## Supporting Information

# Doyle-Kirmse Reaction of Allylic Sulfides with Diazoalkane-Free (2Furyl)carbenoid Transfer 

Yumiko Kato, Koji Miki, Fumiaki Nishino, Kouichi Ohe*, and Sakae Uemura* Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

General Procedures. Analytical thin-layer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. NMR spectra were measured for solutions in $\mathrm{CDCl}_{3}$ with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard or $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ : the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points are uncorrected. High-resolution mass spectra (FAB HRMS) and low-resolution mass spectra (FAB LRMS) were obtained with JEOL JMX-SX 102A spectrometer. Elemental analyses were performed at Microanalytical Center of Kyoto University. All new compounds prepared were fully characterized. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under argon, and other solvents were dried by the usual methods and distilled before use.

## Synthesis of Substrates.

The substrates were prepared by following procedures (Scheme 1). 2-Bromo-1cyclohexenecarboxaldehyde (13) ${ }^{1,2}$ and the substrate $\mathbf{1 a}^{2 b}$ were prepared by reported method.

Scheme 1


## Ene-yne-carbonyl compound 14



To a solution of trimethylsilylacetylene ( $2.4 \mathrm{~mL}, 18 \mathrm{mmol}$ ), $\mathbf{1 3}(2.8 \mathrm{~g}, 15 \mathrm{mmol})$, and triethylamine $(10 \mathrm{~mL}, 75 \mathrm{mmol})$ in benzene $(15 \mathrm{~mL})$ were added CuI $(0.21 \mathrm{~g}, 7.5$ $\mathrm{mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.43 \mathrm{~g}, 2.5 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. After stirring at room temperature for 10 min , the resulting black solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 30 mL ) and the aqueous phase was extracted with AcOEt ( $10 \mathrm{~mL} x$ 3). The organic phase was dried over $\mathrm{MgSO}_{4}$. The organic solvents were removed under reduced pressure, and the residue was subjected to column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=20 / 1)$ as an eluent to afford ene-yne-carbonyl compound 14 ( $3.0 \mathrm{~g}, 15 \mathrm{mmol}, 98 \%$ yield) as a pale yellow oil; IR (neat) 675, 760, 844, 878, 894, 1146, 1226, 1250, 1363, 1599, 1677 (C=O), 2140 $(\mathrm{C} \equiv \mathrm{C}), 2834,2862,2939 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 0.19(\mathrm{~s}, 9 \mathrm{H})$, $1.60-1.63(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.38(\mathrm{~m}, 2 \mathrm{H}), 10.2(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 0.4,21.7,22.4,22.6,32.9,102.1,105.3,140.4,144.3$, 193.7. HRMS (FAB): calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}^{+}\right), 207.1205$; found, 207.1207.

## Ene-yne compound 15.



To a solution of $14(3.0 \mathrm{~g}, 15 \mathrm{mmol})$ and ethyleneglycol ( $2.5 \mathrm{~mL}, 45 \mathrm{mmol}$ ) in benzene ( 10 mL ) was added $p$-toluenesulfonic acid mono hydrate ( $43 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) at room temperature. After stirring for 2 h at reflux temperature using Dean-Stark apparatus, the solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}$ solution and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The combined organic phase was dried over $\mathrm{MgSO}_{4}$. The organic solvent was removed under reduced pressure. To a solution of the residue in DMSO ( 20 mL ) was added KF $(1.28 \mathrm{~g}, 22 \mathrm{mmol})$ at room temperature. After stirring for 1 h , the resulting brown solution was poured into water $/ \mathrm{Et}_{2} \mathrm{O}$ mixture $(50 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1 / 1$ ). The aqueous phase was extracted with
$\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x \mathrm{3})$ and the combined organic phase was dried over $\mathrm{MgSO}_{4}$. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO 2 with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=15 / 1$ ) to afford eneyne compound $\mathbf{1 5}(1.8 \mathrm{~g}, 10 \mathrm{mmol}, 67 \%$ yield for 2 steps) as a white solid (gradually decomposed at room temperature); mp. 32.0-32.3 ${ }^{\circ} \mathrm{C}$; IR (KBr) 659, 949, 987, 1070, 1075, 1101, 1142, 1227, 1387, 2080 (C $\equiv \mathrm{C}$ ), 2892, 2935, 3258 ( $\equiv \mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 1.58-1.65(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.26(\mathrm{~m}$, $2 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 3.90-4.05(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$ ) $\delta 21.6,21.9,22.1,30.5,65.6,81.2,82.0,102.8,121.0,142.3$. HRMS (FAB): calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right), 179.1072$; found, 179.1074.

## Ene-yne-carbonyl compound 1b (path a).



To a solution of 1-phenyl-2-propyn-1-ol ( $2.5 \mathrm{~mL}, 10 \mathrm{mmol}$ ), $\mathbf{1 3}(2.5 \mathrm{~g}, 13 \mathrm{mmol})$, and triethylamine $(7.0 \mathrm{~mL}, 50 \mathrm{mmol})$ in benzene $(10 \mathrm{~mL})$ were added $\mathrm{CuI}(0.15 \mathrm{~g}, 7.5$ $\mathrm{mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.29 \mathrm{~g}, 2.5 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. After stirring at room temperature for 1 h , the resulting black solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 20 mL ) and the aqueous phase was extracted with AcOEt ( 20 mL x 3). The organic phase was dried over $\mathrm{MgSO}_{4}$. The organic solvents were removed under reduced pressure, and the residue was subjected to short column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\operatorname{AcOEt}(\mathrm{v} / \mathrm{v}=40 / 1)$ as an eluent to afford crude propargylic alcohol as a pale brown oil. This crude alcohol was oxidized by Swern method to give ene-yne-carbonyl compound $\mathbf{1 b}(0.8 \mathrm{~g}, 3.4 \mathrm{mmol}, 34 \%$ yield for 2 steps) as a colorless solid; mp. 82.8-84.6 ${ }^{\circ} \mathrm{C}$; IR (KBr) 638, 707, 993, 1003, 1159, 1219, 1265, 1283, 1311, 1448, 1578, 1595, 1639 (C=O), 1675 (C=O), 2184 (C $=\mathrm{C}$ ), 2859, 2913, 2936, $2958 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 1.70-1.79(\mathrm{~m}$, $4 \mathrm{H}), 2.33-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 2 \mathrm{H}), 7.52$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ (dd, $J$ $=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 10.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 20.7,21.7,22.4,31.6,88.2,94.1,128.7,129.3,134.4,136.3,136.4$,
147.3, 177.1, 191.2. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ : C, 80.65; H, 5.92. Found: C, 80.36; H, 5.92.

## Ene-yne-carbonyl compound 1c (path a).



Ene-yne-carbonyl compound $\mathbf{1 c}$ was obtained by the same procedure for the synthesis of 1b; A yellow oil ( $34 \%$ yield for 2 steps); IR (neat) $608,706,1214,1246,1364$, 1428, 1680 ( $\mathrm{C}=\mathrm{O}$ ), 2183 ( $\mathrm{C} \equiv \mathrm{C}$ ), 2860, $2934 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 1.65-1.71(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.50(\mathrm{~m}, 2 \mathrm{H}), 10.2$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR ( $67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 20.7,21.9,22.4,31.5,32.8,85.6$, 95.2, 136.0, 147.2, 183.5, 191.3. HRMS (FAB): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 177.0916; found, 177.0916.

## Ene-yne-carbonyl compound 1d (path b).



To a solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(0.64 \mathrm{~mL}, 4.5 \mathrm{mmol})$ in THF ( 50 mL ) was slowly added $n$ BuLi ( $2.8 \mathrm{~mL}, 4.5 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) at $-78{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. After stirring at $78{ }^{\circ} \mathrm{C}$ for 10 min , to this pale yellow solution was added dropwise $15(0.53 \mathrm{~g}, 3.0$ $\mathrm{mmol})$ in THF ( 5 mL ) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, to this pale yellow solution was added dropwise chloroformate ( $0.70 \mathrm{~mL}, 9.0 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$, and then the resulting solution was gradually warmed up to room temperature. After an additional stirring for 30 min , the solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 50 mL ), and the aqueous phase was extracted with AcOEt ( 20 mL x 3). The combined organic phase was dried over $\mathrm{MgSO}_{4}$. The organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=10 / 1)$ as an eluent to afford ene-yne-carrbonyl compound $\mathbf{1 d}(0.41 \mathrm{~g}, 2.1 \mathrm{mmol}, 71 \%$ yield) as a colorless oil; IR (neat) 733, 747, 1147, 1221, 1261, 1281, 1433, 1681 (C=O), 1716 (C=O), 2210
$(\mathrm{C} \equiv \mathrm{C}), 2863,2943 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 1.63-1.75(\mathrm{~m}, 4 \mathrm{H})$, 2.29-2.33 (m, 2H), 2.42-2.48 (m, 2H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (67.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 20.7,21.7,22.4,31.3,53.0,82.2,87.9,135.5,147.7,153.6$, 191.3. HRMS (FAB): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 193.0865; found, 193.0865.

## Typical Procedure for Catalytic Carbene Transfer Reaction with 1.

To a solution of $\mathbf{1}(0.25 \mathrm{mmol})$ and sulfide ( 10 equiv) placed in the flame dried Schlenk flask and dissolved in dry and deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0$ $\mathrm{mL})$ was added $\left[\mathrm{Rh}(\mathrm{OAc})_{2}\right]_{2}(2.7 \mathrm{mg}, 0.006 \mathrm{mmol})$ at room temperature. After the reaction was complete, the organic solvent was removed under reduced pressure, and the residue was subjected to column chromatography on $\mathrm{SiO}_{2}$ with hexane/ AcOEt $(\mathrm{v} / \mathrm{v}=20 / 1)$ as an eluent to afford the corresponding product 4, 7, 9, 10, and 12.

## Sulfide 4b.



A colorless oil (98\% yield); IR (neat) 693, 749, 919, 1123, 1182, 1213, 1229, 1255, 1439, 1446, 1473, 1579, 1595, 1679 (C=O), 2855, 2931, $3073 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 1.49-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 1 \mathrm{H})$, $2.45-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.94 (tdd, $J=6.8,10.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (s, 1H), 7.13 (d, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 20.4,21.1,22.9,23.0$, $38.6,67.0,118.7,120.4,123.3,128.1,128.3,129.1,129.1,130.7,132.2,132.3,135.5$, 136.1, 137.5, 143.7, 194.7. HRMS (FAB): calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 389.1575$; found, 389.1570.

## Sulfide 4c.



A colorless oil (94\% yield); IR (neat) 693, 748, 917, 1180, 1350, 1440, 1715 (C=O), $2935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 1.58-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.99-2.08(\mathrm{~m}$, $1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.09(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{tdd}, J=6.9,9.6,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (dd, $J$ $=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 20.3,21.4,22.7,23.1,26.4$, $37.0,68.1,118.5,120.8,123.0,128.5,129.2,130.5,132.8,136.5,137.1,143.5,202.3$. HRMS (FAB): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 327.1419$; found, 327.1418.

## Sulfide 4d.



A colorless oil ( $83 \%$ yield); IR (neat) 692, 730, 953, 990, 1053, 1216, 1315, 1437, 1612, $1705(\mathrm{C}=\mathrm{O}), 2941,3431 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.40-$ $1.63(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{td}, J=6.6,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{td}, J=6.6,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-$ $2.47(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.72$, ( $\mathrm{s}, 3 \mathrm{H}), 5.15(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{tdd}, J=6.6,10.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.34 (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right) \delta 20.6,21.3,23.0,23.4,39.7,53.1,63.0,119.1,120.8,123.2$, 128.7, 129.6, 131.1, 133.3, 136.1, 137.9, 144.5, 170.6. HRMS (FAB): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right), 342.1290$; found, 342.1288.

## Sulfide 5d.



A colorless oil ( $85 \%$ yield); IR (neat) $690,739,1024,1024,1255,1438,1478,1741$ (C=O), $2934 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.52-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.30-$ 2.47 (m, 4H), 2.49-2.73 (m, 2H), 3.57, (s, 3H), 3.67 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{tdd}, J=6.8,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$,
$J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $67.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 20.7,21.6,23.1,23.3,34.4,44.4,52.4,117.1$, 121.0, 125.9, 126.6, 126.7, 129.1, 132.2, 135.1, 137.5, 148.8, 171.3. HRMS (FAB): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right), 342.1290$; found, 342.1292.

## Sulfide 7a.



A yellow oil [purified by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=$ 300/1), $60 \%$ yield]; IR (neat) 691, 763, 912, 1067, 1440, 1495, 1596, 2935, $3403 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 1.66-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.50$ (m, 2H), 2.60-2.85 (m, 4H), $3.87(\mathrm{dd}, J=6.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.07 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{tdd}, J=6.8,10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.34 (dd, $J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.56 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right) \delta 14.2,21.1,23.2,23.3,23.8,37.7,42.5,116.8,119.5,121.0,124.4$, 126.4, 128.9, 132.4, 136.0, 145.7, 146.8. HRMS (FAB): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OS}\left(\mathrm{M}^{+}\right)$, 298.1391; found, 298.1389.

## Sulfide 7b.



A colorless oil (77\% yield); IR (neat) 695, 915, 1231, 1446, 1595, 1681 (C=O), 1769, 2937, 3071, $3470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 1.45-1.56(\mathrm{~m}, 4 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}$, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{tdd}, J=6.6,10.0,17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $67.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 11.4,20.6,21.7,23.3,23.5$, $37.9,61.1,118.0,119.7,123.7,128.1,129.3,132.3,133.0,135.8,136.3,144.3,194.1$. HRMS (FAB): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 327.1419$; found, 327.1418 .

## Sulfide 7c.



A colorless oil (72\% yield); IR (neat) 914, 1129, 1352, 1437, 1597, 1702 (C=O), 1769, 2937, $3380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.63-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, ~ J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{tdd}, J=7.0,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $67.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 11.4,20.7,22.1,23.3,23.7,25.7,36.2,62.6$, 117.7, 120.1, 123.3, 133.5, 136.6, 143.9, 201.1. HRMS (FAB): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right), 265.1262$; found, 265.1263.

## Sulfide 7d.



A colorless oil (91\% yield); IR (neat) 609, 755, 917, 1128, 1211, 1435, 1737 (C=O), 2930, $3450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.49-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{~s}$, $3 \mathrm{H}), 2.27-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $4.97(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{tdd}, J=7.2,10.0,16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 12.9,20.6,21.7,23.2,23.6$, 39.9, 52.9, 57.4, 118.5, 119.4, 123.1, 133.2, 136.1, 144.6, 170.8. HRMS (FAB): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right), 280.1133$; found, 280.1136 .

## Sulfide 9a.



A yellow oil [purified by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=$ 300/1), 43\% yield]; IR (neat) 692, 762, 916, 989, 1070, 1438, 1492, 1600, 2360, 2925, $3077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d_{8}-\mathrm{THF}, 2{ }^{\circ} \mathrm{C}$ ) $\delta 1.66-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{dd}, J=$
$6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.93$ (dd, $J=6.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.10(\mathrm{~m}, 4 \mathrm{H}), 5.72-5.81(\mathrm{~m}, 2 \mathrm{H}), 7.10$ (dd, $J$ $=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, d_{8}-\mathrm{THF}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 20.9,20.9,22.9,23.5,33.9,37.9,40.4,115.8,116.0$, $118.8,120.2,123.8,125.7,128.2,132.1,135.0,135.4,145.4,146.6$. HRMS (FAB): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right), 325.1626$; found, 325.1629.

## Sulfide 9b.



A colorless oil [purified by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}$ $=30 / 1$ to $20 / 1$ ), $32 \%$ yield]; IR (neat) 696, 919, 1020, 1230, 1260, 1446, $1673(\mathrm{C}=\mathrm{O})$, $1769,2934,3075,3435 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.31-1.67(\mathrm{~m}$, 4H), 2.29-2.48 (m, 4H), 2.97 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.04 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.88-5.13$ (m, 4H), 5.62-5.83 (m, 2H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.29$ (dd, $J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=$ $7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 20.5$, 21.7, 23.2, 23.4, 31.9, 39.2, 62.5, 117.8, 118.4, 120.1, 123.9, 128.3, 129.4, 132.5, 133.1, 133.9, 135.9, 136.4, 144.4, 194.8. HRMS (FAB): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$, 352.1497; found, 352.1495 .

## Sulfide 10b.



After the reaction of $\mathbf{1 b}$ at $80^{\circ} \mathrm{C}$ was complete, $\mathbf{1 0 b}$ was obtained as a mixture of diastereoisomers $(92 \%$ yield, d.r. $=79: 21)$. These isomers could be separated by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=20 / 1$ to $4 / 1$ ) as an eluent. 10b (major); a colorless oil; IR (neat) 646, 697, 767, 923, 1000, 1294, 1443, 1669 $(\mathrm{C}=\mathrm{O}), 2359,2932,3507 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.30-1.49(\mathrm{~m}$, $2 H), 1.58-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.71-2.12(\mathrm{~m}, 5 \mathrm{H}), 2.21-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=5.4$,
$10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-3.02(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=9.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{tdd}, J=7.6,10.3,17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 22.5,22.8,23.2,25.3,36.2,38.3,38.9,49.7$, 64.1, 78.8 , 103.7, 118.5, 128.2, 128.9, 131.5, 133.1, 138.6, 139.8, 143.4, 198.3. HRMS (FAB): calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 353.1575$; found, 353.1575.

10b (minor); a yellow oil; IR (neat) 639, 696, 921, 1003, 1230, 1445, 1597, 1667 (C=O), 2923, $3422 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.48-1.64(\mathrm{~m}, 4 \mathrm{H})$, $1.74-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.66-$ $2.76(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=8.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=7.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{tdd}, J=$ $6.9,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 22.3,22.9,23.6,24.4$, $36.2,37.7,43.2,49.6,71.8,80.8,104.6,119.3,127.7,128.6,131.1,133.8,138.5$, 140.1, 144.5, 201.7. HRMS (FAB): calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 353.1575$; found, 353.1573 .

## Sulfide 10c.



10c

After the reaction of $\mathbf{1 c}$ at $80^{\circ} \mathrm{C}$ was complete, $\mathbf{1 0} \mathbf{c}$ was obtained as a mixture of diastereoisomers $(80 \%$ yield, d.r. $=67: 33)$. These isomers could be separated by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=20 / 1$ to $4 / 1$ ) as an eluent. 10c (major); A yellow oil; IR (neat) 843, 920, 1185, 1360, 1440, 1675, 1690 (C=O), 2856, 2925, $3414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.33-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.15-$ $2.28(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{tdd}, J=5.4,6.9,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93 (dd, $J=5.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=9.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{tdd}, J=7.2,10.2,17.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 22.4,22.8,23.1,25.1,25.8,35.8$,
$37.3,39.1,49.5,65.8,78.7,102.4,118.4,134.3,139.3,143.8,202.0$. HRMS (FAB): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right), 290.1341$; found, 290.1339 .

10c (minor); A white solid; mp. 87.2-89.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) 649, 668, 678, 871, 924, 1071, 1123, 1450, 1535, 1635 (C=O), 2341, 2360, 2929, $3443 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right) \delta 1.41-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.11-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=7.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dd, $J=8.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dd, $J=6.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{tdd}, J=6.9,10.5,17.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 22.2,22.8,23.5,24.4,29.7,35.6,38.1$, 41.7, 48.6, 72.0, 80.4, 104.0, 118.8, 134.0, 137.6, 145.4, 206.0. HRMS (FAB): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right), 290.1341$; found, 290.1340 .

## Sulfide 10d.



10d

After the reaction of $\mathbf{1 d}$ at reflux temperature of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was complete, $\mathbf{1 0 d}$ was obtained as a mixture of diastereoisomers $(90 \%$ yield, d.r. $=73: 27) . \quad$ These isomers could be separated by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}=$ $10 / 1$ to $4 / 1$ ) as an eluent.

10d(major); a colorless oil; IR (neat) 698, 917, 976, 1003, 1130, 1219, 1436, 1731 $(\mathrm{C}=\mathrm{O}), 2938,3443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.37-1.53(\mathrm{~m}, 2 \mathrm{H})$, 1.59-1.99 (m, 7H), 2.17-2.28 (m, 1H), 2.70-2.75 (m, 3H), 2.83-2.91 (m, 1H), 3.31 (dd, $J=9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.71(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12$ (d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (tdd, $J=7.2,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right) \delta 22.3,22.6,22.9,23.1,36.6,37.4,38.7,50.0,52.3,59.7,79.4$, 102.6, 118.2, 134.8, 138.3, 144.3, 173.2. HRMS (FAB): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$, 306.1290; found, 306.1290.

10d(minor); a yellow oil; IR (neat) 917, 992, 1126, 1226, 1267, 1433, 1731 (C=O), 2934, $3478 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 1.43-1.77(\mathrm{~m}, 7 \mathrm{H}$ ), 2.03$2.16(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=6.3,13.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.66(\mathrm{dd}, J=6.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=9.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=7.5,13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{tdd}, J=6.3,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $\left.25{ }^{\circ} \mathrm{C}\right) \delta 22.3,22.7,23.4,24.1,34.7,38.8,41.9,47.7,52.7,67.2,80.0,103.6,118.8$, 133.9, 138.1, 144.4, 171.1. HRMS (FAB): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$, 306.1290; found, 306.1293.

## Sulfide 12b.



A colorless oil [purified by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}$ $=30 / 1$ ), $99 \%$ yield]; IR (neat) 700, 747, 918, 971, 1024, 1182, 1226, 1446, 1595, $1673(\mathrm{C}=\mathrm{O}), 2853,2934,3052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, d_{8}$-THF, $25^{\circ} \mathrm{C}$ ) $\delta 1.14-$ $1.23(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.53$ (m, 2H), $4.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.16 (ddd, $J=7.2,10.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.38(\mathrm{~m}, 13 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, d_{8}$-THF, $25^{\circ} \mathrm{C}$ ) $\delta 19.3,21.8,22.1,22.3,55.1,64.6$, $115.5,120.9,122.3,125.7,126.5,126.7,127.6,128.4,128.8,130.1,130.3,130.8$, 135.7, 135.9, 136.5, 138.8, 139.3, 142.7, 190.7. HRMS (FAB): calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right), 465.1888$; found, 465.1887.

## Sulfide 12d.



A colorless oil [purified by column chromatography on $\mathrm{SiO}_{2}$ with hexane/ $\mathrm{AcOEt}(\mathrm{v} / \mathrm{v}$ $=25 / 1$ ), $93 \%$ yield]; IR (neat) 700, 753, 919, 1025, 1065, 1233, 1437, 1600, 1731 $(\mathrm{C}=\mathrm{O}), 2926,3076 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 1.19-1.38(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 4.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$,
6.35 (ddd, $J=8.9,10.0,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.23(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$ ) $\delta 20.7,22.7,23.1,23.6,52.2,57.9,65.5,118.0,122.6$, 123.2, 127.2, 127.8, 128.5, 129.2, 130.0, 132.1, 135.7, 136.5, 137.9, 139.8, 143.1, 169.1. HRMS (FAB): calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 419.1681$; found, 419.1676 .

## References

Pajamannar, T.; Balasubramanian, K. K. Tetrahedron Lett. 1988, 29, 5789.
(a) Ohe, K.; Miki, K.; Yokoi, T.; Nishino, F.; Uemura, S. Organometallics 2000, 19, 5525. (b) Miki, K.; Yokoi, T.; Nishino, F.; Ohe, K.; Uemura, S. J. Organomet. Chem. 2002, 645, 228. Also see: (c) Herndon, J. W.; Wang, H. J. Org. Chem. 1998, 63, 4564.




-S16-






C: \WINNMR98\COMMON\_DEFAULT.ALS







C：\WINNMR98\COMMON\＿DEFAULT．ALS
282
옥

|  | NN．． | 戸 |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  | N ：Single．coupled：PW1＿ACQTM＿PD： 1 H N念N゙に 융ㅇ․․․

$\dot{8} \dot{0}$
en
min





C: $\backslash$ WINNMR98
282







|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



C: \WINNMR98 \COMMON\_DEFAULT.ALS
258 terminal-MeS-Rh
Sat Dec 14 22:55:31 2002
13C
BCM









C: \WINNMR98\COMMON\_DEFAULT.AL:








-S35-

C: \WINNMR98\COMMON\_DEFAULT.ALS









C: \WINNMR98\COMMON\_DEFAULT.ALS
246-1st
Thu Nov 07 17:26:40 2002
13 C


C: \WINNMR98 \COMMON $\backslash$ _DEFAULT.ALS
$246-1$ st





-S45-


10c-major







10d-minor






DFILE C:\WINNMR98\COMMON\_DEFAULT.AL


