The synthesis of Enantiomerically Pure 2,2,3,4,5Pentasubstituted Pyrrolidines by Phenylsulfanyl Migration

I. Craig Baldwin, Paul Briner, Martin D. Eastgate, David J. Fox and Stuart Warren

Supporting Information

General Information

All reactions were carried out using freshly distilled solvents. NMR spectra were carried out on Bruker 400 and 500 MHz spectrometers and assignments are based on ${ }^{1} \mathrm{H}$ (coupling constants are rounded to the nearest 0.5 Hz), ${ }^{13} \mathrm{C}$, COSY, DEPT-135 and HMQC spectra. Optical rotations were recorded on a Perkin Elmer 241 polarimeter using the sodium D line at room temperature and are given in units of $10^{-1} \mathrm{deg} \mathrm{dm}^{2} \mathrm{~g}^{-1}$, with concentrations quoted in units of $\mathrm{g} / 100 \mathrm{~mL}$. Infra-red spectra were recorded using a Perkin Elmer 1600 (FT-IR) spectrometer.

Experimental

(3R, 4R, 5S, 1'S) Ethyl 5-[N-allyl- N-(1'-phenylethyl)amino]-3-hydroxyl-2-methyl-2-phenylsulfanyl-hexane-4-carboxylate (12)
The ester $10(2.5 \mathrm{~g}, 9.1 \mathrm{mmol})$ as added to a solution of LDA (0.010 mol) in THF (200 mL), followed after 30 mins by $\mathrm{B}(\mathrm{OMe})_{3}(1.9 \mathrm{~g}, 2.2 \mathrm{~mL}, 0.018 \mathrm{~mol})$. After a further 30 mins the aldehyde $\mathbf{1 5}(4.1 \mathrm{~g}, 0.023 \mathrm{~mol})$ was added. After $4-5 \mathrm{~h}$ the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}_{\text {sat.aq. }}$. and concentrated. The residue was dissolved in EtOAc and washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy of the crude product indicated a c.a. 6:1 mixture of diastereoisomers. Column chromatography, eluting a gradient of 1-5\% ether / 30-40 pet. ether, produced the β-hydroxy ester 12 as a clear colourless oil ($2.9 \mathrm{~g}, 6.3 \mathrm{mmol}, 69 \%$) as a $\sim 10: 1$ mixture of diastereoisomers;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhSCMeMe}), 1.22\left(\mathrm{t}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.23(\mathrm{~s}, 3 \mathrm{H}$, PhSCMeMe), $1.42(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PhCHMe}+\boldsymbol{M e C H}), 3.20-3.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}+\mathrm{CHCO}_{2}\right)$, $3.44(\mathrm{qd}, J 7.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCHCH}), 4.08\left(\mathrm{q}, J 7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.21(\mathrm{dd}, J 9.5 \mathrm{~Hz}$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}), 4.41(\mathrm{q}, J 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.98\left(\mathrm{dd}, J 10.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$, cis $)$, 5.02 (dd, J $17.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$, trans), $5.78(\mathrm{ddt}, J 17.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $6.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \boldsymbol{H O C H}), 7.25-7.37(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 7.56(\mathrm{dd}, J 8.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right.$ Me), $14.4(\mathrm{PhCHMe}), 15.8(\mathrm{MeCH}), 25.0(\mathrm{PhSCMeMe})$, $26.0\left(\mathrm{PhSCMe}^{\boldsymbol{M e}}\right)$, $47.2\left(\mathrm{CHCO}_{2}\right), 49.7\left(\mathrm{NCH}_{2} \mathrm{CH}\right)$, 55.1 (PhSCMe_{2}), $57.0(\mathrm{MeCH}), 57.3$ $(\mathrm{PhCH}), 60.6\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 76.1(\mathrm{HOCH}), 116.4\left(\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 127.1(p-\mathrm{CH}), 128.2(m-\mathrm{CH})$, 128.3 ($m-\boldsymbol{C H}$), 128.4 (o- $\boldsymbol{C H}$), 128.6 ($p-\boldsymbol{C H}, \mathrm{PhS}), 131.8(i-C), 137.7(o-C H), 137.7\left(\mathrm{NCH}_{2} \boldsymbol{C H}\right)$, $142.0(i-C), 173.2\left(\boldsymbol{C O}_{2}\right)$;

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right) \boldsymbol{v}: 1728(\mathrm{C}=\mathrm{O})$;

LRMS (ESI+): $m / z 456$ (35\%, M+1);

HRMS (ESI+): $m / z 456.25655\left(\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{~S}\right.$, MH requires $\left.M 456.25724\right)$;

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{~S}$ C 71.17, H 8.10, N 3.07; Found C 71.11, H 8.14, N 3.04.
(3R, 4S, 5S, 1'S) Ethyl 5-[N-benzyl- N-(1'-phenylethyl)amino]-3-hydroxyl-2-methyl-2-phenylsulfanyl-hexane-4-carboxylate (14)
(α-Methylbenzyl)benzylamine ($13.0 \mathrm{~g}, 0.062 \mathrm{~mol}$) and ${ }^{n} \mathrm{BuLi}(27 \mathrm{~mL}, 2.3 \mathrm{M}, 0.062 \mathrm{~mol})$ were combined in THF $(600 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 30 mins ethyl crotonate ($6.4 \mathrm{~g}, 7.0 \mathrm{~mL}, 0.056 \mathrm{~mol}$) was added followed after 1 h by the aldehyde $15(25.0 \mathrm{~g}, 0.14 \mathrm{~mol})$. After a further 3-4h the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}_{\text {sat.aq. }}$ and concentrated under reduced pressure. The residue was dissolved in EtOAc and washed with water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting oil was purified by column chromatography eluting a gradient of 5-15\% ether / 30-40 pet. ether to give the β-hydroxy ester 14 as a clear colourless oil ($19.8 \mathrm{~g}, 0.039 \mathrm{~mol}, 70 \%, \sim 4: 1$ d.r.). The diastereomeric ratio of the crude reaction product could not be obtained from its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.03(\mathrm{~s}, 3 \mathrm{H}, \operatorname{PhSCMeMe}), 1.05(\mathrm{~s}, 3 \mathrm{H}, \operatorname{PhSCMeMe}), 1.08(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}$, MeCHCH), 1.25 (t, J $7.0 . \mathrm{Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}$ Me), 1.41 (d, J $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCHMe}$), 2.59 (dd, J $\left.9.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 3.40(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.51(\mathrm{dq}, J 9.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCHCH})$, $3.70\left(\mathrm{~d}, J 14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.75\left(\mathrm{~d}, J 14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{\mathrm{A}} \boldsymbol{H}_{B} \mathrm{~N}\right), 3.84(\mathrm{dd}, J 8.5 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}), 4.05(\mathrm{q}, J 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHMe}), 4.08(\mathrm{dq}, J 11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right), 4.13\left(\mathrm{dq}, J 11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{\mathrm{A}} \boldsymbol{H}_{\boldsymbol{B}}\right), 7.20-7.56(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}) ;$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.9\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{M e}\right)$, $15.0(\mathbf{M e C H}), 16.5(\mathrm{PhCHMe}), 25.0(\mathrm{PhSCMeMe})$, $26.0(\mathrm{PhSCMe} \boldsymbol{M e}), 49.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.8\left(\mathrm{CHCO}_{2}\right), 53.5(\mathrm{Me} \boldsymbol{C H C H}), 54.4\left(\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 58.9 $\left(\mathrm{PhCHCH}_{3}\right), 60.7\left(\mathrm{CO}_{2} \boldsymbol{C H}_{2}\right), 75.5(\mathrm{HOCH}), 126.7(p-\mathrm{CH}), 126.8(p-\boldsymbol{C H}), 128.0,128.1,128.2$, 128.4 (Ar), 128.7 ($p-\boldsymbol{C H}, \mathrm{PhS}$), 128.9 (Ar), 131.9 (i-C), 137.8 (o-CH, PhS), 140.9 (i-C), 143.8 (iC), $175.4(\mathrm{CO})$;

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right) \boldsymbol{v} \boldsymbol{v} 1731(\mathrm{C}=\mathrm{O})$;

LRMS (EI+): $m / z 396.3$ (35\%, M-SPh);

HRMS (EI+): $m / z 396.25387\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{3}\right.$, M-SPh requires M 396.25332);

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{~S}$ C 73.63, H 7.77, N 2.77; Found C 73.58, H 7.82, N 2.94.
(3R, 4R, 5S, 1'S) Ethyl 5-[N-(1'-phenylethyl)amino]-3-hydroxyl-2-methyl-2-phenylsulfanyl-hexane-4-carboxylate (17)

The amine $12(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$, DPPB ($187 \mathrm{mg}, 0.44 \mathrm{mmol}$), o-mercaptobenzoic acid (500 mg , 3.29 mmol) and allyl palladium chloride dimer ($40 \mathrm{mg}, 0.11 \mathrm{mmol}$) were dissolved in THF (30 mL). The reaction mixture was left to stir overnight. The reaction mixture was concentrated under reduced pressure and the residue dissolved in EtOAc and washed with $\mathrm{NaHCO}_{3}(\times 3)$, water and brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting red oil was purified by column chromatography eluting isochromatically with $15: 1$ hexane:EtOAc to give the amine $\mathbf{1 7}$ as a clear colourless oil ($800 \mathrm{mg}, 1.9 \mathrm{mmol}, 88 \%$ yield, $>13: 1$ d.r.);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhSCMeMe}), 1.20\left(\mathrm{t}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.21(\mathrm{~d}, J$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \boldsymbol{M e C H}$), $1.32(\mathrm{~s}, 3 \mathrm{H}, \operatorname{PhSCMeMe}), 1.38(\mathrm{~d}, J 6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCHMe}), 3.17(\mathrm{dd}, J 7.0 \mathrm{~Hz}$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO} 2), 3.28(\mathrm{qd}, J 6.5 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCH}), 4.01(\mathrm{q}, J 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.08(\mathrm{q}$, $\left.J 7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.17(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}), 7.25-7.40(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 7.61(\mathrm{dd}, J 5.5 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$);
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.9(\boldsymbol{M e}), 17.3$ (Me), 22.7 (Me), 25.6 (Me), 25.7 (Me), 47.8 (CH), 51.2 $(\boldsymbol{C H}), 54.3(\boldsymbol{C H}), 54.7(\mathrm{PhSC}), 60.6\left(\boldsymbol{C H}_{2}\right), 77.7(\boldsymbol{C H}), 126.4(m-\boldsymbol{C H}), 127.3(p-\boldsymbol{C H}), 128.4(\mathrm{~m}-$ $\boldsymbol{C H}$), 128.6 ($\mathbf{p - C H}, \mathrm{PhS}$), 128.6 (o- $\boldsymbol{C H}$), 131.7 (i-C), 137.7 (o-CH, PhS), 144.9 (i-C), 173.58 (CO);

IR ($\mathbf{c m}^{\mathbf{- 1}}, \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$) v: $3684(\mathrm{w}, \mathrm{NH}), 3051(\mathrm{~b}, \mathrm{OH}), 2976(\mathrm{CH}), 1714(\mathrm{C}=\mathrm{O})$;

LRMS (ESI+): $m / z 416$ (64\%, M+1);

HRSM (ESI+): $m / z 416.22265\left(\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}\right.$, MH requires $\left.M 416.22594\right)$;

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}$ C 69.36, H 8.00, N 3.37; Found C 69.27, H 8.02, N 3.46.
(3R, 4S, 5S, 1'S) Ethyl 5-[N-(1'-phenylethyl)amino]-3-hydroxyl-2-methyl-2-phenylsulfanyl-hexane-4-carboxylate (18)
The alcohol $14(0.5 \mathrm{~g}, 0.99 \mathrm{mmol})$ and ceric ammonium nitrate $(1.14 \mathrm{~g}, 2.1 \mathrm{mmol})$ were dissolved in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(5: 1,10 \mathrm{~mL})$ left to stir overnight. The reaction mixture quenched with NaHCO_{3} and EtOAc. The organic layer was removed and washed with $\mathrm{NaHCO}_{3}(\times 3)$ water and brine before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The amino alcohol 18, a clear colourless oil, a 4-5:1 mixture of diastereoisomers ($290 \mathrm{mg}, 0.7 \mathrm{mmol}, 71 \%$) was isolated by chromatography eluting isochromatically $8: 1$ hexane:EtOAc;
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.07(\mathrm{~d}, J 6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MeCH}), 1.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeMeC}), 1.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeMeC})$, $1.31(\mathrm{~d}, J 6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCHMe}), 1.33\left(\mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right.$ Me), 3.05 (quintet, $J 6.5 \mathrm{~Hz}, 1 \mathrm{H}$, MeCH), $3.21\left(\mathrm{dd}, J 7.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 3.81(\mathrm{~d}, J 1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}), 4.03(\mathrm{q}, J 6.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCH}), 4.18\left(\mathrm{dq}, J 11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CHH}\right), 4.24\left(\mathrm{dq}, J 11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH} \boldsymbol{H}\right)$, $7.28(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{CPh}+\mathrm{Ph}), 7.32-7.41(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 7.45(\mathrm{dd}, J 8.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph})$;
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{M e}\right), 19.6(\mathbf{M e C H}), 23.9(\boldsymbol{M e M e C}), 24.3(\mathrm{MeMeC}), 26.2$ $(\mathrm{PhCHMe}), 48.4\left(\boldsymbol{C H C O}_{2}\right), 52.6(\mathrm{MeCH}), 53.7(\mathrm{MeMe} \boldsymbol{C}), 55.6(\mathrm{Ph} \boldsymbol{C H}), 60.8\left(\mathrm{CO}_{2} \boldsymbol{C H}_{2}\right), 75.8$ $(\mathrm{HOCH}), 126.6(m-C H), 126.9(p-C H), 128.5(o-C H), 128.5(m-\mathrm{CH}, \mathrm{PhS}), 128.8(p-\mathrm{CH}, \mathrm{PhS})$, 131.3 (i-C), 137.7 (o-CH, PhS), 146.1 (i-C), 175.6 (CO);

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right) \boldsymbol{v}: 3900(\mathrm{NH}), 1701(\mathrm{C}=\mathrm{O})$;

LRMS (EI+): $m / z 306.2$ (53\%, M-SPh);

HRMS (EI+): $m / z 306.20619\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}\right.$, M-SPh requires M 306.20637);

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}$ C 69.36, N 8.00, N 3.37; Found C 68.96, H 7.93, N 3.49.

(3S, 4S, 5S, 1'S)-Ethyl-2,2,5-trimethyl-1-(1'-phenylethyl)-3-phenylsulfanyl-pyrrolidin-4-

 carboxylate (19)The amine 17 ($700 \mathrm{mg}, 1.6 \mathrm{mmol}$), CDI ($300 \mathrm{mg}, 1.8 \mathrm{mmol}$) and DMAP ($24 \mathrm{mg}, 0.16 \mathrm{mmol}$) were dissolved in $\mathrm{MeCN}(16 \mathrm{~mL})$ and heated at reflux overnight. The reaction mixture was concentrated onto silica and chromatographed eluting $5 \% \mathrm{EtOAc}$ in hexane to give the pyrrolidine 19 as a clear colourless oil ($601 \mathrm{mg}, 1.5 \mathrm{mmol}, 90 \%,>20: 1$ d.r.);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.84(\mathrm{~d}, J 6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MeCH}), 1.13\left(\mathrm{t}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.15(\mathrm{~s}$, $3 H, \operatorname{PhSCMeMe}), 1.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhSCMeMe}), 1.45(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCHMe}), 2.99(\mathrm{dd}, J 12.0 \mathrm{~Hz}$,
$10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), $3.09(\mathrm{dq}, J 10.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeCH}), 3.69(\mathrm{~d}, J 12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhSCH})$, $3.98\left(\mathrm{dq}, J 11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{\boldsymbol{A}} \mathrm{H}_{\mathrm{B}}\right), 4.03\left(\mathrm{dq}, J 11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{\mathrm{A}} \boldsymbol{H}_{\boldsymbol{B}}\right), 4.16(\mathrm{q}$, $J 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 7.20-7.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 7.55(\mathrm{dd}, J 8.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph})$;
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{M e}\right), 20.2(\mathrm{MeCH}), 20.4(\mathrm{PhSCMeMe}), 23.6(\mathrm{PhCHMe})$, $\left.28.1(\mathrm{PhSCMe} \boldsymbol{M e}), 52.4\left(\boldsymbol{C H C O}_{2}\right), 52.5(\mathrm{Me} \boldsymbol{C H}), 53.6(\mathrm{Ph} \boldsymbol{C H}), 59.8(\mathrm{PhSCH}), 60.4\left(\mathrm{CO}_{2} \boldsymbol{C H}\right)_{2}\right)$, $64.5\left(\mathrm{NCMe}_{2}\right), 126.6(p-\mathrm{CH}), 127.0(p-C H, P h S), 127.9(m-C H), 128.5(o-C H), 128.7(m-C H)$, 132.3 (o- $\boldsymbol{C H}, \mathrm{PhS}$), 136.0 (i-C), 142.3 (i-C, PhS), $171.8\left(\boldsymbol{C O}_{2}\right)$;

IR ($\left.\mathbf{c m}^{\mathbf{- 1}}, \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right) \boldsymbol{v}: 1730(\mathrm{C}=\mathrm{O})$;

LRMS (ESI+): $m / z 420.2$ (93, M+Na), 398.2 (100, M+1);

HRMS (ESI+): $m / z 398.21450\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}\right.$, MH requires M 398.21537);

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S}$ C 72.50, H 7.86, N 3.52; Found C 72.57, H 7.90, N 3.77.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}+9.83\left(\mathrm{c}=1.475, \mathrm{CHCl}_{3}\right)$
(3S, 4R, 5S, 1'S)-Ethyl-2,2,5-trimethyl-1-(1'-phenylethyl)-3-phenylsulfanyl-pyrrolidin-4carboxylate (20)
The amine 18 ($100 \mathrm{mg}, 0.24 \mathrm{mmol}, \sim 4: 1 \mathrm{~d} . \mathrm{r}$), CDI ($43 \mathrm{mg}, 0.27 \mathrm{mmol}$) and DMAP (cat.) were heated at reflux in $\mathrm{MeCN}(3 \mathrm{~mL})$ overnight. The reaction mixture was concentrated onto silica and chromatographed eluting 12:1 hexane:EtOAc to give the pyrrolidine 20, a clear colourless oil, as a single diastereoisomer ($40 \mathrm{mg}, 0.10 \mathrm{mmol}, 42 \%$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02(\mathrm{~d}, J 6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{MeCH}), 1.11\left(\mathrm{t}, J 7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25(\mathrm{~s}$, $3 H, N C M e), 1.31$ (s, 3H, NCMe), 1.51 (d, J7.0Hz, 3H, PhCHMe), 2.97 (dd, J 10.0Hz, 6.0Hz, 1H, CHCO_{2}), $3.38\left(\mathrm{qn}, J 6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.51(\mathrm{~d}, J 10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhSCH}), 4.07(\mathrm{q}, J 7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.24(\mathrm{q}, J 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCHMe}), 7.20-7.45(\mathrm{~m}, 10 \mathrm{H}$, aromatics);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.3\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathbf{M e}\right)$, $21.4(\mathrm{NCMe}), 23.8(\mathrm{PhCHMe}), 24.9(\boldsymbol{M e C H}), 30.8$ (NCMe), $54.1(\mathrm{Ph} \boldsymbol{C H M e}), 57.3(\boldsymbol{C H C O} 2), 57.4(\mathrm{Me} \boldsymbol{C H}), 60.7(\mathrm{PhS} \boldsymbol{C H}), 61.8\left(\mathrm{CO}_{2} \boldsymbol{C H}_{2} \mathrm{Me}\right), 67.0$ $(\boldsymbol{C M e} 2), 127.5(p-\boldsymbol{C H}), 127.8(p-\boldsymbol{C H}), 129.1,129.9,130.1,131.5$ (Ar), 138.8 (i-C), 143.9 (i-C), $174.2\left(\mathrm{CO}_{2}\right)$;

IR ($\mathbf{c m}^{\mathbf{- 1}}$ in $\left.\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right) \boldsymbol{v}$: $1728(\mathrm{C}=\mathrm{O})$;

LRMS (ESI+): $m / z 420.2$ ($80 \%, \mathrm{M}+\mathrm{Na}), 398.2$ (100, M+1);

HRMS (ESI+): m/z $398.21550\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}\right.$, MH requires M 398.21537);

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S} \mathrm{C} \mathrm{72.50} ,\mathrm{H} \mathrm{7.86} ,\mathrm{~N} \mathrm{3.52;} \mathrm{Found} \mathrm{C} \mathrm{72.40} ,\mathrm{H} \mathrm{7.78} ,\mathrm{~N} \mathrm{3.49}$.
$[\alpha]_{\mathrm{D}}{ }^{23}+98.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$

After removal of the benzyl groups over $\mathrm{Pd}\left(\mathrm{OH}_{2}\right)$, the enantiomeric excesses of both pyrrolidines could be measured. The resulting amines were reacted with both enantiomers of the acid chloride derived from Mosher's acid. Comparison of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of these compounds indicated that both pyrrolidines had $>95 \%$ e.e.

