate, dried over anhydrous sodium sulfate, and then concentrated to dryness. The residue was separated by silica gel column chromatography by eluting with diethyl ether/hexane ($7: 3 \mathrm{v} / \mathrm{v}$). The obtained hydroperoxide $\mathbf{2}$ was further purified by recrystallization from diethyl ether-hexane or dichloromethane-benzene.
2. 4-Benzyl-4-hydroperoxy-1,2-diphenylpyrazolidine-3,5-dione (2: $\mathrm{R}=\mathrm{Bn}$): Colorless blocks (from dichloromethane-benzene); mp 103-107 ${ }^{\circ} \mathrm{C}$ (Decompd); IR (KBr) $v 3300(\mathrm{OOH}), 1753,1705(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.21(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OOH}), 7.24-6.80\left(15 \mathrm{H}, \mathrm{m}\right.$, arom H), $3.31\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right.$ of Bn$) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz} \mathrm{}$, CDCl_{3}) $\delta 167.6(\mathrm{C}=\mathrm{O}$), 134.0, 130.3 (arom C), 130.6, 128.8, 127.9, 127.6, 123.9 (arom CH), $86.6(\mathrm{C}-\mathrm{O}), 38.0\left(-\mathrm{CH}_{2}-\right.$ of Bn$)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \bullet 2 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 68.38; H, 4.69; N, 7.24. Found C, 68.13; H, 4.55; N, 7.11. FAB HRMS (acetoneNBA) Found: m / z 375.1344. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{M}+1,375.1267$.
3. X-ray crystallographic data of $2(\mathrm{R}=\mathrm{Bn})$: empirical formula $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$; formula weight 374.3894 ; colorless plates; crystal dimensions $0.25 \times 0.50 \times 0.10 \mathrm{~mm}$; triclinic; space group $P-1 ; a=10.3233(5), b=10.4273(4), c=12.9985(6) \AA, \alpha=95.792(1)^{\circ}, \beta$ $=104.504(3)^{\circ}, \gamma=105.643(2)^{\circ}, V=1283.0(1) \AA^{3}, \mathrm{Z}=2 ; D_{\text {calcd }}=1.272 \mathrm{~g} / \mathrm{cm}^{3} ; F_{000}=$ 518.00; $\mu(\mathrm{MoK} \alpha)=0.85 \mathrm{~cm}^{-1} ; 2 \theta_{\max }=55.0^{\circ}$; no. of reflections measured 11910; no. of observations ($\mathrm{I}>3.00 \sigma(\mathrm{I}), 2 \theta<54.96^{\circ}$) 4605 ; no. of variables 442 ; reflection/parameter ratio $10.42 ; R=0.038 ; R_{w}=0.058$; GOF 1.14.

Figure 1. ORTEP Drawing of $2(\mathrm{R}=\mathrm{Bn})$

