Supporting Information

Silylative Carbocyclization of Allenyl-Carbonyl Units with $\mathrm{Et}_{3} \mathrm{SiH}$ Catalyzed by Rhodium: cis-Stereoselective Synthesis of Homoallylic Cycloalkanols

Suk-Ku Kang, Young-Taek Hong, Joon-Hwan Lee, Won-Yeol Kim, Inhee Lee, and Chan-Mo Yu*
Department of Chemistry and Laboratory for Metal-Catalyzed Reactions (NRL), Sungkyunkwan University, Suwon 440-746, Korea

General: All reactions were run in flame dried glassware under an atmosphere of nitrogen. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was dried by refluxing over sodium/benzophenone ketyl until a permanent purple coloration was presented, and distilled prior to use. Tetrahydrofuran (THF) was distilled from sodium-benzophenone under N_{2}. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from CaH_{2} prior to use. All liquid reagents purchased from the Aldrich were distilled properly prior to use, unless otherwise indicated. Purification was conducted by flash column chromatography on silica gel (230-400 mesh), eluting with a mixture of hexane and ethyl acetate, unless otherwise stated. All reactions were monitored by thin layer chromatigraphy carried out on Merck silica gel plate ($60 \mathrm{~F}_{254}$) using UV light as visualizing agent and ethanolic anisaldehyde solution and heat as developing agent. Silica gel 60 (TA792685, 230-400 mesh) from Merck was used for column chromatography. The reported yields are for chromatographically pure isolated products. FT-IR spectra were recorded on a Nicolet 320 . 'H NMR spectra were recorded on a Varian Unity Inova at 500 MHz and a Bruker Avance 400 spectrometer in CDCl_{3} as a solvent with TMS or residual chloroform as the internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Unity Inova at 125 MHz in CDCl_{3} as a solvent. EI-mass spectra were obtained on a VGInstrument Trio 2000 system at 70 eV .

1-(Toluene-4-sulfonyl)-4-(1-triethylsilanylvinyl)pyrrolidin-3-ol (2a):
Typical procedure. A stainless steel autoclave was charged with the

allenyl-aldehyde 1a ($210 \mathrm{mg}, 0.80 \mathrm{mmol}$), triethylsilane ($186 \mathrm{mg}, 1.60 \mathrm{mmol}$), and $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(2.0 \mathrm{mg}, 1 \mathrm{~mol} \%)$ in diethyl ether $(5 \mathrm{~mL})$. The system was flushed three times with $\mathrm{CO}(10 \mathrm{~atm})$ and the autoclave was pressurized to 10 atm and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 8 h . The solution was then cooled and concentrated under reduced pressure to give crude products. Final purification was effected by column chromatography to give the cyclized product $\mathbf{2 a}(226 \mathrm{mg}, 0.59 \mathrm{mmol}, 74 \%)$ as a white solid: $\mathrm{mp} 81{ }^{\circ} \mathrm{C}$; TLC, SiO_{2}, EtOAc / hexanes 1:2, $\mathrm{R}_{f}=0.51$; IR (film): $3511,2947,1637,1332,1156,731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.58(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, 9 \mathrm{H}, J=7.9 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.79$ (ddd, 1H, $J=3.7,7.1,11.6 \mathrm{~Hz}$), $3.33(\mathrm{dd}, 1 \mathrm{H}, J=9.4,11.6 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=1.0,11.5$ $\mathrm{Hz}), 3.49(\mathrm{dd}, 1 \mathrm{H}, J=7.1,9.4 \mathrm{~Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=1.0,4.1 \mathrm{~Hz}), 4.06(\mathrm{ddd}, 1 \mathrm{H}, J=3.7$, $4.1,11.5 \mathrm{~Hz}), 5.63(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.74(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.1, 7.6, 22.0, 48.8, 56.5, 70.9, 127.9, 130.0, 130.1, 134.5, 143.7, 143.9; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SSi}$ 381.1794. found: 381.1796.

3-Hydroxy-4-(1-triethylsilanylvinyl)cyclopentane-1,1-dicarboxylic acid diethyl ester (2b):

A colorless oil: TLC, SiO_{2}, EtOAc / hexanes $1: 3, \mathrm{R}_{\mathrm{f}}=0.51$; IR (neat) $3545,2951,1729,1458,1258,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\delta 0.64(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, 9 \mathrm{H}, J=7.9 \mathrm{~Hz}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $2.19(\mathrm{dd}, 1 \mathrm{H}, J=13.1,6.4 \mathrm{~Hz}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=13.1,12.6 \mathrm{~Hz}), 2.83(\mathrm{~m}$, $1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.67(\mathrm{~d}, 1 \mathrm{H}, J=2.3$ $\mathrm{Hz}), 5.94(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2,7.7,14.4,35.3,42.6,50.2$, 58.2, 61.9, 72.8, 128.9, 146.2, 172.8, 173.2; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}$: 370.2176. found: 370.2182 .

3-(1-Triethylsilanylvinyl)tetrahydropyran-4-ol (2c):

A colorless oil. TLC, SiO_{2}, EtOAc / hexanes $1: 4, \mathrm{R}_{\mathrm{f}}=0.53$; IR (neat) 3441 , 2950, 1459, 1109, $728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.60(\mathrm{~m}, 6 \mathrm{H})$, $0.92(\mathrm{~m}, 9 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.51(\mathrm{t}$,
 $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 5.67(\mathrm{~d}, 1 \mathrm{H}, J=2.9$ $\mathrm{Hz}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.2,7.7,36.2,44.3,64.8,68.3,71.3,127.6,145.7$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: 242.1702 . found: 242.1713 .

1-(Toluene-4-sulfonyl)-3-(1-triethylsilanylvinyl)piperidin-4-ol (2d):
A colorless oil. TLC, $\mathrm{SiO}_{2}, \mathrm{EtOAc} /$ hexanes $1: 2, \mathrm{R}_{\mathrm{f}}=0.46$; IR (neat) 3523, 2918, 2358, 1337, 1160, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.62(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, 9 \mathrm{H}, J=7.9 \mathrm{~Hz}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.94$ (dddd, $1 \mathrm{H}, J=$
 $2.2,3.4,3.5,13.9 \mathrm{~Hz}$), $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}, J=10.3,12.1 \mathrm{~Hz}$), $3.46(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=0.6,1.9 \mathrm{~Hz}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 7.32$ $(\mathrm{dd}, 2 \mathrm{H}, J=0.7,8.6 \mathrm{~Hz}), 7.66(\mathrm{dd}, 2 \mathrm{H}, J=0.5,8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.9$, $7.3,21.5,31.0,40.4,43.7,44.3,63.6,127.5,127.6,129.7,133.6,143.4,148.9$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SSi}$: 395.1950. found: 395.1948.

3-Methyl-1-(toluene-4-sulfonyl)-4-(1-triethylsilanylvinyl)pyrrolidin-3ol (2e):
A colorless oil. TLC, SiO_{2}, EtOAc / hexanes $1: 2, \mathrm{R}_{\mathrm{f}}=0.49$. IR (neat) $3509,2952,1338,1158,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.58(\mathrm{~m}$,
 $6 \mathrm{H}), 0.89(\mathrm{t}, 9 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, 1 \mathrm{H}, J=7.5,10.9 \mathrm{~Hz})$, 3.27 (dd, 1H, $J=9.6,10.9 \mathrm{~Hz}), 3.32(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 3.42(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 3.54$ $(\mathrm{dd}, 1 \mathrm{H}, J=7.5,9.6 \mathrm{~Hz}), 5.65(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.92(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.3,7.7,22.0,25.5,51.1,53.2,61.2,127.9$, 130.0, 131.3, 134.5, 143.9, 144.5; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SSi}$: 395.1950. found: 395.1953 .

3-Ethyl-1-(toluene-4-sulfonyl)-4-(1-triethylsilanylvinyl)pyrrolidin-3-ol

 (2f)A colorless oil. TLC, SiO_{2}, EtOAc / hexanes $1: 3, \mathrm{R}_{\mathrm{f}}=0.44$; IR (neat) 3499, 2952, 1634, 1339, 1159, $726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
 $0.56(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{~m}, 12 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, 1 \mathrm{H}, J=7.4,10.8 \mathrm{~Hz}), 3.25(\mathrm{dd}, 1 \mathrm{H}, J$ $=9.6,10.8 \mathrm{~Hz}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=7.4,9.6 \mathrm{~Hz}), 5.64(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 5.93$ $(\mathrm{d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 3.7,8.1,22.4,32.7,50.9,53.6,59.4,81.0,128.3,130.4,131.7,135.0,144.2$, 145.3; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{SSi}$: 409.2107. found: 409.2096 .

3-Hydroxy-3-methyl-4-(1-triethylsilanylvinyl)cyclopentane-1,1dicarboxylic acid diethyl ester (2g)

A colorless oil. TLC, SiO_{2}, EtOAc / hexanes 1:5, $\mathrm{R}_{\mathrm{f}}=0.44$; IR (neat) $3481,2953,1728,1456,1259,727 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $\delta 0.63(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 2.30(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 4 \mathrm{H}), 5.67(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 6.14(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.4,7.8,14.4,26.9,40.5,48.9,52.3,57.3,62.0$, 79.7, 130.2, 147.1, 173.2, 173.3; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SSi}$: 384.2332. found: 384.2319.

4-Methyl-1-(toluene-3-sulfonyl)-3-(1-triethylsilanylvinyl)piperidin-4-ol (2h)
A colorless oil. TLC, $\mathrm{SiO}_{2}, \mathrm{EtOAc} /$ hexanes $1: 2, \mathrm{R}_{\mathrm{f}}=0.48$; IR (neat) $3517,2950,1339,1158,728 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.63(\mathrm{~m}$,
 $6 \mathrm{H}), 0.95(\mathrm{~m}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{ddd}, 1 \mathrm{H}, J=2.3,3.2,13.8 \mathrm{~Hz}), 1.74$ (md, $1 \mathrm{H}, J=4.6 \mathrm{~Hz}$), $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=11.4,11.8 \mathrm{~Hz}), 2.69(\mathrm{ddd}, 1 \mathrm{H}, J=3.2$, $11.5,12.6 \mathrm{~Hz}$), 3.37 (ddd, $1 \mathrm{H}, J=2.0,3.8,11.4 \mathrm{~Hz}$), 3.63 (dddd, $1 \mathrm{H}, J=2.0,2.3,4.6,11.5$ $\mathrm{Hz}), 5.55(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.4,7.8,21.9,29.8,39.0,42.5,47.7,69.6,128.0,129.3,130.1$, 134.3, 143.7, 149.1; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SSi}$ 409.2107. found: 409.2117 .

4-(1-Bromo-vinyl)-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3a)

To a solution of $\mathbf{2 a}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added bromine ($23.0 \mathrm{mg}, 0.14 \mathrm{mmol}$). After 20min, the mixture was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with MC. The organic layer
 was dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residue was added 2 mL of THF and added slowly 1 M solution in THF of TBAF ($0.26 \mathrm{~g}, 0.26 \mathrm{mmol}$) for 10 min . After 40 min , the mixture was concentrated in vacuo. The crude product was purified by SiO_{2} column chromatography to give a product $\mathbf{3 a}(27.1 \mathrm{mg}, 60 \%)$. TLC, SiO_{2}, EtOAc / hexanes $1: 1, \mathrm{R}_{\mathrm{f}}=0.16 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H})$, $3.38(\mathrm{dd}, 2 \mathrm{H}, J=9.2,7.3 \mathrm{~Hz}), 3.61(\mathrm{dd}, 2 \mathrm{H}, J=9.2,11.2 \mathrm{~Hz}), 4.48(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{dd}, 1 \mathrm{H}, J$ $=2.7,1.7 \mathrm{~Hz}), 5.69(\mathrm{dd}, 1 \mathrm{H}, J=2.7,1.3 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ Hz).

4-(1-Bromo-vinyl)-3-methyl-1-(toluene-4-sulfonyl)-pyrrolidin-3-ol (3b) TLC, $\mathrm{SiO}_{2}, \mathrm{EtOAc} /$ hexanes $1: 2, \mathrm{R}_{\mathrm{f}}=0.24$. IR (neat) $3504,2970,1624$, $1598,1337,1159,666 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, 1 \mathrm{H}, J=10.4,7.8 \mathrm{~Hz}), 3.27(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz})$,
 $3.41(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 3.64(\mathrm{dd}, 1 \mathrm{H}, J=9.6,7.8 \mathrm{~Hz}), 5.75(\mathrm{~s}, 2 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$.

3-(1-Bromo-vinyl)-1-(toluene-4-sulfonyl)-piperidin-4-ol (3c)

TLC, $\mathrm{SiO}_{2}, \mathrm{EtOAc} /$ hexanes $1: 1, \mathrm{R}_{\mathrm{f}}=0.57 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{dd}, 1 \mathrm{H}, J=2.6,1.3 \mathrm{~Hz}), 5.67(\mathrm{dd}, 1 \mathrm{H}, J$
 $=2.6,0.7 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$.

3-Methylene-5-(toluene-4-sulfonyl)hexahydrofuro[2,3-c]pyrrol-2-one (4a)
A 10 mL , two-necked flask equipped with reflux condenser, an argon inlet, a rubber septum, and a magnetic stirrer was charged with
 $\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(55.1 \mathrm{mg}, 0.09 \mathrm{mmol})$ and 3a $(27.1 \mathrm{mg}, 0.079 \mathrm{mmol})$. The system was alternatively evacuated and filled with argon three times via syringe was introduced 3 mL of dry THF, and $\mathrm{Et}_{3} \mathrm{~N}(15.9 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added. The mixture was heated at reflux for 15 min , during which color changed from colorless to yellow. The mixture was cooled to room temperature, poured into 20 mL of $\mathrm{Et}_{2} \mathrm{O}$, and washed with 0.2 mL of aqueous 3 N HCl . The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}$, and then the combined organic layers were washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl . The organic layers were dried anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by SiO_{2} column chromatography to give a product $\mathbf{4 a}(17.3 \mathrm{mg}$, 75%) as a white solid. mp. $115{ }^{\circ} \mathrm{C}$; TLC, SiO_{2}, EtOAc / hexanes 1: 1, $\mathrm{R}_{\mathrm{f}}=0.48 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, 1 \mathrm{H}, J=5.3,11.7 \mathrm{~Hz}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=10.0$, $7.6 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=10.0,2.9 \mathrm{~Hz}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J=0.6,11.7 \mathrm{~Hz}), 4.97$ $(\mathrm{m}, 1 \mathrm{H}), 5.77(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.68(\mathrm{~d}$, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,145.2,137.4,132.1,130.6,128.7$, 125.8, 79.7, 55.2, 54.7, 42.6, 22.3; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: 293.0776$. found: 293.0705 .

6a-Methyl-3-methylene-5-(toluene-4-sulfonyl)hexahydrofuro[2,3-
c]pyrrol-2-one (4b)
A white solid. M.p. $156{ }^{\circ} \mathrm{C}$; TLC, SiO_{2}, EtOAc / hexanes $1: 1, \mathrm{R}_{\mathrm{f}}=$ $0.37 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~d}$,
 $1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, 1 \mathrm{H}, J=10.0,3.5 \mathrm{~Hz}), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=10.0,8.0$ $\mathrm{Hz}), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 5.72(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.35(\mathrm{~d}$, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.67(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,144.8$, $138.3,132.2,130.3,128.4,125.5,88.6,59.0,55.3,48.7,24.6,22.0$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: 307.0878$. found: 307.0883.

3-Methylene-5-(toluene-4-sulfonyl)hexahydrofuro[3,2-c]pyridin-2one (4c)
A colorless oil. $\mathrm{R}_{\mathrm{f}}=0.52(\mathrm{EtOAc} /$ hexane $1: 1) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{dt}, 2 \mathrm{H}, J=7.0,4.4 \mathrm{~Hz}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.43$
 $(\mathrm{m}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, 1 \mathrm{H}, J=12.7,6.5,1.8 \mathrm{~Hz}), 4.54(\mathrm{dd}, 1 \mathrm{H} J=9.4,3.8 \mathrm{~Hz}), 5.71(\mathrm{~d}, 1 \mathrm{H}, J$ $=1.5 \mathrm{~Hz}), 6.25(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,144.9,137.7,133.4,130.7,128.2,124.0,74.0,46.3,41.8$, 40.0, 27.9, 22.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: 307.0878$. found: 307.0863.

Supplementary materials for 2a

NMR spectra and calculations

All NMR measurements were performed on a Bruker Avance 400 spectrometer system (9.4 T) at a temperature of 298 K . The NMR spectra of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, DEPT, J Resolved, COSY, HMQC, HMBC, and NOESY were collected in CHCl_{3}-d with TMS as an internal reference. The concentration of the samples was 50 mM . For ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, 16 transients were acquired with a 1 sec relaxation delay using 32 K data points. The 90° pulse was $9.7 \mu \mathrm{sec}$ with a spectral width of $3571 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR and DEPT spectra were obtained for a spectral width of 20500 Hz , collecting 64 K data points. The 90° pulse was $9.8 \mu \mathrm{sec}$. Two-dimensional spectra were acquired with 2048 data points for t 2 and 256 for t 1 increments. All calculations were performed using MSI software (San Diego, U.S.A.) on a Silicon Graphics O 2 workstation. The potentials were arranged using a consistent-valence force field and the calculation was performed for 50 ps . Among 50 calculated structures, ten structures with the lowest total energy were superimposed and used for analysis.

Result

The structure of $\mathbf{2 a}$ is shown in Fig. 1. In order to determine the configuration of ring juncture proton, the three dimensional structures of cis and trans isomers were obtained using the molecular modeling calculation. As shown in Fig. 2, while in the case of the cis isomer, the distances between H 4 and H 6 b are closer than those between H 4 and H 6 a , in the case of the trans isomer, the distances between H 4 and H6a are closer than those between H 4 and H6b. The distances calculated from molecular modeling are listed in Table 1. Fig. 3 shows 1D slice of the NOESY spectrum of 2a, where H 4 is saturated. The distance between H 4 and H6a obtained based on the nOe signal is $2.74 \AA$, and that between H 4 and H6b, $2.40 \AA$. That is, this result satisfies the cis configuration. Here, the distance between H 1 a and H 1 b is used as a reference, which is $1.8 \AA$. Therefore, 2a has cis configuration of ring juncture proton. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2a listed in Tables 2.

Table 1. The distances of interested protons obtained from molecular modeling calculations. (The structures are shown in Fig. 2).

	Calculated distance (\AA)	Calculated distance (\AA)
	$\mathrm{H} 4 / \mathrm{H} 6 \mathrm{a}$	$\mathrm{H} 4 / \mathrm{H} 6 \mathrm{~b}$
cis 1	2.79	2.24
cis 2	2.97	2.19
trans 1	2.45	3.09
trans 2	2.40	3.21

Table 2. The distances obtained from nOe crosspeaks of interested protons.

	Distance (\AA)
H4/H6a	2.74
H4/H6b	2.40

Table 3. The complete assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2a.

${ }^{13} \mathrm{C} \quad \text { of }$	CHn	δ of ${ }^{1} \mathrm{H}$	assignment
2.7	t	0.58 (m)	$a^{\prime}, c^{\prime}, e^{\prime}$
7.2	q	0.89 (t, 7.9)	$\mathrm{b}^{\prime}, \mathrm{d}^{\prime}, \mathrm{f}^{\prime}$
21.6	q	2.43	g
48.3	t	$\begin{aligned} & 3.33 \text { (dd, 9.4, 11.6) } \\ & 3.49 \text { (dd, 7.1, 9.4) } \end{aligned}$	5
48.5	d	2.79 (ddd, 3.7, 7.1, 11.6)	3
56.0	t	$\begin{aligned} & 3.43 \text { (dd, 1.0, 11.5) } \\ & 3.59 \text { (ddd, 1.0, 4.1, 11.5) } \end{aligned}$	$\begin{aligned} & 6 \mathrm{a} \\ & 6 \mathrm{~b} \end{aligned}$
70.5	d	4.06 (md, 3.7)	4
127.5	d	7.74 (m)	b, c
129.6	d	7.32 (m)	d, e
129.6	t	$\begin{aligned} & 5.64(\mathrm{dd}, 0.9,2.0) \\ & 5.74(\mathrm{~m}) \end{aligned}$	1
134.1	s	-	f
143.3	s	-	2
143.4	s	-	a

Fig. 1. The structure of $\mathbf{2 a}$.

Fig. 2. The three dimensional structures of cis (left side) and trans (right side) isomers calculated by molecular modeling.

trans1

4
cis2

trans2

Fig. 3. 1D slice of the NOESY spectrum of $\mathbf{2 a}$ (H4 is saturated).

Supplementary materials for 2d

NMR spectra and calculations

All NMR measurements were performed on a Bruker Avance 400 spectrometer system (9.4 T) at a temperature of 298 K . The NMR spectra of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, DEPT, COSY, HMQC, HMBC, and NOESY were collected in CHCl_{3}-d with TMS as an internal reference. The concentration of the samples was 50 mM . For ${ }^{1} \mathrm{H}$-NMR analysis, 16 transients were acquired with a 1 sec relaxation delay using 32 K data points. The 90° pulse was $9.7 \mu \mathrm{sec}$ with a spectral width of $4371 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR and DEPT spectra were obtained for a spectral width of 18832 Hz , collecting 64 K data points. The 90° pulse was $9.8 \mu \mathrm{sec}$. Twodimensional spectra were acquired with 2048 data points for t 2 and 256 for t 1 increments. All calculations were performed using MSI software (San Diego, U.S.A.) on a Silicon Graphics O 2 workstation. The potentials were arranged using a consistent-valence force field and the calculation was performed for 50 ps . Among 50 calculated structures, ten structures with the lowest total energy were superimposed and used for analysis.

Result

The structure of $\mathbf{2 d}$ is shown in Fig. 1. The difference of the configuration of ring juncture protons makes several distances among protons near to them to show the difference. Based on the molecular modeling calculation, four isomers such as cis1, cis 2 , trans1, and trans2, can be considered (Fig. 2). Especially, four distances are investigated and they are listed in Table1. If the configuration of ring juncture protons of $\mathbf{2 d}$ is cis1, a strong nOe signal between H 4 and H 7 b should be observed. As shown in Fig. 3, however, it is not observed. Likewise, if the compound has the configuration of trans 1 or trans 2 , strong nOe signals among H3/H6a and H4/ H7a should be observed. But they are not shown. Only one nOe signal is observed among H3, H6a, H6b, H4, H7a, and H7b. That is H3/H6a. As a result, the compound has the configuration of cis2. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2d listed in Tables 2.

Table 1. The distances of interested protons obtained from molecular modeling calculations. (The structures are shown in Fig. 2).

Configuration	Calculated distance (\AA)			
	$\mathrm{H} 3 / \mathrm{H} 6 \mathrm{a}$	$\mathrm{H} 3 / \mathrm{H} 6 \mathrm{~b}$	$\mathrm{H} 4 / \mathrm{H} 7 \mathrm{a}$	$\mathrm{H} 4 / \mathrm{H} 7 \mathrm{~b}$
cis1(181kcal)	4.02	4.24	3.74	2.91
cis2(181kcal)	2.64	3.70	4.46	4.01
trans1(189kcal)	2.54	3.68	2.77	3.88
trans2(190kcal)	2.55	3.71	2.57	3.79

Table 2. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2d.

δ of ${ }^{13} \mathrm{C}$	CHn	δ of ${ }^{1} \mathrm{H}$	assignment
2.9	t	0.62 (m)	$\mathrm{a}^{\prime}, \mathrm{c}^{\prime}, \mathrm{e}^{\prime}$
7.3	q	0.93 (t, 7.9)	$\mathrm{b}^{\prime}, \mathrm{d}^{\prime}, \mathrm{f}^{\prime}$
21.5	q	2.44	g
31.0	t	$\begin{aligned} & 1.86 \text { (m) } \\ & 1.94 \text { (dddd, } 2.2,3.4,3.5,13.9 \text {) } \end{aligned}$	6
40.4	t	$\begin{aligned} & 2.60(\mathrm{dm}, 3.1) \\ & 3.60(\mathrm{~m}) \end{aligned}$	7
43.7	t	$\begin{aligned} & 2.70(\mathrm{dd}, 10.3,12.1) \\ & 3.46(\mathrm{~m}) \end{aligned}$	5
44.3	d	2.65 (m)	3
63.7	d	3.76 (m)	4
127.59	t	$\begin{aligned} & 5.55(\mathrm{dd}, 0.6,1.9) \\ & 5.60(\mathrm{~m}) \end{aligned}$	1
127.65	d	7.66 (dd, 0.5, 8.6)	$\mathrm{b}^{\prime}, \mathrm{c}^{\prime}$
129.7	d	7.32 (dd, 0.7, 8.6)	d^{\prime}, e^{\prime}
133.6	S	-	a
143.5	S	-	f
149.9	S	-	2

Fig. 1. The structure of $\mathbf{2 d}$.

Fig. 2. The three dimensional structures of cis (left side) and trans (right side) isomers calculated by molecular modeling.

cis1

cis2

trans1

trans2

Fig. 3. The NOESY spectrum of $\mathbf{2 d}$.

Supplementary materials for 2e

NMR spectra and calculations

All NMR measurements were performed on a Bruker Avance 400 spectrometer system $(9.4 \mathrm{~T})$ at a temperature of 298 K . The NMR spectra of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, DEPT, J Resolved, COSY, HMQC, HMBC, and NOESY were collected in CHCl_{3}-d with TMS as an internal reference. The concentration of the samples was 50 mM . For ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, 16 transients were acquired with a 1 sec relaxation delay using 32 K data points. The 90° pulse was $9.7 \mu \mathrm{sec}$ with a spectral width of $3434 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR and DEPT spectra were obtained for a spectral width of 19048 Hz , collecting 64 K data points. The 90° pulse was $9.8 \mu \mathrm{sec}$. Two-dimensional spectra were acquired with 2048 data points for t 2 and 256 for t 1 increments. All calculations were performed using MSI software (San Diego, U.S.A.) on a Silicon Graphics O 2 workstation. The potentials were arranged using a consistent-valence force field and the calculation was performed for 50 ps . Among 50 calculated structures, ten structures with the lowest total energy were superimposed and used for analysis.

Result

The structure of $\mathbf{2 e}$ is shown in Fig. 1. In order to determine the configuration of ring juncture proton, H 3 and methyl group, $7 \mathrm{CH}_{3}$, the three dimensional structures of cis and trans isomers were obtained using the molecular modeling calculation. As shown in Fig. 2, the distances between H3 and H7 of cis isomers are closer than those of trans isomers. The distances obtained from molecular modeling calculations are listed in Table1. Fig. 3 shows 1D slice of the NOESY spectrum of $\mathbf{2 e}$, where H3 is saturated. The distance calculated based on the nOe signal is $2.52 \AA$ (Table 2), which agrees with the value of cis isomer. Here, the distance between H 1 a and H 1 b is used as a reference, which is $1.8 \AA$. Therefore, $\mathbf{2 e}$ has cis configuration of ring juncture proton, H 3 and methyl group, $7 \mathrm{CH}_{3}$. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 e}$ listed in Tables 2.

Table 1. The distances of interested protons obtained from molecular modeling calculations. (The structures are shown in Fig. 2).

	Calculated distance (\AA)
	$\mathrm{H} 3 / \mathrm{H} 7$
cis 1	2.45
cis 2	2.36
trans 1	3.87
trans 2	4.03

Table 2. The distances obtained from nOe crosspeaks of interested protons.

	Distance((\AA)
H3/H7	2.52

Table 3. The complete assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 e}$.

${ }^{{ }^{13} \mathrm{C}} \quad \text { of }$	CHn	δ of ${ }^{1} \mathrm{H}$	assignment
2.9	t	0.57 (m)	$a^{\prime}, c^{\prime}, e^{\prime}$
7.3	q	0.89 (t, 7.8)	$\mathrm{b}^{\prime}, \mathrm{d}^{\prime}, \mathrm{f}^{\prime}$
21.6	q	2.43	g
25.1	q	1.16	7
50.7	d	2.59 (dd, 7.5, 10.9)	3
52.8	t	$\begin{aligned} & 3.27 \text { (dd, } 9.6,10.9) \\ & 3.54 \text { (dd, } 7.5,9.6) \end{aligned}$	5
60.8	t	$\begin{aligned} & 3.32(\mathrm{~d}, 11.0) \\ & 3.42(\mathrm{~d}, 11.0) \end{aligned}$	6
76.7	s	-	4
127.5	d	7.74 (m)	b, c
129.6	d	7.33 (m)	d, e
130.9	t	$\begin{aligned} & 5.65(\mathrm{~d}, 2.0) \\ & 5.92(\mathrm{~d}, 2.0) \end{aligned}$	1
134.1	s	-	a
143.4	s	-	f
144.2	S		2
		1.56	OH

Fig. 1. The structure of $\mathbf{2 e}$.

Fig. 2. The three dimensional structures of cis (left side) and trans (right side) isomers calculated by molecular modeling.

cis 1

cis 2

trans 1

trans2

Fig. 3. 1D slice of the NOESY spectrum of $\mathbf{2 e}$ (H3 is saturated).

Supplementary materials for $\mathbf{2 h}$

NMR spectra and calculations

All NMR measurements were performed on a Bruker Avance 400 spectrometer system $(9.4 \mathrm{~T})$ at a temperature of 298 K . The NMR spectra of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, DEPT, J Resolved, COSY, HMQC, HMBC, and NOESY were collected in CHCl_{3}-d with TMS as an internal reference. The concentration of the samples was 50 mM . For ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, 16 transients were acquired with a 1 sec relaxation delay using 32 K data points. The 90° pulse was $9.7 \mu \mathrm{sec}$ with a spectral width of $3289 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR and DEPT spectra were obtained for a spectral width of 19048 Hz , collecting 64 K data points. The 90° pulse was $9.8 \mu \mathrm{sec}$. Two-dimensional spectra were acquired with 2048 data points for t 2 and 256 for t 1 increments. All calculations were performed using MSI software (San Diego, U.S.A.) on a Silicon Graphics O 2 workstation. The potentials were arranged using a consistent-valence force field and the calculation was performed for 50 ps . Among 50 calculated structures, ten structures with the lowest total energy were superimposed and used for analysis.

Result

The structure of $\mathbf{2 h}$ is shown in Fig. 1. In order to determine the configuration of ring juncture proton, H 3 and methyl group, $8 \mathrm{CH}_{3}$, the three dimensional structures of cis and trans isomers were obtained using the molecular modeling calculation (Fig. 2) The distances between H3 and H6a, and H3 and H6b are listed in Table 1. While in the case of H3/H6a, four configurations are expected to show weak nOe or nothing, in the case of H3/H6b, cis isomers are expected to show strong nOe and trans isomers, weak nOe or nothing. The NOESY spectrum of $\mathbf{2 h}$ is shown in Fig. 3. While the nOe signal of H3/H6a is not observed, that of $\mathrm{H} 3 / \mathrm{H} 6 \mathrm{~b}$ is observed. As a result, the observation of nOe signals agrees with the case of cis isomers, so that the configuration between ring juncture proton, H 3 and junction methyl group, $8 \mathrm{CH}_{3}$ of $\mathbf{2 h}$ should be cis. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 h}$ are listed in Table 2.

Table 1. The distances of interested protons obtained from molecular modeling calculations. (The structures are shown in Fig. 2).

configuration	calculated distance $(\AA \AA))$	
	$\mathrm{H} 3 / \mathrm{H} 6 \mathrm{a}$	$\mathrm{H} 3 / \mathrm{H} 6 \mathrm{~b}$
cis $1(181 \mathrm{kcal})$	3.78	2.70
cis2(181kcal)	3.85	2.62
trans $1(189 \mathrm{kcal})$	4.42	4.09
trans2(190kcal)	4.26	3.96

Table 2. The assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 h}$.

${ }^{{ }^{13} \mathrm{C}} \quad{ }^{2}$	CHn	δ of ${ }^{1} \mathrm{H}$	assignment
2.9	t	0.63 (m)	$\mathrm{a}^{\prime}, \mathrm{c}^{\prime}, \mathrm{e}^{\prime}$
7.4	q	0.95 (m)	$\mathrm{b}^{\prime}, d^{\prime}, \mathrm{f}$,
21.5	q	2.43	g
29.4	q	1.18	8
38.6	t	1.68 (ddd, 2.3, 3.2, 13.8)	6a
38.6	t	1.74 (md, 4.6)	6 b
42.7	t	$\begin{aligned} & 2.69 \text { (ddd, 3.2, 11.5, 12.6) } \\ & 3.63 \text { (dddd, 2.0, 2.3, 4.6, 11.5) } \end{aligned}$	7
46.9	t	$\begin{aligned} & 2.57 \text { (dd, 11.4, 11.8) } \\ & 3.37 \text { (ddd, 2.0, 3.8, 11.4) } \end{aligned}$	5
47.3	d	2.42 (m)	3
69.2	s	-	4
127.6	d	7.65 (m)	b, c
128.9	t	$\begin{aligned} & 5.55(\mathrm{~d}, 2.3) \\ & 5.89(\mathrm{dd}, 1.0,2.3) \end{aligned}$	1
129.6	d	7.31 (m)	d, e
133.9	S	-	a/f
143.3	S	-	a/f
148.7	S	-	2
		1.56	OH

Fig. 1. The structure of $\mathbf{2 h}$.

Fig. 2. The three dimensional structures of cis (left side) and trans (right side) isomers calculated by molecular modeling.

Fig. 3. The NOESY spectrum of $\mathbf{2 h}$.

HYT-03-12
Pulse Sequence: s2pu1

нYтоз-2
Pulse Sequence: s2pu

HYT03-5
Pulse Sequence: s2pu1


```
IYT-03-22
Pulse sequence: 52pul
```


HYT-03-19
Pulse Sequence: s2pu

Kwr-043
Pulse Sequence: s2pul

KwW-047A
Pulse Sequence: s2pu

Pulse Sequence: s2pul

KWY-029
Pulse Sequence: s2pu1

S32

