Supporting Information for Org. Lett.

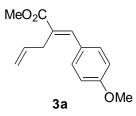
Stereospecific Synthesis of Highly Substituted Skipped Dienes through Multifunctional Palladium Catalysis

Avinash N. Thadani and Viresh H. Rawal^{*}

Department of Chemistry, The University of Chicago 5735 South Ellis Avenue, Chicago, IL 60637

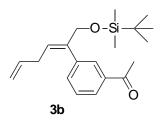
EXPERIMENTAL PROCEDURES and CHARACTERIZATION DATA

General. All alkynes, allyl and methallylbromide and allyl chloride were distilled prior to use. Dimethoxyethane and THF were distilled over CaH_2 and sodium/benzophenone respectively. All other reagents were used as received (Aldrich, Acros, Strem). Melting points are uncorrected and were measured on a Fisher-Johns melting point apparatus. ¹H and ¹³C NMR were recorded at 400 or 500 MHz and 100 or 125 MHz respectively on a Bruker DRX-400 or 500 spectrometer. Proton chemical shifts were internally referenced to the residual proton resonance in CDCl₃ (δ 7.26). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.00). Infrared spectra were obtained on a Nicolet 20 SXB FT-IR spectrometer. Silica gel (60 Å, 230-400 mesh) was obtained from Silicycle and used as received.

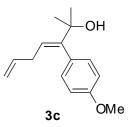

General Procedure for Bromoallylation of Alkynes (Table 1)

To a solution of allylbromide (173 μ L, 2.00 mmol) in anhydrous DME (5.0 mL) cooled in an icebath was added dibromo(bisbenzonitrile)palladium(II) (28.3 mg, 0.06 mmol). A solution of the alkyne (2.00 mmol) in anhydrous DME (5.0 mL) was then added dropwise over *ca*. 30 min. The reaction mixture was stirred for another 5.5 h at rt. The solvent was removed *in vacuo* and the residue subjected to silica gel chromatography (EtOAc/hexanes). Compounds **1a-d** have been previously described in the literature.^{1,2}

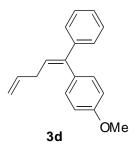
General Procedure for One-pot Tandem Bromoallylation/Suzuki Cross-Coupling of Alkynes (Table 2)


To a solution of allylbromide (173 μ L, 2.00 mmol) in anhydrous DME (5.0 mL) cooled in an icebath was added dibromo(bisbenzonitrile)palladium(II) (28.3 mg, 0.06 mmol). A solution of the alkyne (2.00 mmol) in anhydrous DME (5.0 mL) was then added dropwise over *ca*. 30 min. The reaction mixture was stirred for another 5.5 h at rt. Cesium carbonate (1.30 g, 4.00 mmol) and the boronic acid (4.00 mmol) were then added and the reaction mixture vigorously stirred at $75 - 80^{\circ}$ C (bath temperature) for 16 h. The solvents were subsequently removed *in vacuo* and the residue diluted with EtOAc/hexanes (1:4) (100 ml). The solids were filtered off and the filtrate concentrated *in vacuo*. The resulting residue was then subjected to flash silica gel chromatography using EtOAc/hexanes.

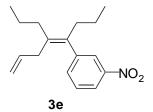
Methyl 2-(4-Methoxybenzylidene)pent-4-enoate (3a)


3a isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.19 (2H, d, J = 8.5 Hz), 6.81 (2H, d, J = 8.5 Hz), 6.58 (1H, s), 5.86 (1H, ddt, J = 17.0, 10.0, 6.5 Hz), 5.17 – 5.06 (2H, m), 3.74 (3H, s), 3.64 (3H, s), 3.13 (2H, dq, J = 6.5, 1.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 169.60, 159.18, 134.67, 133.98, 130.20, 129.53, 128.18, 116.85, 113.33, 54.89, 51.23, 39.14; IR (film) υ 3072, 3005, 2951, 2837, 1718, 1675, 1607, 1512, 1436, 1302, 1255, 1214, 1178, 1125, 1033, 912, 835 cm⁻¹.

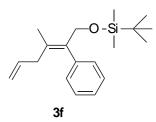
1-{3-[1-*tert*-Butyldimethylsilyloxymethyl)penta-1,4-dienyl]phenyl}ethanone (3b)


3b isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.86 (1H, dt, J = 7.5, 1.5 Hz), 7.78 (1H, t, J = 1.5 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.39 (1H, dt, J = 7.5, 1.5 Hz), 5.86 – 5.74 (2H, m), 5.05 – 4.95 (2H, m), 4.31 (2H, s), 2.73 – 2.67 (2H, m), 2.58 (3H, s), 0.87 (9H, s), 0.03 (6H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 197.98, 140.30, 139.13, 136.91, 136.72, 133.37, 128.49, 128.31, 126.91, 124.69, 114.90, 67.23, 32.63, 26.61, 25.81, 18.29, -5.41; IR (film) υ 3062, 2954, 2929, 2885, 2857, 1728, 1687, 1472, 1467, 1428, 1360, 1258, 1114, 838, 779, 699 cm⁻¹.

3-(4-Methoxyphenyl)-2-methylhepta-3,6-dien-2-ol (3c)


3c isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.02 (2H, d, *J* = 8.5 Hz), 6.87 (2H, d, *J* = 8.5 Hz), 5.84 (1H, t, *J* = 7.5 Hz), 5.72 (1H, ddt, *J* = 17.0, 10.5, 6.0 Hz), 4.98 – 4.87 (2H, m), 3.80 (3H, s), 2.50 – 2.44 (2H, m), 1.68 (1H, br s), 1.34 (6H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 158.43, 148.78, 137.12, 130.84, 130.66, 122.69, 114.50, 113.37, 72.96, 55.09, 33.24, 29.49; IR (film) υ 3385, 3033, 2975, 2835, 1636, 1607, 1511, 1465, 1441, 1359, 1285, 1235, 1176, 1176, 1102, 1036, 914, 828, 734 cm⁻¹.

1-Methoxy-4-[(1E)-1-phenyl-1,4-pentadienyl]benzene (3d)

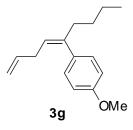

3d isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.25 – 7.14 (5H, m), 7.09 (2H, d, *J* = 8.5 Hz), 6.86 (2H, d, *J* = 8.5 Hz), 6.03 (1H, t, *J* = 7.5 Hz), 5.87 (1H, ddt, *J* = 17.0, 10.0, 6.0 Hz), 5.07 (1H, dq, *J* = 17.0, 1.5 Hz), 5.00 (1H, dq, *J* = 10.0, 1.5 Hz), 3.76 (3H, s), 2.90 – 2.84 (2H, m); ¹³C NMR (CDCl₃) δ 158.62, 142.96, 142.28, 137.04, 132.06, 130.86, 127.98, 127.35, 126.88, 126.24, 114.96, 113.50, 55.05, 34.06; IR (film) υ 3058, 3001, 2956, 2933, 2836, 1725, 1653, 1639, 1607, 1576, 1511, 1493, 1463, 1445, 1361, 1294, 1248, 1177, 1108, 1033, 994, 915, 833, 764, 700 cm⁻¹.

1-(1,2-Dipropylpenta-1,4-dienyl)-3-nitrobenzene (3e)

3e isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.08 (1H, dt, J = 7.5, 2.0 Hz), 7.97 (1H, t, J = 1.5 Hz), 7.49 – 7.41 (2H, m), 5.68 (1H, ddt, J = 17.0, 10.0, 6.0 Hz), 4.97 (1H, dq, J = 10.0, 1.5 Hz), 4.91 (1H, dq, J = 17.0, 1.5 Hz), 2.55 (2H, d, J = 6.5 Hz), 2.37 (2H, dd, J = 8.0, 7.5 Hz), 2.22 – 2.15 (2H, m), 1.50 (2H, sextet, J = 7.5 Hz), 1.25 (2H, sextet, J = 7.5 Hz), 0.98 (3H, t, J = 7.5 Hz), 0.87 (3H, t, J = 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 148.07, 145.28, 136.58, 135.59, 135.09, 128.74, 123.58, 121.16, 115.52, 37.46, 35.85, 33.09, 21.86, 21.35, 14.25, 13.84 (the nitro substituted carbon was not detected); IR (film) υ 3077, 2960, 2931, 2871, 1635, 1529, 1465, 1350, 1080, 993, 911, 808, 739, 698 cm⁻¹.

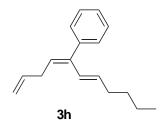
tert-Butyldimethyl-(3-methyl-2-phenylhexa-2,5-dienyloxy)silane (3f)

3f isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.35 – 7.28 (2H, m), 7.27 – 7.19 (1H, m), 7.18 – 7.13 (2H, m), 5.75 (1H, ddt, *J* = 17.0, 10.5, 6.5 Hz), 4.98 – 4.89 (2H, m), 4.32 (2H, s), 2.77 (2H, d, *J* = 6.5 Hz), 2.02 (3H, s), 0.94 (9H, s), 0.12 (6H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 144.47, 137.24, 134.41, 132.62, 128.03, 127.77, 126.26, 115.06, 61.14, 35.06, 25.99, 20.79, 18.41, -5.20; IR (film) υ 3061, 2951, 2930, 2885, 2857, 1729, 1686, 1471, 1464, 1446, 1362, 1256, 1100, 837, 776, 702 cm⁻¹.

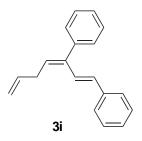

Procedure for the One-pot Tandem Bromoallylation/Suzuki Cross-Coupling of Alkynes with Carbene Additives (Eq. 1)

The bromoallylation of methylpropiolate was carried out as described above (Table 1, entry 1). To the resulting crude mixture was added cesium carbonate (1.30 g, 4.00 mmol), 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (34mg, 0.10 mmol) and 4-methoxyphenylboronic acid (4.00 mmol). The reaction mixture was then heated at 45 °C for 12 h. The work-up procedure is as described in Table 2. **3a** was obtained as a clear, colorless liquid in 85% yield.

General Procedure for the One-pot Tandem Bromoallylation/Suzuki Cross-Coupling of Alkynes at Room Temperature (Table 3).

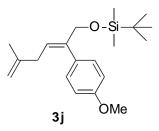

To a solution of allylbromide (173 μ L, 2.00 mmol) in anhydrous THF (5.0 mL) cooled in an icebath was added dibromo(bisbenzonitrile)palladium(II) (28.3 mg, 0.06 mmol). A solution of the alkyne (2.00 mmol) in anhydrous THF (5.0 mL) was then added dropwise over *ca*. 30 min. The reaction mixture was stirred for another 5.5 h at rt. Tri-*t*-butylphosphine (1M in THF, 120 μ L, 0.12 mmol) was then added and the reaction mixture stirred for 15 min at rt. Cesium carbonate (1.30 g, 4.00 mmol) was subsequently added followed by the boronic acid (4.00 mmol). The reaction mixture was stirred for 16 h at rt and then concentrated *in vacuo*. The mixture was diluted with Et₂O (100 mL) and the insoluble material filtered off. The filtrate was concentrated *in vacuo* and the residue chromatographed on silica gel (EtOAc/hexanes).

1-(1-Butylpenta-1,4-dienyl)-4-methoxybenzene (3g)

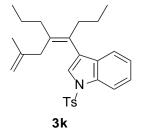


3g isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.08 (2H, d, *J* = 8.5 Hz), 6.87 (2H, d, *J* = 8.5 Hz), 5.82 (1H, ddt, *J* = 17.0, 10.0, 6.0 Hz), 5.44 (1H, t, *J* = 7.5 Hz), 5.02 (1H, dq, *J* = 17.0, 2.0 Hz), 4.97 (1H, dq, *J* = 10.0, 1.5 Hz), 3.82 (3H, s), 2.70 (2H, t, *J* = 6.5 Hz), 2.34 (2H, t, *J* = 6.5 Hz), 1.35 – 1.25 (4H, m), 0.86 (3H, t, *J* = 7.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.20, 141.96, 137.88, 133.27, 129.28, 123.51, 114.32, 113.38, 55.16, 39.02, 33.25, 30.36, 22.22, 13.90; IR (film) υ 3030, 3000, 2956, 2932, 2871, 2837, 1727, 1676, 1608, 1511, 1465, 1378, 1290, 1248, 1179, 1110, 1035, 912, 834 cm⁻¹.

(1-Hex-1-enylpenta-1,4-dienyl)benzene (3h)



3h isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.34 – 7.21 (5H, m), 6.46 (1H, dq, J = 15.5, 1.0 Hz), 5.89 (1H, ddt, J = 17.0, 10.0, 6.0 Hz) 5.56 (1H, dt, J = 15.5, 7.0 Hz), 5.44 (1H, t, J = 7.5 Hz), 5.11 (1H, dq, J = 17.0, 1.5 Hz), 5.02 (1H, dq, J = 10.0, 1.5 Hz), 3.08 – 3.01 (2H, m), 2.13 (2H, q, J = 6.5 Hz), 1.41 – 1.24 (4H, m), 0.89 (3H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 142.45, 140.53, 136.66, 135.50, 128.74, 127.88, 126.85, 126.74, 126.31, 115.04, 32.99, 32.38, 31.47, 22.31, 13.95; IR (film) υ 3079, 3057, 3022, 2956, 2931, 2861, 1725, 1684, 1641, 1600, 1575, 1493, 1466, 1443, 1379, 1319, 1074, 988, 916, 767, 703 cm⁻¹.

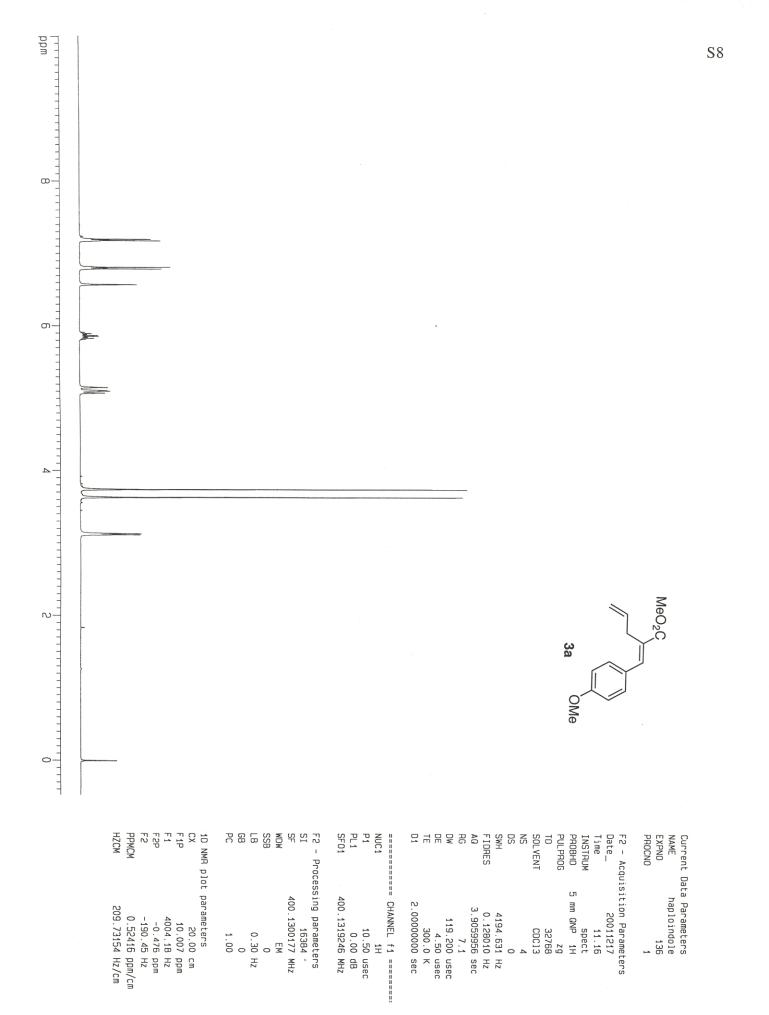

3i isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.43 – 7.17 (11H, m), 6.42 (1H, d, *J* = 16.0 Hz), 5.93 (1H, ddt, *J* = 17.0, 10.0, 6.0 Hz), 5.62 (1H, t, *J* = 7.5 Hz), 5.16 (1H, dq, *J* = 17.0, 1.5 Hz), 5.07 (1H, dq, *J* = 10.0, 1.5 Hz), 3.20 – 3.14 (2H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 141.82, 140.64, 137.54, 136.31, 132.49, 129.87, 128.95, 128.56, 128.08, 127.54, 127.04, 126.47, 125.25, 115.44, 32.48; IR (film) υ 3093, 3078, 3027, 2976, 1638, 1597, 1574, 1491, 1446, 1300, 1073, 1029, 991, 964, 911, 749, 701 cm⁻¹

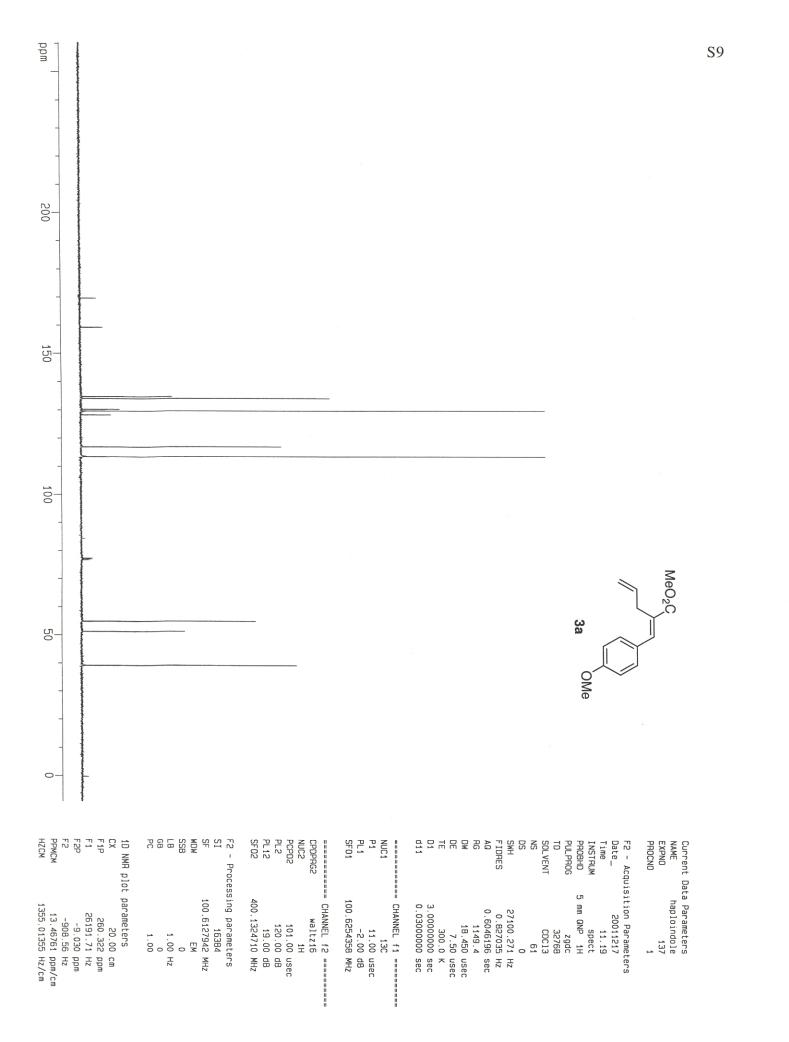
tert-Butyl-[2-(4-methoxyphenyl)-5-methylhexa-2,5-dienyloxy]dimethylsilane (3j)

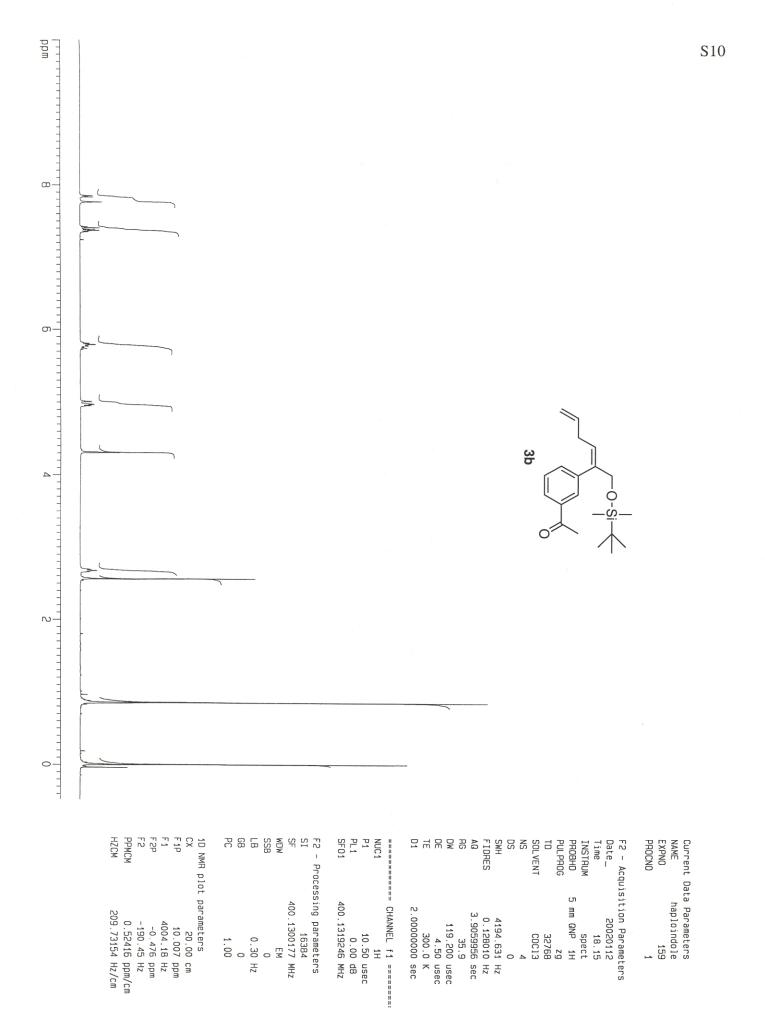
3j isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.13 (2H, d, J = 8.5 Hz), 6.89 (2H, d, J = 8.5 Hz), 5.82 (1H, tt, J = 7.5, 1.5 Hz), 4.77 – 4.72 (2H, m), 4.33 (2H, d, J = 1.5 Hz), 3.82 (3H, s), 2.70 (2H, d, J = 7.5 Hz), 1.71 (3H, s), 0.93 (9H, s), 0.08 (6H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 158.51, 145.29, 140.64, 130.96, 129.65, 123.21, 113.42, 110.01, 67.30, 55.12, 36.60 25.90, 22.88, 18.41, -5.37; IR (film) υ 3031, 2955, 2930, 2856, 1728, 1690, 1608, 1512, 1463, 1289, 1250, 1177, 1121, 1035, 836, 778, 666 cm⁻¹.

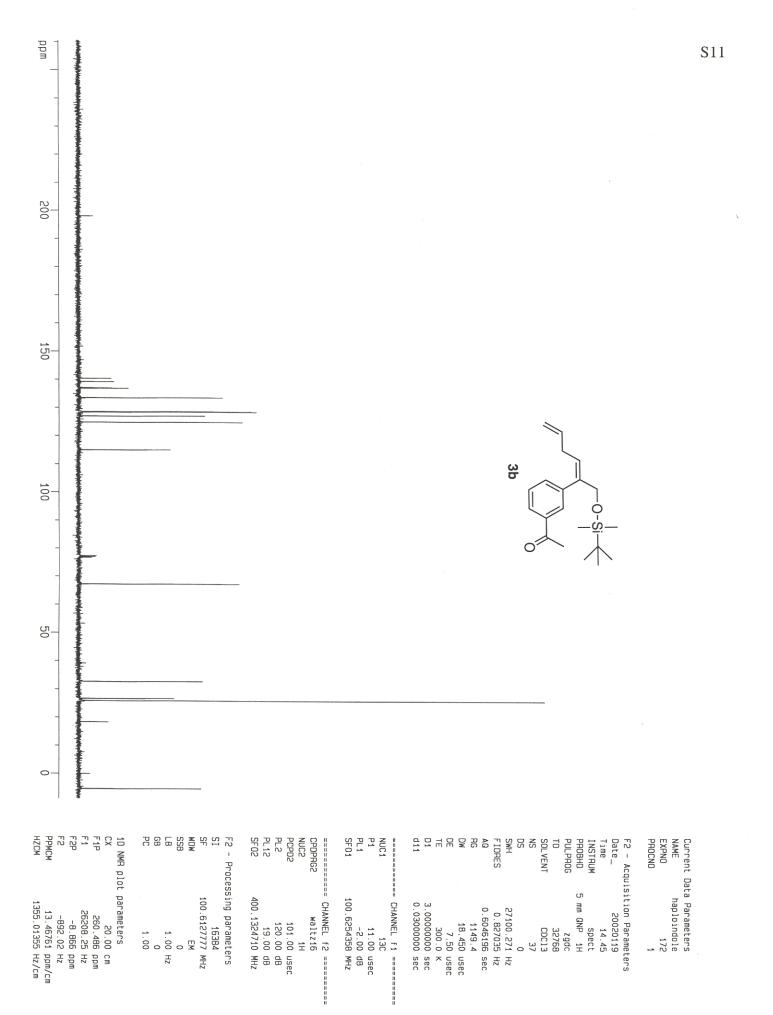
3-(4-Methyl-1,2-dipropylpenta-1,4-dienyl)-1-(toluene-4-sulfonyl)-1*H*-indole (3k)

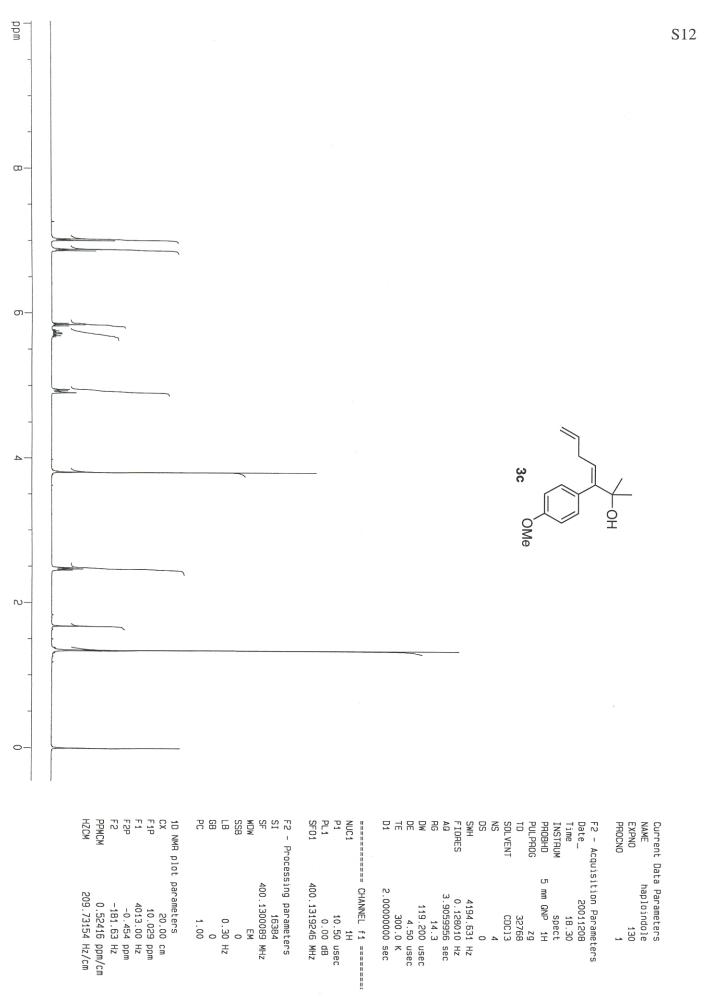
3k isolated as a clear, colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (1H, d, *J* = 8.0 Hz), 7.69 (2H, d, *J* = 8.5 Hz), 7.32 – 7.24 (3H, m), 7.22 – 7.14 (3H, m), 4.72 (1H, s), 4.63 (1H, s), 2.45 (2H, s), 2.35 – 2.27 (5H, m), 2.19 – 2.13 (2H, m), 1.54 – 1.44 (5H, m), 1.23 (2H, sextet, *J* = 7.5 Hz), 0.98 (3H, t, *J* = 7.5 Hz), 0.83 (3H, t, *J* = 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 144.59, 144.39, 137.55, 135.05, 135.01, 131.16, 129.59, 128.08, 126.53, 124.86, 124.43, 123.13, 123.08, 120.31, 113.79, 110.87, 41.45, 34.83, 32.66, 22.51, 22.08, 21.81, 21.37, 14.23, 13.83; IR (film) υ 3069, 2959, 2930, 2870, 1647, 1698, 1446, 1372, 1306, 1175, 1126, 1093, 1018, 974, 889, 811, 747, 666 cm⁻¹.

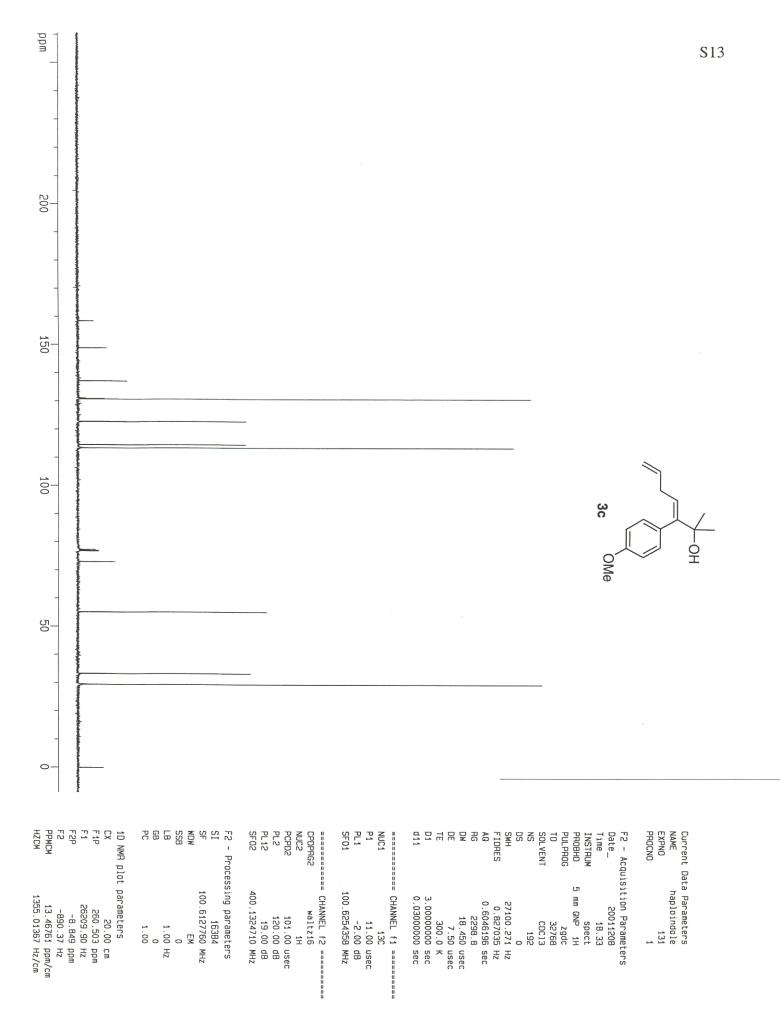

General Procedure for the One-pot Tandem Chloroallylation/Suzuki Cross-Coupling of Alkynes (Table 4).

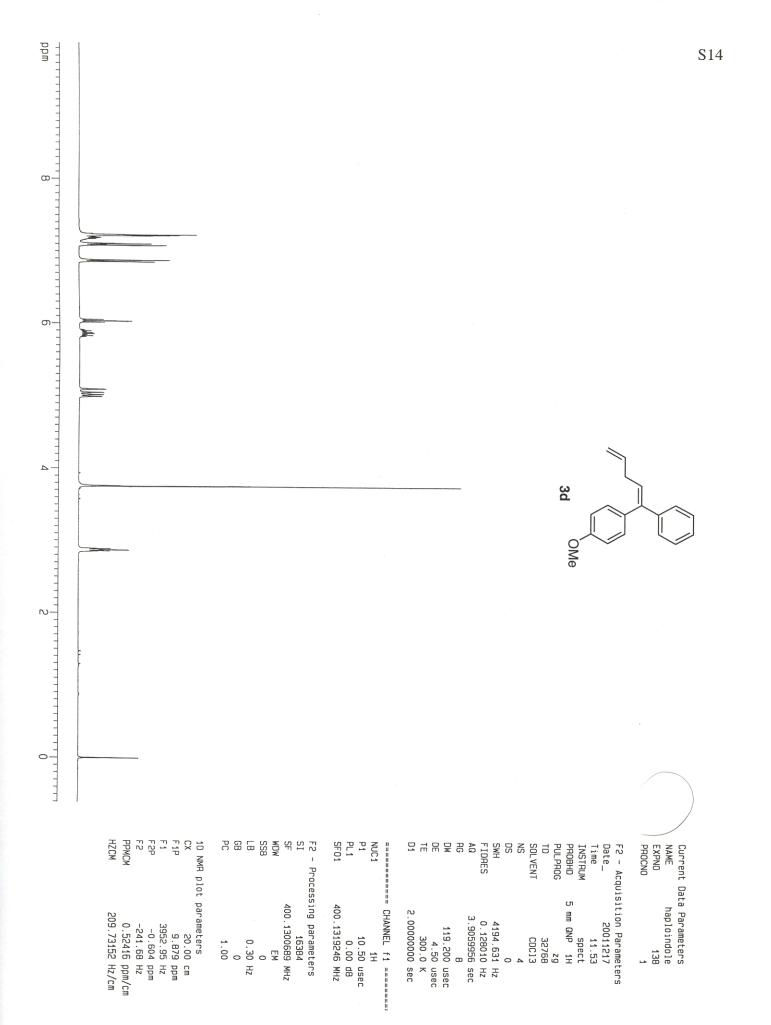

To a solution of allylchloride (163 μ L, 2.00 mmol) in anhydrous THF (5.0 mL) cooled in an icebath was added dibromo(bisbenzonitrile)palladium(II) (28.3 mg, 0.06 mmol). A solution of the alkyne (2.00 mmol) in anhydrous THF (5.0 mL) was then added dropwise over *ca*. 30 min. The reaction mixture was stirred for another 5.5 h at rt (12 h for disubstituted alkynes). Tri-*t*butylphosphine (1M in THF, 120 μ L, 0.12 mmol) was then added and the reaction mixture stirred for 15 min at rt. Cesium carbonate (1.30 g, 4.00 mmol) was subsequently added followed by the boronic acid (4.00 mmol). The reaction mixture was stirred for 16 h at 45 °C and then concentrated *in vacuo*. The mixture was diluted with Et₂O (100 mL) and the insoluble material filtered off. The filtrate was concentrated *in vacuo* and the residue subjected to flash silica gel chromatography (EtOAc/hexanes).

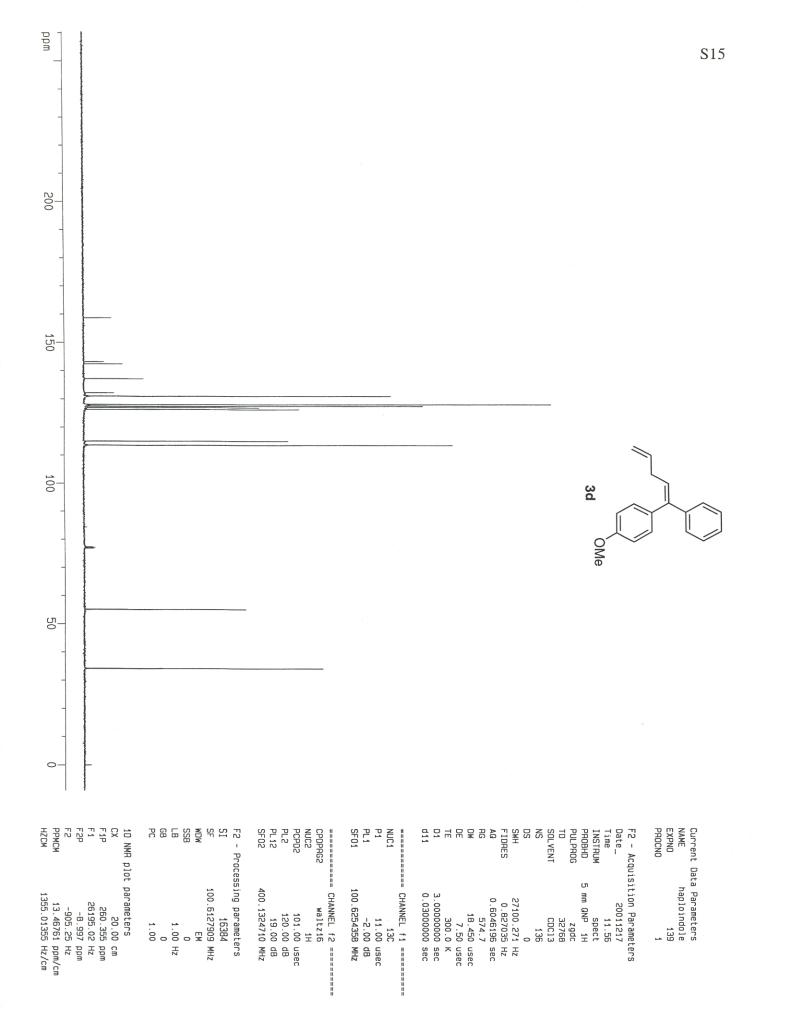

References


1) Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T.; Teranishi, S. J. Org. Chem. **1979**, 44, 55-63.

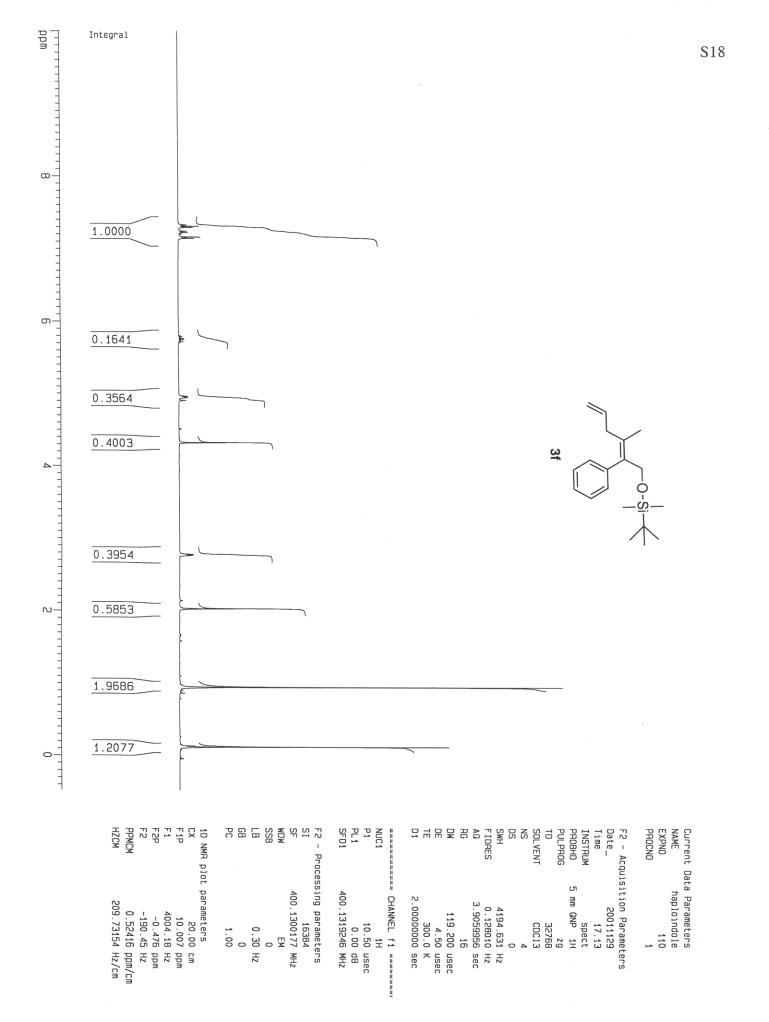

2) Llebaria, A.; Camps, F.; Moretó, J. M. Tetrahedron 1993, 49, 1283-1296.

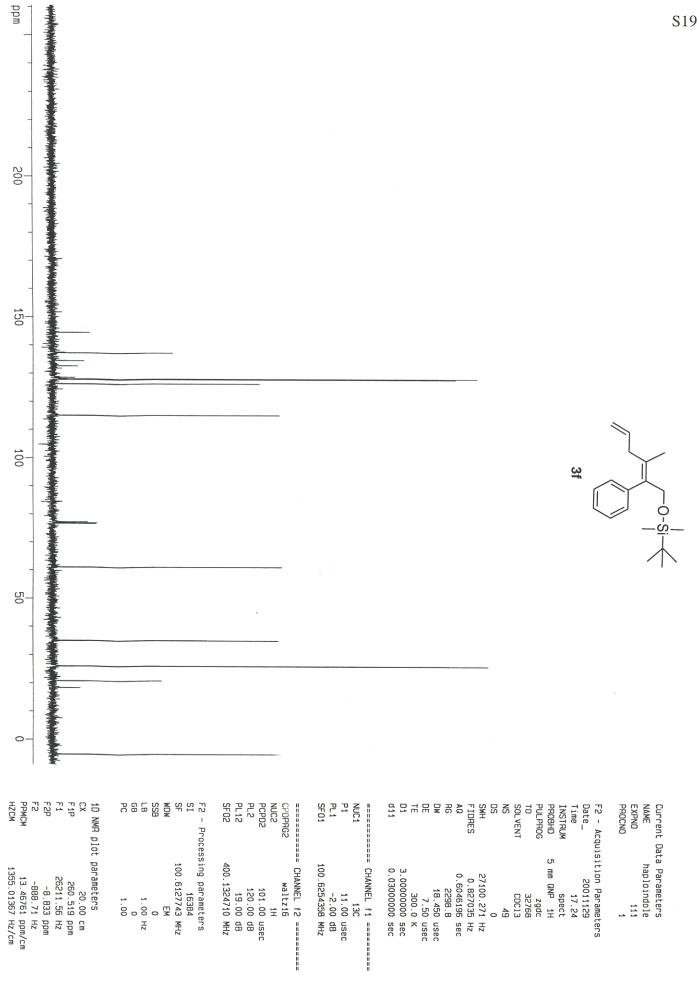


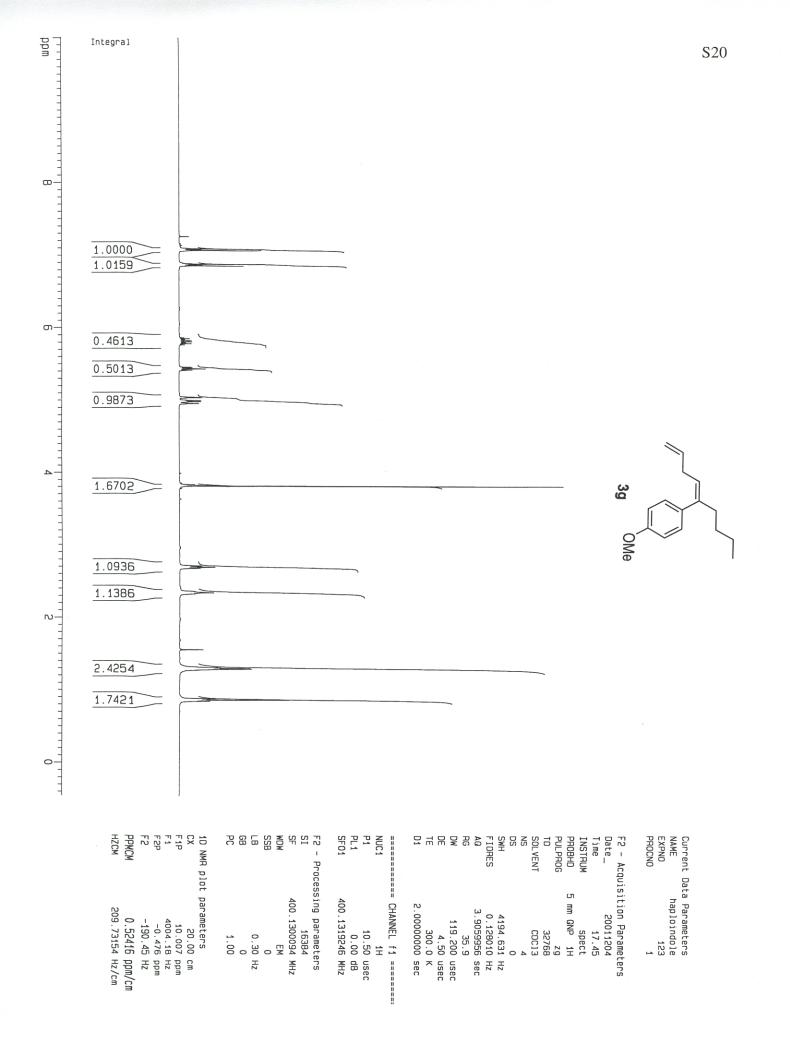




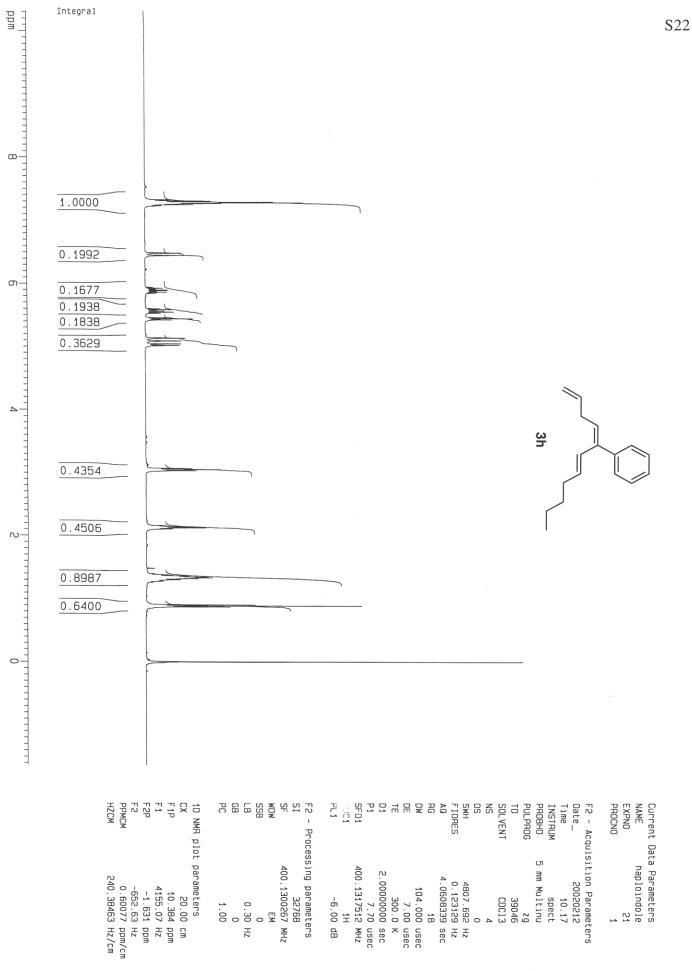
4194.631 Hz 0.128010 Hz 3.9059956 sec 14.3

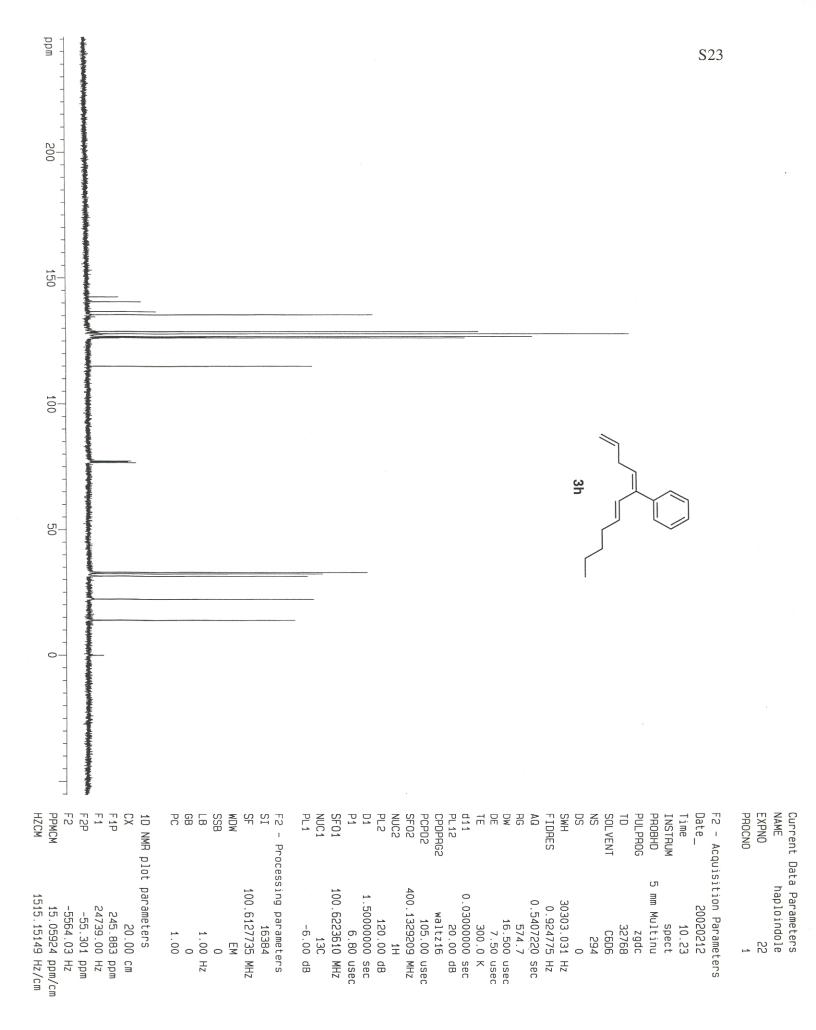

ppm

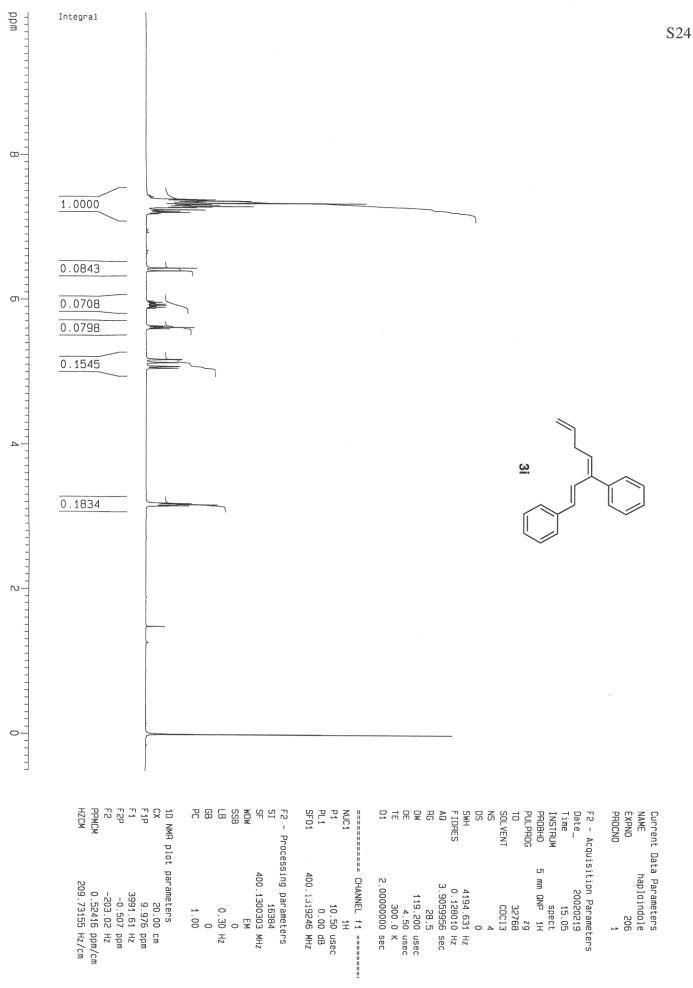

S16

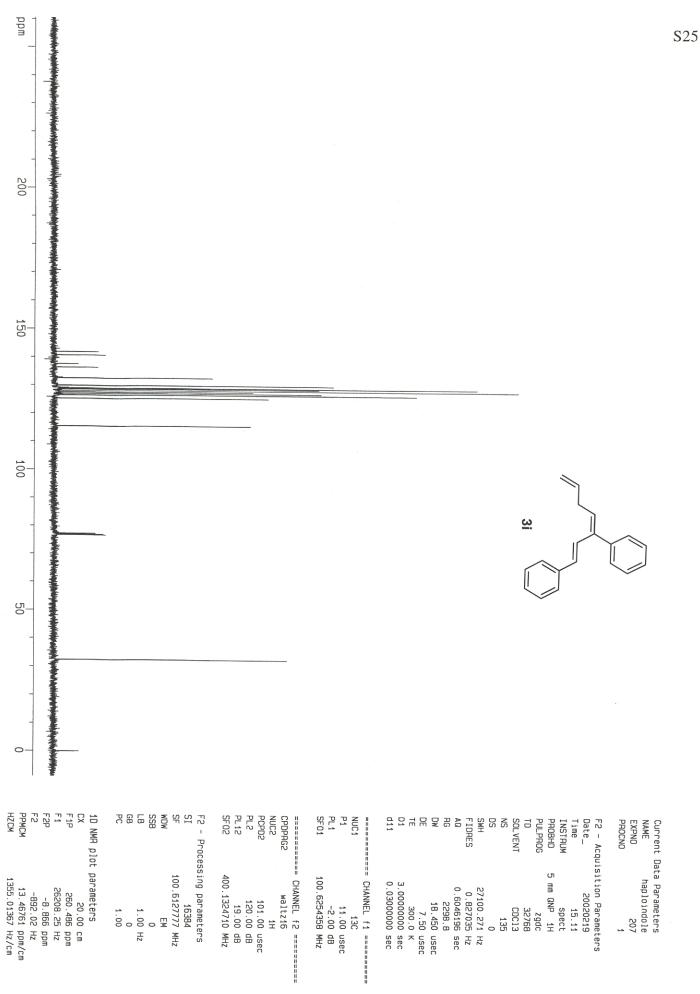

Current Data Parameters NAME haploindole haploindole 132

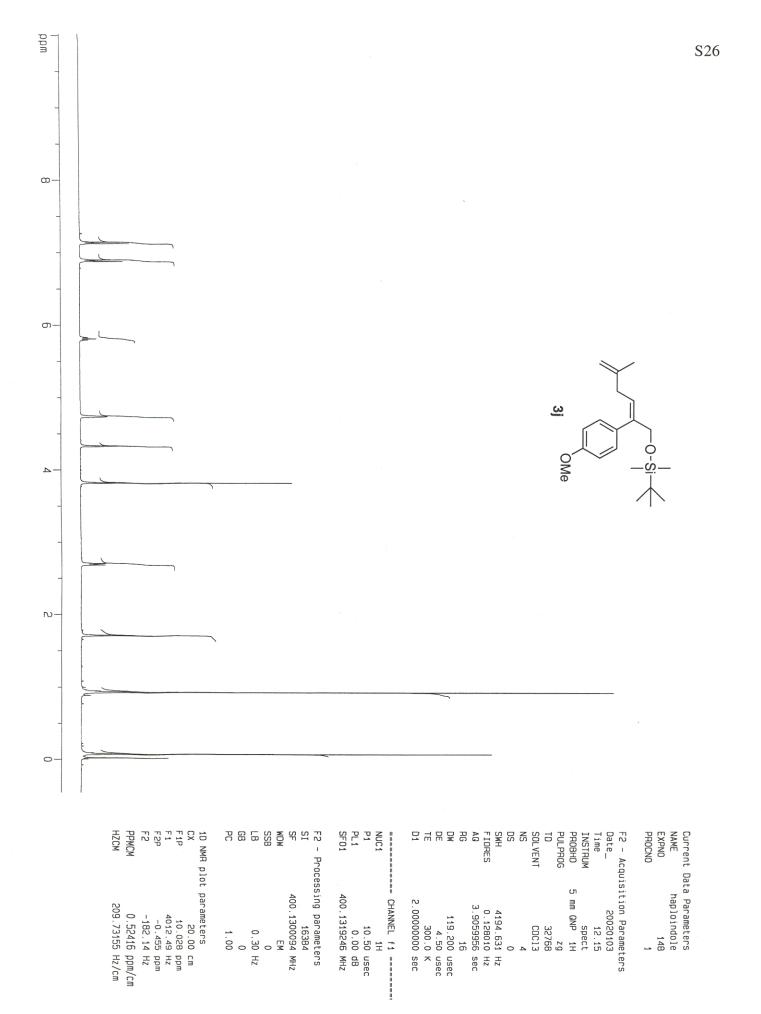
EXPNO

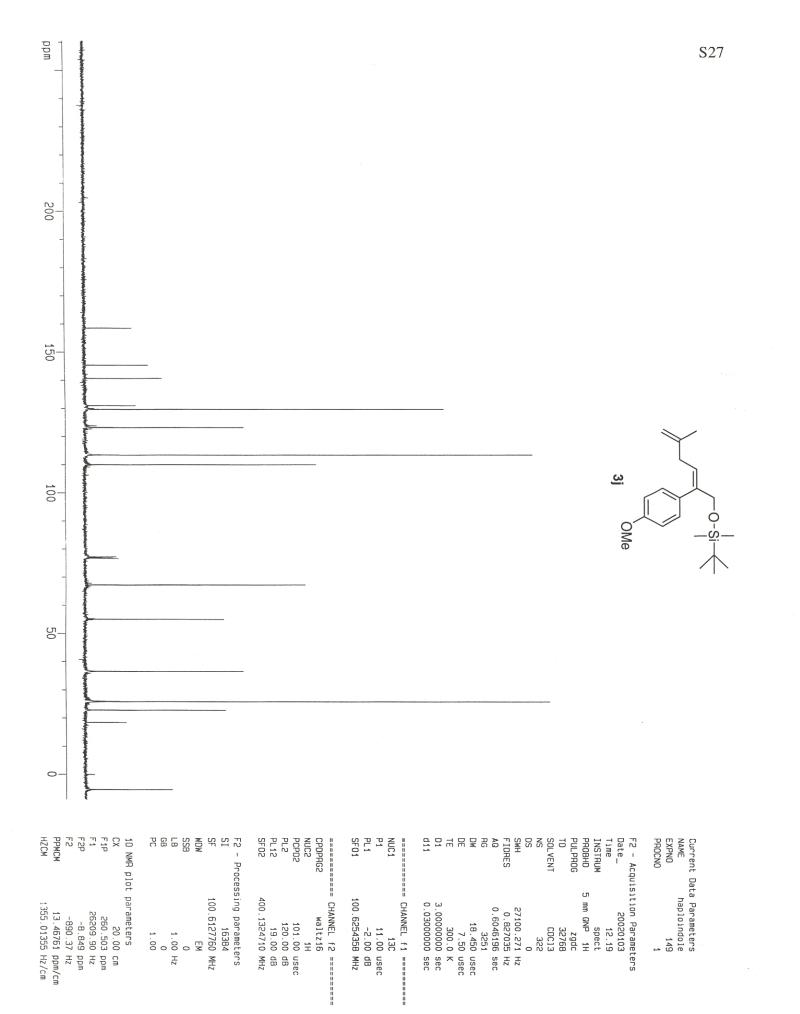


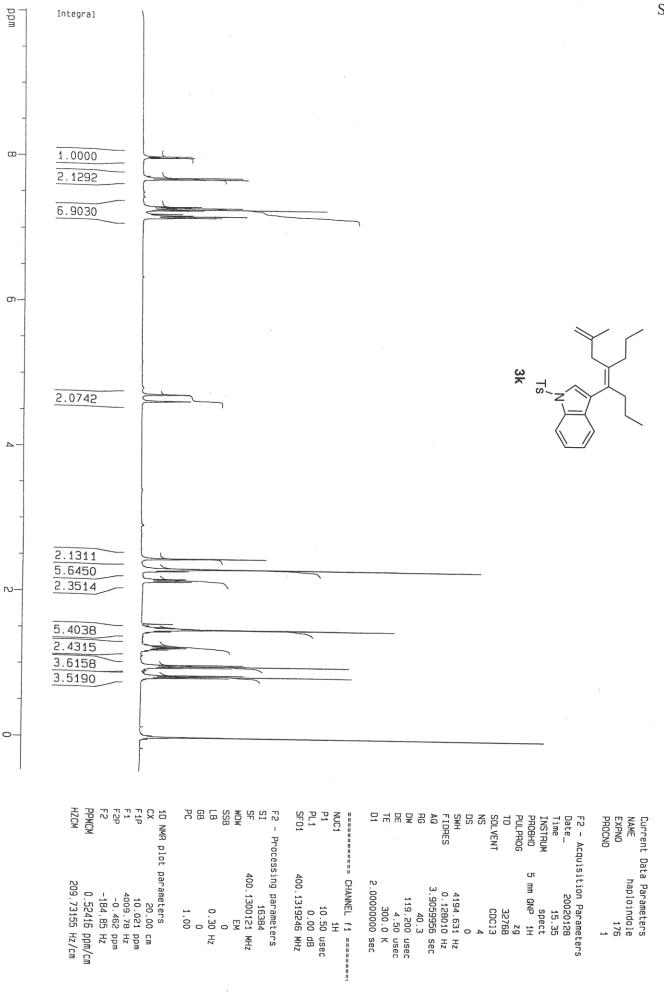







ppm								S21
200								
150								
100 -						ى پ	OMe	
50								
-								
PPMCM 13.46761 ppm/cm HZCM 1355.01355 Hz/cm	1D NMA plot parameters 20.00 cm CX 20.60 cm F1P 260.14.86 Hz F2P -8.800 ppm F2 -885.41 Hz	F2 - Processing parameters SI 16384 SF 100.6127710 MHz WDW EM SSB 0 LB 1.00 Hz GB 1.00 Hz GB 1.00	======= CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H PCPD2 101.00 Usec PL2 120.00 dB PL12 120.00 dB SFD2 400.1324710 MHz	Biggstress CHANNEL f1 f1 <thf1< th=""> f1</thf1<>	FIDRES 0.827035 Hz AG 0.6046196 sec NG 1145.4 DW 18.450 usec DE 7.50 usec TE 300.0 K D1 3.0000000 sec d11 0.03000000 sec		F2 - Acquisition Parameters Date20011204 Time 19.05 INSTRUM spect PROBHD 5 mm GNP 1H	Current Data Parameters NAME haploindole EXPND 124 PROCNO 1





S28

ppm -			S29
200			
150			
100			3k Ts N
50			
0-			
PPMCM 13.46761 ppm/cm HZCM 1355.01343 Hz/cm	F2 - Processing parameters SI 16384 SF 100.6127843 MHz EM SSB 0 LB 1.00 Hz GB 1.00 Hz GB 1.00 Hz GB 1.00 PC 10 NNA plot parameters CX 20.00 cm F1P 26201.63 Hz F2P -8.932 Ppm F2 -8.932 Ppm	======= CHANNEL f1 13C P1 11.00 usec PL1 -2.00 dB SF01 100.625435B MHz ======= CHANNEL f2 ======= CHANNEL f2 CPDPRG2 waltz16 NUC2 14 PCPD2 101.00 usec PL12 120.00 dB PL12 19.00 dB SF02 400.1324710 MHz	Current Data Parameters NAME haploindole EXPNO 177 PROCNO 1 F2 - Acquisition Parameters Date_ 20020128 Time 15.04 INSTRUM spect