Supporting Information for

3,3'- Br_{2}-BINOL-Zn Complex: A Highly Efficient Catalyst for Enantiselective Hetro-Diels-Alder Reaction

Haifeng Du, Jiang Long, Jieyu Hu, Xin Li, Kuiling Ding*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China

General Considerations

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker AM300 NMR spectrometer (300 MHz) with CDCl_{3} as solvent and recorded in ppm relative to internal tetramethylsilane standard. Coupling constants, J, are listed in hertz. Mass spectra (EI, 70 ev) were taken on a HP5989A spectrometer. HRMS data were determined on a Kratos Concept instrument. Elemental analysis was preformed with an Elemental VARIO EL apparatus. Optical rotations were measured on a Perkin-Elmer 341 automatic polarimeter. HPLC analyses were carried out on a JASCO 1580 liquid chromatograph with a JASCO CD-1595 detector and AS-1555 autosampler. Hexane, tetrahydrofuran, toluene and diethyl ether were distilled from sodium benzophenone ketyl under argon and degassed before use. Dichloromethane was distilled from CaH_{2} before use. All reactions were performed under argon. All the known chiral diol ligands were purchased from ACROS or prepared according to the procedure reported in the literatures ${ }^{1-9}$.

General Procedure for the Screening of the Chiral Diols Ligands

To a $1.5-\mathrm{mL}$ polypropylene microtube were added 0.025 M toluene solution of \mathbf{L} $(0.01 \mathrm{mmol}, 0.4 \mathrm{~mL})$ and 1 M solution of $\mathrm{Et}_{2} \mathrm{Zn}$ in hexane ($0.012 \mathrm{mmol}, 12 \mathrm{~L}$). The mixture was kept at room temperature for 0.5 h and then freshly distilled benzaldehyde ($10.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added. Danishefsky's diene ($17.2 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ was charged after the reaction mixture was kept at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched by introducing 5 drops of trifluoroacetic acid after 24 h . Internal standard biphenyl (10 mg) in toluene and saturated sodium bicarbonate aqueous solution $(0.5 \mathrm{~mL})$ were added to the quenched mixture. The organic layer
was separated and submitted to HPLC analysis for the determination of yields and enantiomeric excesses (ee). The yields were determined with a JASCO HPLC1500 with autosampler on Intersil CN-3 column: eluent Hexane/2-propanol (97:3); flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; UV detection at $=254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ of biphenyl, 7.6 min (factor 1.000); t_{R} of benzaldehyde, 11.4 min (factor 1.208); t_{R} of 2-phenyl-2, 3 -dihydro- $4 H$-pyran-4-one, 23.0 min (factor 1.742). The enantiomeric excesses were determined by using the same HPLC analytical system on Chiralcel OD column: eluent Hexane $/ 2$-propanol (90:10); flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; UV detection at $=254 \mathrm{~nm}$; retention time $=13.0 \mathrm{~min}(\mathrm{~S}$ enantiomer), $15.2 \mathrm{~min}(\mathrm{R}$ enantiomer). The results were shown in Table 1(see the text).

Investigation of Nonlinear Effect Using L6 Modified Catalyst

The examination of NLE was carried out following the similar procedure mentioned above at 0 C with $10 \mathrm{~mol} \%$ of nonenantiopure L6. The enantiomeric excesses of the $\mathbf{L 6}$ employed for the reaction were measured by HPLC on Chiralcel AD column before they were submitted to the reactions. The yields were determined with a JASCO HPLC1500 with autosampler on Intersil CN-3 column: eluent Hexane/2-propanol (97:3); flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; UV detection at $=254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ of biphenyl, 7.6 min (factor 1.000); t_{R} of benzaldehyde, 11.4 min (factor 1.208); t_{R} of 2-phenyl-2, 3-dihydro-4H-pyran-4-one, 23.0 min (factor 1.742). The enantiomeric excesses were determined by using the same HPLC analytical system on Chiralcel OD column: eluent hexane $/ 2$-propanol (90:10); flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; UV detection at
$=254 \mathrm{~nm}$; retention time $=13.0 \mathrm{~min}(\mathrm{~S}$ enantiomer $), 15.2 \mathrm{~min}(\mathrm{R}$ enantiomer $)$. The results were shown in Table 1(see the text).

Table 1. Search for NLE in the catalytic system.

entry	Ligand ee (\%) a	Yield (\%)	Ee (\%)	Configuration
1	0	17	0	-
2	9.8	20	11	S
3	19.7	39	12	S
4	39.1	47	1	S
5	49.3	41	41	R
6	60.0	52	R	
7	80.0	82	R	
8	>99	>99	R	

[^0]column: eluent hexane/2-propanol (60:40); flow rate $1.0 \mathrm{~mL} / \mathrm{min}$; UV detection at $=$ 254 nm ; retention time $=13.9 \mathrm{~min}(\mathrm{R}$ enantiomer $), 19.5 \mathrm{~min}(\mathrm{~S}$ enantiomer $)$.

Investigation of Solvent Effect Using L6 Modified Catalyst

Table 2. Solvent effect on the L6-Zn catalyzed HDA reaction of $\mathbf{4}$ with $\mathbf{5 a}$.

	THF	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Hexane
$\mathrm{Ee}(\%)$	$51(\mathrm{R})$	$28(\mathrm{~S})$	$46(\mathrm{R})$	$7(\mathrm{~S})$
Yield (\%)	7	89	78	46

The Procedure for Solvent-free Asymmetric Hetero-Diels- Alder Reaction

To a $1.5-\mathrm{mL}$ polypropylene microtube was added 0.001 mmole of catalyst $\mathbf{L 6} / \mathbf{Z n}$ prepared by mixing $\mathbf{L 6}$ and ZnEt_{2} in 1:1.2 molar ratio in toluene ($40 \mathrm{~L}, 0.25 \mathrm{M}$). Freshly distilled benzaldehyde ($10.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added and Danishefsky's diene ($17.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) was charged after the reaction mixture was kept at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched by introducing 5 drops of trifluoroacetic acid after 24 h . Internal standard biphenyl (10 mg) in toluene (0.1 mL) and saturated sodium bicarbonate aqueous solution (0.5 mL) were added to the quenched mixture. The organic layer was separated and submitted to HPLC analysis for the determination of yields and enantiomeric excesses ($e e$). (see Table 1 in the text).

General Procedure for Catalytic Asymmetric Hetero-Diels-Alder Reaction Using L6-Zn Catalyst.

(R)-2-Phenyl-2,3-dihydro-4H-pyran-4-one 3a

To a $1.5-\mathrm{mL}$ polypropylene microtube were added 0.025 M toluene solution of $\mathbf{L 6}(0.02 \mathrm{mmol}, 0.8 \mathrm{~mL})$ and 1 M solution of $\mathrm{Et}_{2} \mathrm{Zn}$ in hexane ($0.024 \mathrm{mmol}, 24 \mathrm{~L}$).

The mixture was kept at room temperature for 0.5 h and then freshly distilled benzaldehyde ($21.7 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added. Danishefsky's diene ($34.4 \mathrm{mg}, 0.2$ mmol) was charged after the reaction mixture was kept at $-25^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched by introducing 10 drops of trifluoroacetic acid after 24 h . Saturated sodium bicarbonate aqueous solution (0.8 mL) was added to the quenched
mixture. The aqueous layer was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash chromatography on silical gel with hexanes/ethyl acetate (4:1) as eluent to afford 34.8 mg ($>99 \%$ yield) of 2-phenyl-2,3-dihydro-4H-pyran-4-one 3a as colorless liquid with 97.5% ee (determined by HPLC on Chiralcel OD column, hexane : isopropanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=11.8 \mathrm{~min}(S), \mathrm{t}_{\mathrm{R} 2}=13.8 \mathrm{~min}(R)$. The absolute configuration was determined to be R by comparison of retention time with that reported in literature. ${ }^{10}$

IR (liquid film) $\max ^{3064}, 1676,1596,1402,1272,1228,1210,1040,990,934,864$,
826, 796, 760, 732, 720, 640, 612. ${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}) $7.46(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$,
1H), 7.42-7.36 (m, 5H), 5.51 (dd, J = 5.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (dd, J = 14.18, 3.4 Hz , $1 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H})$.

Following the same procedure mentioned above, the following 2-substituted-2, 3 -dihydro- $4 H$-pyran-4-ones were prepared.

2-(3-Methoxyphenyl)-2,3-dihydro-4H-pyran-4-one 3b

$>99 \%$ yield, $98.2 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.49(\mathrm{~d}, \mathrm{~J}=5.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.81 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99-6.90 (m, 3H), 5.54 (dd, J = 6.10, $1.15 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, \mathrm{J}=14.36,3.46 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}\right)$ 192.2, 163.3, 160.0, 139.6, 130.1, 118.4, 114.3, 111.9, 107.5, 81.1, 55.4, 43.5. EIMS m / z (relative intensity): $204\left(\mathrm{M}^{+}, 20.33\right), 134$ (100.00). HRMS (EI) caled for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right):$204.0786, found: 204.0753 .
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=18.4 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=$ 24.4 min (major).
(S)-2-Phenylethyl-2,3-dihydro-4H-pyran-4-one 3c

40.0% yield, $58.3 \% \mathrm{ee}$. The absolute configuration was determined to be S by comparison of retention time with with that reported in literature. ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}) $7.38(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.42-5.40$
(dd, J = 6.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.41(\mathrm{~m}, 2 \mathrm{H})$, 2.18-2.13 (m, 1H), 2.00-1.88 (m, 1H).

The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=18.4 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=$ 32.4 min (major).
(R)-2-(E-Styryl)-2,3-dihydro-4H-pyran-4-one 3d

33.7% yield, $86.7 e e$. The absolute configuration was determined to be R by comparison of retention time with that reported in literature. ${ }^{10}$
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 7.42-7.27(\mathrm{~m}, 6 \mathrm{H}), \quad 6.72(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (dd, J = 15.9, 6.6 Hz, 1H), $5.47(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.58(\mathrm{~m}$, 2 H).
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=20.8 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=$ 42.3 min (major).
(R)-2-(2-Furyl)-2,3-dihydro-4H-pyran-4-one $\mathbf{3 e}$

$>99 \%$ yield, $96.2 \% e e$. The absolute configuration was determined to be R by comparison of retentiontime with that reported in literature. ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad$ 7.49-7.47 $(\mathrm{m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.47-6.40(\mathrm{~m}$, $2 \mathrm{H}), 5.52-5.45(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 1 \mathrm{H})$.
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=30.9 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R} 2}=33.7$ $\min ($ minor $)$.

2-(3-Tolyl)-2,3-dihydro-4H-pyran-4-one $\mathbf{3 f}^{10}$

$>99 \%$ yield, $96.4 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.47(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 4 \mathrm{H}), 5.52(\mathrm{dd}, \mathrm{J}$ $=6.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, \mathrm{J}=14.40,3.60 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.

The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=10.9 \mathrm{~min}(\mathrm{minor}), \mathrm{t}_{\mathrm{R} 2}=$ 12.9 min (major).

2-(4-Cyanophenyl)-2,3-dihydro-4H-pyran-4-one $\mathbf{3 g}^{10}$

>99\% yield, $96.8 \% e e$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 7.76$ (d, J=10 Hz, 2H), 7.56-7.50 (m, 3H), 5.59 (dd, $\mathrm{J}=6.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, \mathrm{J}=13.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.66(\mathrm{~m}, 2 \mathrm{H})$.
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=41.1 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=49.9$ \min (major).

2-(3-Bromophenyl)-2,3-dihydro-4H-pyran-4-one 3h

$>99 \%$ yield, $95.7 \% e e$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H})$, 5.55 (dd, J=6.0, 1.2 Hz, 1H), 5.42 (dd, J=14.2, 3.6 Hz, 1H), 2.91-2.80 (m, 1H), 2.69-2.62 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.6, 163.0, 140.3, 132.1, 130.6, 129.3, 124.7, 123.0, 107.7, 80.2, 43.5. EIMS m/z (relative intensity): 254 ($[\mathrm{M}+2]^{+}$, 10.30), $252\left(\mathrm{M}^{+}, 10.64\right), 184$ (93.87), 182 (100.00). HRMS (EI) caled for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}$ $\left(\mathrm{M}^{+}\right): 251.9786$, found: 251.9757. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C 52.20%, H 3.58%. Found: C 52.36%, H 3.93%.
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=12.9 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=16.5$ \min (major).

2-(3-Chlorophenyl)-2,3-dihydro-4H-pyran-4-one $\mathbf{3 k}^{11}$

[]$^{25}{ }_{\mathrm{D}}=-83.5^{\circ}\left(\mathrm{C}=1.600, \mathrm{CHCl}_{3}\right), 98.1 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.49(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz} \mathrm{1H}), 7.43(\mathrm{t}, \mathrm{J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dd}, \mathrm{J}=6.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, \mathrm{J}=14.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 1 \mathrm{H})$.
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=13.1 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=17.0$ min (major).

2-(4-Bromophenyl)-2,3-dihydro-4H-pyran-4-one $\mathbf{3 j}$

>99\% yield, $94.5 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.57(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (d, J = 9.3, 2H), $5.53(\mathrm{dd}, \mathrm{J}=6.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, \mathrm{J}=14.2,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91-2.81 (m, 1H), 2.68-2.61 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.7, 163.1, 137.1, 132.1, 127.9, 123.0, 107.6, 80.4, 43.5. EIMS m/z (relative intensity): 254 $\left([\mathrm{M}+2]^{+}, 5.13\right), 252\left(\mathrm{M}^{+}, 5.42\right), 184$ (96.52), 182 (100.00). HRMS (EI) caled for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}\left(\mathrm{M}^{+}\right): 251.9786$, found: 251.9780 . Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C 52.20%, H 3.58\%. Found: C 52.47%, H 3.82%.
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=15.4 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=19.8$ \min (major).

2-(4-Chlorophenyl)-2,3-dihydro-4H-pyran-4-one $\mathbf{3} \mathbf{k}^{10}$

$>99 \%$ yield, $95.1 \% e e$.
${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}) $7.58(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H}), 5.65$ (dd, J $=6.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, \mathrm{J}=14.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}$, 1 H).
The enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane:isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=14.1 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R} 2}=17.2$ \min (major).

2-(2,6-dichlorophenyl)-2,3-dihydro-4H-pyran-4-one 31

[]$^{25}=+12.8^{\circ}\left(\mathrm{C}=1.6, \mathrm{CHCl}_{3}\right), 82.4 \%$ yield, $89.7 \% e e$.
${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}) $7.49(\mathrm{dd}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}$ $=9.0 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, \mathrm{J}=6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=$ $17.1,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.5, 163.1, 135.3, 132.0, 130.7, 129.8, 107.3, 77.6, 38.8. EIMS m/z (relative intensity): $242\left(\mathrm{M}^{+}\right.$, 3.82), 174 (63.02), 172 (100.00). HRMS (EI) caled for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 241.9901$, found: 241.9916.
The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane:isopropanol 99.5:0.5, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R} 1}=21.04 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R} 2}=$

References

(1) Seebach, D.; Beck, A. K.; Imwinkelried, R.; Roggo, S.; Wonnacott, A. Helv. Chim. Acta. 1987, 70, 954.
(2) Higashizima, T.; Sakai, N. Nozaki, K.; Takaya, H. Tetrahedron Lett., 1994, 35 , 2023.
(3) Shen, X. Guo, H. Ding, K. Tetrahedron: Asymmetry, 2000, 11, 4321.
(4) Guo, H. Ding, K. Tetrahedron Lett., 2000, 41, 10061.
(5) Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc.,1979, 101, 3035.
(6) Lingenfelter, D. S.; Helgeson, R. C. Cram, D. J.; J. Org. Chem., 1981, 46, 393.
(7) Cram, D. J. Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J.; Domeier, L. A.; Moreau, P.; Koga, K.; Mayer, J. M.; Chao, Y.; Siegel, M. G.; Hoffman, D. H.; Sogah, G. D. Y. J. Org. Chem., 1978, 43, 1930.
(8) Arnold, L. A.; Imbos, R.; Mandoli, A. de Vires, A. H. M.; Naasz, R.; Feringa, B. L. Tetrahedron, 2000, 56, 2865.
(9) Cox, P. J.; Wang, W.; Snieckus, V. Tetrahedron Lett., 1992, 33, 2253.
(10) J. Long, J. Hu, X. Shen, B. Ji, K. Ding, J. Am. Chem. Soc. 2002, 124, 10.
(11) Wang, B.; Feng, X.; Cui, X.; Liu, H.; Jiang, Y.; Chem. Commun., 2000, 1605.

> File name : 730532020.CH2

Info :

Vial \# = 1 Rack \# = 1
Injection Date :16-Oct-2000 21:13:46
Curr. Date : 16-Oct-2000 21:46:08
User : DEFAULT
Group : DATA
Control Method : DIHYDROPYRONE
\# Name RT Area[uV.Sec] Quantity

1	12.942	5113933.672	0.000
2	15.358	5376311.434	0.000
3	17.542	189131.542	0.000

Total Area of Peak $=10679376.648$ [uV.Sec]

File name : DHF501-1-001.CH2

Info :

Vial \# = 1 Rack \# = 1
Injection Date :24-Sep-2006 20:42:36
Curr. Date : 22-Oct-2002 10:18:38
User : DEFAULT
Group : DATA
Control Method :COMBIN EE

File name : lj-rac-3-OMe-pyrone002.CH2
Info :
Chiralcel OD Column; 1.0mL/min; 90:10
Vial \# = 1 Rack \# = 1
Injection Date :10-Apr-2001 10:09:10
Curr. Date : 10-Apr-2001 10:42:06
User : DEFAULT
Group : DATA
Control Method :M-OME-DIHYDROPYRONE

\# Name	RT	Area[uV.Sec]	Quantity
1	5.008	254526.834	0.000
2	18.908	6537639.608	0.000
3	25.808	6580419.500	0.000
Total Area of		Peak $=13372585.942$	[uV. Sec]

File name : dhfm-methoxyl-003.CH2
Info :
$6 b$, entry 2 is Table 2
Vial \# = 1 Rack \# = 1
Injection Date :21-Oct-2002 20:31:52 ee: 98.2\%
Curr. Date : 22 -Oct-2002 10:04:44
Curr. Date : 22-Oct-2002 10:04:44
User : DEFAULT
Group : DATA
Control Method :COMBIN EE

Total Area of Peak $=8280975.465$ [v.Sec]

File name : dhfrac88-010.CH2
Info:
Vial \# = 6 Rack \# = 1
Injection Date :22-Oct-2002 11:07:04
Curr. Date : 22-Oct-2002 12:11:54
User : DEFAULT
Group : DATA
Control Method :COMBIN EE

\# Name	RT Area[v.Sec]	Quantity	
		22.1254889994 .500	0.000
1	38.833	5026113.435	0.000
2			
Total Area of Peak $=9916107.935$	[v.Sec]		


```
File name : LS6A4-2-003.CH2
Info :
Vial \# = 3 Rack \# = 1
Injection Date :26-Jun-2006 13:31:50
Curr. Date : 22-Oct-2002 10:20:22
User : DEFAULT
Group : DATA
Control Method :COMBIN EE
\# Name RT Area[v.Sec] Quantity
\(1 \quad 18.3751494926 .500 \quad 0.000\)
```

Total Area of Peak $=7178924.720$ [v.Sec]

File name : lj-rac-p-Cinna-pyrone005.CH2
Info :
Chiralcel OD Column; $1.0 \mathrm{~mL} / \mathrm{min} ; ~ 90: 10$
Vial \# = 1 Rack \# = 1
Injection Date :10-Apr-2001 11:18:44
Curr. Date : 10-Apr-2001 12:30:32
User : DEFAULT
Group : DATA
Control Method : P-CINNA-DIHYDROPYRONE
\# Name RT Area[uV.Sec] Quantity

1	4.967	328227.000	0.000
2	13.608	330860.000	0.000
3	15.125	160713.667	0.000
4	22.008	11970240.722	0.000
5	47.667	12178566.500	0.000

Total Area of Peak $=24968607.889$ [uV.Sec]

File name : LS3A5-2-002.CH2
Info:

Vial \# = 2 Rack \# = 1
Injection Date :26-Jun-2006 20:17:38
Curr. Date : 22-Oct-2002 10:22:30
User : DEFAULT
Group : DATA
Control Method :COMBIN EE

| \# Name | RT Area[v.Sec] | Quantity |
| :---: | ---: | ---: | ---: |
| 1 | $20.783 \quad 797826.334$ | 0.000 |
| 2 | 42.29211117718 .856 | 0.000 |
| Total Area of Peak $=11915545.190$ | [v.Sec] | |

File name : lj-rac-furyl818.CH2
Info :
Vial \# = 1 Rack \# = 1
Injection Date :19-Jul-2001 15:53:40
Curr. Date : 19-Jul-2001 16:30:02
User : DEFAULT
Group : DATA
Control Method : FURYL-DIHYPRONE
\# Name RT Area[uV.Sec] Quantity

1	6.525	182944.864	0.000
2	7.608	0.000	0.000
3	8.758	74437.000	0.000
4	10.867	113772.500	0.000
5	11.708	26853.500	0.000
6	13.925	19933.000	0.000
7	15.133	1126605.500	0.000
8	23.767	1395.842	0.000
9	30.833	6433773.200	0.000
10	33.333	4823108.732	0.000

Total Area of Peak $=12802824.137$ [uV.Sec]

File name : FURY-001.CH2
Info:

Vial \# = 1 Rack \# = 1
Injection Date :18-Oct-2006 8:51:12
Curr. Date : 22-Oct-2002 10:17:04
User : DEFAULT
Group : DATA
Control Method :FURYL
\# Name RT Area[v.Sec] Quantity
$\begin{array}{rrrr}1 & 30.917 & 7712558.487 & 0.000 \\ 2 & 33.742 & 155166.958 & 0.000\end{array}$
Total Area of Peak $=7867725.445$ [v.Sec]

6e, entry 5 in Table 2
ce: 96.2%

File name : m-me-dihyprone091.CH2
Info:
Inforalcel OD $\quad 90: 10 \quad 1 \mathrm{ml} / \mathrm{min}$
Vial \# = 1 Rack \# = 1
Injection Date :18-Apr-2001 11:12:02
Curr. Date : 18-Apr-2001 11:28:48
User : DEFAULT
Group : DATA
Control Method :M-ME-DIHIPRONE
\# Name RT Area[uV.Sec] Quantity

1	10.658	2937875.862	0.000
2	12.967	2940475.423	0.000

Total Area of Peak $=5878351.285$ [uV.Sec]


```
File name : du-77-rac-006.CH2
Info:
Vial \# = 1 Rack \# = 1
\(\begin{array}{ll}\text { Injection Date }: 24-\text { Apr-2002 } & \text { 13:07:12 } \\ \text { Curr. Date : } 24 \text {-Apr-2002 } & \text { 14:05:50 }\end{array} \quad\) Yae
Curr. Date : 24-Apr-2002 14:05:50
User : DU
Group : DATA
Control Method :COMBINEE
\# Name RT Area[v.Sec] Quantity
\begin{tabular}{llll}
1 & 3.808 & 130124.183 & 0.000
\end{tabular}
2 \begin{tabular}{llll}
1 & 41.325 & 1259920.692 & 0.000
\end{tabular}
Total Area of Peak \(=2768435.417\) [v.Sec]
```



```
-
File name : dhf78-009.CH2
Info: \(\quad 6 \mathrm{~g}\), entry 7 in Table 2
Vial \# = 5 Rack \# \(=1\)
Injection Date :22-Oct-2002 9:54:32 ee: 96.8\%
Curr. Date : 22-Oct-2002 11:00:08
User : DEFAULT
Group : DATA
Control Method :COMBIN EE
\begin{tabular}{llll} 
\# Name & RT & Area[v.Sec] & \multicolumn{2}{c}{ Quantity } \\
& & & \\
1 & 41.142 & 224174.556 & 0.000 \\
2 & 49.88313388835 .790 & 0.000
\end{tabular}
Total Area of Peak \(=13613010.346\) [v.Sec]
```


HERTZ

File name : lj-rac-3-Br-pyrone004.CH2
Info :
Chiralcel OD Column; $1.0 \mathrm{~mL} / \mathrm{min} ; 90: 10$
Vial \# = 1 Rack \# = 1
Injection Date :10-Apr-2001 10:43:24
Curr. Date : 10-Apr-2001 11:14:14
User : DEFAULT
Group : DATA
Control Method :M-BR-DIHYDROPYRONE

\# Name	RT	Area[uV.Sec]	Quantity
1	4.983	272501.751	0.000
2	14.450	5141736.475	0.000
3	19.517	5176939.000	0.000

Total Area of Peak $=10591177.226$ [uV.Sec]

File name : O-BR001.CH2
Info:
6h, entry 8 in Table 2
Vial \# = 2 Rack \# = 1
Injection Date :18-Oct-2006 9:53:04 ee: 95.7\%
Curr. Date : 22-Oct-2002 10:12:14
User : DEFAULT
Group : DATA
Control Method :COMBIN EE

\# Name	RT	Area[v.Sec]	Quantity
		12.858	211379.582

File name : du-8 8 frac-028. CH 2
Info:

Vial \# = 1 Rack \# = 1
Injection Date :28-Apr-2002 15:08:52
Curr. Date : 28-Apr-2002 15:29:22
User : DU
Group : DATA
Control Method :COMBINEE
\# Name RT Area[v.Sec] Quantity
$1 \quad 13.117 \quad 3595050.984 \quad 0.000$

Total Area of Peak $=7185233.162$ [v.Sec]

File name : dhfm-chloro-005.CH2
Info :
6i, entry 9 in Table 2
Vial \# = 3 Rack \# = 1
Injection Date :21-Oct-2002 21:23:42
Curr. Date : 22-Oct-2002 10:08:56
User : DEFAULT
Group : DATA
Control Method :COMBIN EE

Total Area of Peak $=8976032.121$ [v.Sec]

File name : p-Br-dihydroprone001.CH2
Info :
Chiracel OD; Hex:iPr=90:10; 1.0mL/min; .
Vial \# = 1 Rack \# = 1
Injection Date :23-May-2001 17:57:56
Curry. Date : 23-May-2001 18:41:18
User : DEFAULT
Group : DATA
Control Method :P-BR-DIHYDROPYRONE
\# Name RT Area[uV.Sec] Quantity

1	13.783	1163437.404	0.000

$2 \quad 17.717 \quad 1157950.627 \quad 0.000$
Total Area of Peak $=2321388.031$ [uV .Sec]

File name : du -75-001.CH2
Info :
6j, entry 10 in table 2

Vial \# = 1 Rack \# = 1
Injection Date :24-Apr-2002 8:55:24
Curs. Date : 22-Oct-2002 10:10:16
el: 94.5%
User : DU
Group : DATA
Control Method : COMBINEE

\# Name	RT Area[v.Sec]	Quantity	
1	15.458	148679.250	0.000
2	19.842	5372160.074	0.000
Total Area of Peak $=$	5520839.324	[v .Sec]	

File name : du-76-002.CH2
Info :
6 K , entry 11 in Table 2

Vial \# = 1 Rack \# = 1
Injection Date :24-Apr-2002 9:21:00
Curr. Date : 22-Oct-2002 10:11:30
ee: 95.1%

User : DU
Group : DATA
Control Method : COMBINEE

\# Name	RT	Area[v.Sec]	Quantity
1	14.108	53363.250	0.000
2	17.250	2124338.000	0.000
Total Area of Peak $=$	2177701.250	[v.Sec]	

File name : du-86-027.
Info:

Vial \# = 1 Rack \# = 1
Injection Date :28-Ap 14:28:36
Curs. Date : 28-Apr-20 14:58:24
User : DU
Group : DATA
Control Method :DU-87
$6 l$, entry 12 in Table z

[^0]: ${ }^{a}$ The ee values of ligand L6 were determined by using HPLC on Chiralcel OD

