Asymmetric Transfer Hydrogenation of Prochiral Ketones in Aqueous Media with New Water-Soluble Chiral Vicinal Diamine as

Ligand

Yaping Ma, Hui Liu, Li Chen, Xin Cui, Jin Zhu, Jingen Deng*
Union Laboratory of Asymmetric Synthesis, Chengdu Institute of Organic Chemistry, the Chinese Academy of Sciences, Chengdu 610041, China

jgdeng@cioc.ac.cn

Supporting Information

1. General
2. Synthesis of (R, R)-2
3. Synthesis of (R, R)-3
4. A typical procedure for catalytic reactions
5. A procedure for recycling reaction using $(R, R)-3-\mathrm{Ru}(\mathrm{II})$ as catalyst.
6. A typical procedure for the asymmetric transfer hydrogenation of ω-bromo acetophenones
7. Analytical data for chiral aromatic alcohols and related compounds

1. General

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker (300 MHz). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}, \delta=7.26\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR data were collected on Bruker (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}, \delta=77.0\right)$. Elemental analyses were performed on Carlo Erba 1106. Enantiomeric ratio was determined by chiral GLC on CP-cyclodex B-236 M or CP-Chiralsil-L-Val or CP-Chirasil-DEX CB column and by chiral HPLC analysis on Daicel Chiralcel OD/OJ column in comparison with the authentic racemates. Optical rotation data were recorded on Perkin-Elmer Polarimeter-341. All ketones were purchased from Acros, Aldrich and Fluka, and used directly without further purification.

2. Synthesis of $(R, R)-\mathbf{2}$

Compound $(R, R)-\mathbf{1}(1.000 \mathrm{~g}, 4.717 \mathrm{mmol})$ was added to 2.4 mL of oleum $\left(50 \% \mathrm{SO}_{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred vigorously for 22 hr at $0^{\circ} \mathrm{C}$ to room temperature. Then the viscous mixture was poured onto ca. 50 g crashed ice carefully under vigorous stirring, and excessive solid BaCO_{3} was added to neutralize to $\mathrm{pH}=7-8$. The product was purified by RP chromatography, and 1.765 g of white solid was obtained (68% yield). M.p. $>280^{\circ} \mathrm{C}$ (decomposed); $[\alpha]_{\mathrm{D}}{ }^{20}=+48.1^{\circ}(\mathrm{c}=0.70$, $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}, \mathrm{ppm}\right), \delta: 7.60-7.57(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.32-7.14(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 4.26(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}, \mathrm{ppm}\right), \delta: 142.5,140.2,130.5,129.1$, 124.8, 123.8, 60.4; IR $\left(\mathrm{cm}^{-1}\right), v: 1040.5\left(\mathrm{SO}_{2}\right), 1193.9\left(\mathrm{SO}_{2}\right), 1632.9(\mathrm{~N}-\mathrm{H}), 3447.4(\mathrm{~N}-\mathrm{H})$; ESI-HRMS (m / z) : Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BaN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}+\mathrm{H} 508.9418$; obsd. 508.9431 .

3. Synthesis of $(R, R)-3$

Compound $(R, R)-2(1.715 \mathrm{~g}, 3.096 \mathrm{mmol})$ and 1.4 equivalent of $\mathrm{NaOH}(176 \mathrm{mg}, 4.391 \mathrm{mmol})$ were dissolved in 15 mL of water. 0.2 equivalent of $\operatorname{SDS}(184 \mathrm{mg}, 0.676 \mathrm{mmol})$ was added as surfactants, and 1.2 equivalent of TsCl dissolving in 30 mL of DCM was added dropwise under vigorously stirring at room temperature for 24 hr to the mixture. After the SDS was filtered, the aqueous layer was separated from DCM and 1.1 equivalent of $\mathrm{Na}_{2} \mathrm{SO}_{4}(433 \mathrm{mg}, 3.406 \mathrm{mmol}$) was added into this aqueous solution to remove the Ba^{2+} ion. The mixture was concentrated and purified by RP chromatography to give 1.353 g of the white product as $(R, R)-\mathbf{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(72 \%$ yield). M.p. $>280{ }^{\circ} \mathrm{C}$ (decomposed); $[\alpha]_{\mathrm{D}}{ }^{20}=+66.3^{\circ}\left(\mathrm{c}=0.64, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right.$, $\mathrm{ppm}), \delta: 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.29-7.11(\mathrm{~m}, 6 \mathrm{H}$, aromatic H$), 6.91(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$)$, 6.76-6.73 (m, 1H, aromatic H), $4.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.10(\mathrm{~S}$, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}, \mathrm{ppm}\right), \delta: 145.4,143.5,143.3,140.6,138.5,135.8,131.6$, $131.4,130.5,129.9,129.7,127.4,125.8,125.2,124.9,124.7,64.6,60.4,21.4$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right), v$: $1040.1\left(\mathrm{SO}_{2}\right), 1190.6\left(\mathrm{SO}_{2}\right), 1634.0(\mathrm{~N}-\mathrm{H}), 3451.3(\mathrm{~N}-\mathrm{H})$; ESI-HRMS (m / z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{8} \mathrm{~S}_{3}+$ H 571.0250; obsd. 571.0254. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{10} \mathrm{~S}_{3}$: C, 41.58; H, 3.99; N, 4.62; Found: C, 41.67; H, 3.91; N, 4.58.

4. A typical procedure for catalytic reactions

Ruthenium complexes $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and water-soluble chiral ligand $3(5.6 \mathrm{mg}, 0.011 \mathrm{mmol})$ were dissolved in 1 mL of water. After the solution was stirred at $40^{\circ} \mathrm{C}$ for $1 \mathrm{hr}, \mathrm{HCO}_{2} \mathrm{Na} \cdot 2 \mathrm{H}_{2} \mathrm{O}(520 \mathrm{mg}, 5 \mathrm{mmol}), 4 \mathrm{~mol} \% \mathrm{SDS}(11 \mathrm{mg}, 0.040 \mathrm{mmol})$ and 4 '-methylacetophenone ($0.314 \mathrm{~mL}, 1 \mathrm{mmol}$) were added to the solution. The resulting solution was allowed to react at $40{ }^{\circ} \mathrm{C}$ for 24 hr . Then, a mixture solvent $(3 \times 3 \mathrm{~mL})$ of n-hexane and diethyl ether ($\mathrm{v} / \mathrm{v}, 1: 1$) was added to extract organic materials. GC analysis of a sample aliquot then determined the conversion rate and the enantioselectivity. The pure product was obtained by flash chromatography.

5. A procedure for recycling reaction using $(R, R)-3-\mathrm{Ru}(\mathrm{II})$ as catalyst.

The first use: Ruthenium complexes $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and water-soluble chiral ligand $3(5.6 \mathrm{mg}, 0.011 \mathrm{mmol})$ were dissolved in 1 mL of water. After the solution was stirred at $40{ }^{\circ} \mathrm{C}$ for $1 \mathrm{hr}, \mathrm{HCO}_{2} \mathrm{Na} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1040 \mathrm{mg}, 10 \mathrm{mmol}), 4 \mathrm{~mol} \% \mathrm{SDS}(11 \mathrm{mg}, 0.040 \mathrm{mmol})$ and acetophenone $(0.118 \mathrm{~mL}, 1 \mathrm{mmol})$ were added to the solution. The resulting solution was allowed to react at $40^{\circ} \mathrm{C}$ for 24 hr . Then, a mixture solvent $(3 \times 3 \mathrm{~mL})$ of n-hexane and diethyl ether ($\mathrm{v} / \mathrm{v}, 1: 1$) was added to extract organic materials. GC analysis of a sample aliquot then determined the conversion rate and the enantioselectivity.
The recycling use: $\mathrm{HCO}_{2} \mathrm{H}(40 \mu \mathrm{~L}, 1 \mathrm{mmol}), 4 \mathrm{~mol} \%$ SDS ($11 \mathrm{mg}, 0.040 \mathrm{mmol}$) and acetophenone ($0.118 \mathrm{~mL}, 1 \mathrm{mmol}$) were added to the aqueous solution. The resulting solution was allowed to react at $40^{\circ} \mathrm{C}$ for 24 hr . Then, a mixture solvent $(3 \times 3 \mathrm{~mL})$ of n-hexane and diethyl ether ($\mathrm{v} / \mathrm{v}, 1: 1$) was added to extract organic materials. GC analysis of a sample aliquot then determined the conversion rate and the enantioselectivity.

6. A typical procedure for asymmetric transfer hydrogenation of ω-bromo

acetophenones.

Ruthenium complexes $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(1.5 \mathrm{mg}, 0.0025 \mathrm{mmol})$ and water-soluble chiral ligand $(R, R)-3(3.3 \mathrm{mg}, 0.0055 \mathrm{mmol})$ were dissolved in 0.5 mL of water. After the solution was stirred at $40^{\circ} \mathrm{C}$ for 1 hr , 5 equivalent of $\mathrm{HCO}_{2} \mathrm{Na} \cdot 2 \mathrm{H}_{2} \mathrm{O}(260 \mathrm{mg}, 2.5 \mathrm{mmol}), 4 \mathrm{~mol} \% \mathrm{SDS}(5.5 \mathrm{mg}$, $0.020 \mathrm{mmol})$, ω-bromo acetophenone ($\mathbf{1 4 a}$) $(99.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 0.5 mL of DCM were added to the solution. The resulting mixture was allowed to react at $28^{\circ} \mathrm{C}$ for 24 hr . Then, DCM (3×3 mL) was added to extract organic materials. The obtained extraction was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The pure product was obtained in 87% isolated yield with 94% ee by flash chromatography. The enantiomeric excess was determined by GLC on CP-cyclodex B-236 M column.

7. Analytical data for chiral aromatic alcohols and related compounds

$[\alpha]_{\mathrm{D}}{ }^{23}=+55.9^{\circ}\left(\mathrm{c}=0.78, \mathrm{CHCl}_{3}\right) ;$ ee $\%=94.9 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$,
$\delta: 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{GC}$
analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=115^{\circ} \mathrm{C}$
(isothermal), inject temprature $=220{ }^{\circ} \mathrm{C}$, detector temprature $=240{ }^{\circ} \mathrm{C}$, inlet pressure $=10.5 \mathrm{psi} ; \mathrm{t}_{1}=5.0 \mathrm{~min}, \mathrm{t}_{2}=5.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+52.2^{\circ}\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right) ;$ ee $\%=93.7 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$,
 $\delta: 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ $(\mathrm{s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. GC analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=120^{\circ} \mathrm{C}$ (isothermal), inject temprature $=220$ ${ }^{\circ} \mathrm{C}$, detector temprature $=260{ }^{\circ} \mathrm{C}$, inlet pressure $=10 \mathrm{psi} ; \mathrm{t}_{1}=7.5 \mathrm{~min}, \mathrm{t}_{2}=8.0 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+43.1^{\circ}\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right)$; ee $\%=92.3 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$,
 $\delta: 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 1.71$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$). GC analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=115{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=220{ }^{\circ} \mathrm{C}$, detector temprature $=$ $230{ }^{\circ} \mathrm{C}$, inlet pressure $=10 \mathrm{psi} ; \mathrm{t}_{1}=7.3 \mathrm{~min}, \mathrm{t}_{2}=7.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+42.2^{\circ}\left(\mathrm{c}=0.78, \mathrm{CHCl}_{3}\right)$; ee $\%=86.8 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$,
 $\delta: 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{q}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. GC analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=115^{\circ} \mathrm{C}$ (isothermal), inject temprature $=220$ ${ }^{\circ} \mathrm{C}$, detector temprature $=230{ }^{\circ} \mathrm{C}$, inlet pressure $=10 \mathrm{psi} ; \mathrm{t}_{1}=6.4 \mathrm{~min}, \mathrm{t}_{2}=6.5 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+33.4^{\circ}\left(\mathrm{c}=0.28, \mathrm{CHCl}_{3}\right)$; ee $\%=79.6 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$,
 $\delta: 7.48-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$. GC analysis: CP-Chirasil-DEX CB, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=$ $140{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=240{ }^{\circ} \mathrm{C}$, detector temprature $=260{ }^{\circ} \mathrm{C}$, inlet pressure $=11 \mathrm{psi} ; \mathrm{t}_{1}=4.8 \mathrm{~min}, \mathrm{t}_{2}=5.0 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+20.4^{\circ}\left(\mathrm{c}=0.56, \mathrm{CHCl}_{3}\right)$; ee $\%=94.7 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$
 $\delta: 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{br}, 1 \mathrm{H})$, $1.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. GC analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=130{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=220{ }^{\circ} \mathrm{C}$, detector temprature $=260^{\circ} \mathrm{C}$, inlet pressure $=11 \mathrm{psi} ; \mathrm{t}_{1}=3.6 \mathrm{~min}, \mathrm{t}_{2}=3.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=-36.1^{\circ}\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right)$; ee $\%=82.9 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$, $\delta: 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}$, $1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{br}, 1 \mathrm{H}) . \mathrm{GC}$ analysis: CP-Chirasil-DEX CB, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=130{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=220{ }^{\circ} \mathrm{C}$, detector temprature $=240{ }^{\circ} \mathrm{C}$, inlet pressure $=11.5 \mathrm{psi} ; \mathrm{t}_{1}=9.9 \mathrm{~min}, \mathrm{t}_{2}=10.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=-33.2^{\circ}\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right)$; ee $\%=97.7 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$, $\delta: 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 2.87-2.75 (m, 2H), 2.02-1.79 (m, 5H). GC analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=130{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=$
$220{ }^{\circ} \mathrm{C}$, detector temprature $=260{ }^{\circ} \mathrm{C}$, inlet pressure $=11 \mathrm{psi} ; \mathrm{t}_{1}=13.3 \mathrm{~min}, \mathrm{t}_{2}=$ 13.6 min .
$[\alpha]_{\mathrm{D}}{ }^{23}=+46.7^{\circ}\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$; ee $\%=92.0 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$, $\delta: 7.86-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.04(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 1.59$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$). GC analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=160{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=240{ }^{\circ} \mathrm{C}$, detector temprature $=$ $280^{\circ} \mathrm{C}$, inlet pressure $=11.5 \mathrm{psi} ; \mathrm{t}_{1}=15.2 \mathrm{~min}, \mathrm{t}_{2}=15.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+35.1^{\circ}\left(\mathrm{c}=1.46, \mathrm{CHCl}_{3}\right)$; ee $\%=88.4 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, он ppm$), \delta: 8.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.83 (br., 1 H), 1.45 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$). GC analysis: CP-cyclodex B-236 M, 0.25 $\mathrm{mm} \times 25 \mathrm{~m}$, column temprature $=170{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=240^{\circ} \mathrm{C}$, detector temprature $=260^{\circ} \mathrm{C}$, inlet pressure $=12 \mathrm{psi} ; \mathrm{t}_{1}=10.7 \mathrm{~min}, \mathrm{t}_{2}=11.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+33.2^{\circ}\left(\mathrm{c}=0.86, \mathrm{CHCl}_{3}\right)$; ee $\%=83.3 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, он ppm$), \delta: 8.22(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H})$,
 $4.99(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{GC}$ analysis: CP-Chirisil-L-Val, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=130{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=220{ }^{\circ} \mathrm{C}$, detector temprature $=260{ }^{\circ} \mathrm{C}$, inlet pressure $=11 \mathrm{psi} ; \mathrm{t}_{1}$ $=10.9 \mathrm{~min}, \mathrm{t}_{2}=11.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+49.4^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$; ee $\%=93.7 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{M} \mathrm{Hz}\right.$, $\mathrm{ppm}), \delta: 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.94-4.91(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{GC}$ analysis: CP-cyclodex B-236 M, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=130{ }^{\circ} \mathrm{C}$ (isothermal), inject temprature $=200{ }^{\circ} \mathrm{C}$, detector temprature $=220{ }^{\circ} \mathrm{C}$, inlet pressure $=10 \mathrm{psi} ; \mathrm{t}_{1}=17.4 \mathrm{~min}, \mathrm{t}_{2}=18.2 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+23.6^{\circ}\left(\mathrm{c}=0.83, \mathrm{CHCl}_{3}\right)$; ee $\%=94.4 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$, $\delta: 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{dd}, J=2.6 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=2.6 \mathrm{~Hz}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=2.6 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$. GC analysis: CP-cyclodex B-236 $\mathrm{M}, 0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=90^{\circ} \mathrm{C}$ (isothermal), inject temprature $=$ $200{ }^{\circ} \mathrm{C}$, detector temprature $=220{ }^{\circ} \mathrm{C}$, inlet pressure $=10 \mathrm{psi} ; \mathrm{t}_{1}=7.0 \mathrm{~min}, \mathrm{t}_{2}=7.3$ min.

O-
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{M} \mathrm{Hz}, \mathrm{ppm}\right), \delta: 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H})$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+29.6^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$; ee $\%=84.2 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, он $\mathrm{ppm}), \delta: 8.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}$, $1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H})$; EI-MS (m / z): $247(\mathrm{M}+2,4), 245(4), 154(48), 153$ (100), 122 (24), 96 (17), 77(42), 75 (16), 66 (34). GC analysis: CP-cyclodex B-236 $\mathrm{M}, 0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=145{ }^{\circ} \mathrm{C}$, hold 14 minutes, $10^{\circ} \mathrm{C} /$ minute
to $200{ }^{\circ} \mathrm{C}$, hold 20 minute, inject temprature $=240^{\circ} \mathrm{C}$, detector temprature $=260^{\circ} \mathrm{C}$, inlet pressure $=11.5 \mathrm{psi} ; \mathrm{t}_{1}=32.2 \mathrm{~min}, \mathrm{t}_{2}=32.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+32.5^{\circ}\left(\mathrm{c}=0.39, \mathrm{CHCl}_{3}\right)$; ee $\%=83.9 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, $\mathrm{ppm}), \delta: 8.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=2.4 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}$, 1H); EI-MS (m/z): 165 (M, 22), 150 (100), 118 (89), 91 (42), 88 (91), 96 (17), 76(14). GC analysis; CP-cyclodex B- $236 \mathrm{M}, 0.25 \mathrm{~mm} \times 25 \mathrm{~m}$, column temprature $=145{ }^{\circ} \mathrm{C}$, hold 14 minutes, $10{ }^{\circ} \mathrm{C}$ /minute to $200{ }^{\circ} \mathrm{C}$, hold 20 minute, inject temprature $=240{ }^{\circ} \mathrm{C}$, detector temprature $=260{ }^{\circ} \mathrm{C}$, inlet pressure $=11.5 \mathrm{psi} ; \mathrm{t}_{1}=$ $15.3 \mathrm{~min}, \mathrm{t}_{2}=15.7 \mathrm{~min}$.

осно $^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right), \delta: 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.11$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H})$; IR $\left(\mathrm{cm}^{-1}\right), v: 1728(\mathrm{C}=\mathrm{O}), 1701(\mathrm{C}=\mathrm{O})$.
$[\alpha]_{\mathrm{D}}{ }^{23}=+26.9^{\circ}\left(\mathrm{c}=1.19, \mathrm{CHCl}_{3}\right)$; ee $\%=91.8 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, $\mathrm{ppm}), \delta: 7.57-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.03-4.96(\mathrm{~m}$, $1 \mathrm{H}), 3.76-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{br}, 1 \mathrm{H})$. HPLC analysis: Chiralcel OD, iso- $\mathrm{PrOH} / \mathrm{n}$-hexane $=10 / 90(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 23{ }^{\circ} \mathrm{C}, 230 \mathrm{~nm} ; \mathrm{t}_{1}=13.8 \mathrm{~min}, \mathrm{t}_{2}=$ 15.7 min .

осно ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{M} \mathrm{Hz}, \mathrm{ppm}\right), \delta: 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.44-7.35 (m, 5H), $7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H})$.

