A One-Pot Synthesis of $\boldsymbol{\beta}$ - \boldsymbol{C}-Glucopyranosides from exo-Glucal, \boldsymbol{p}-Tolylsulfenyl Chloride, an α-Methoxyalkene and an External Nucleophile

Hui Liu, Irina P. Smoliakova* and Leonid N. Koikov

Supporting Information

Instruments and materials

Abstract

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE 500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts are given in ppm and relative to CDCl_{3}. Coupling constants, J, are provided in Hz . Mass spectrometric data were obtained on a VG-ZAB-2SE instrument with FAB ionization. IR spectra were recorded on an ATI Mattson Genesis Series FTIR spectrometer. Optical Rotation data were measured on an Autopol III automatic polarimeter. Preparative TLC were carried out by using glass plates, $200 \times 250 \mathrm{~mm}$, with an unfixed layer of Aldrich silica gel, 230-400 mesh. Analytical TLC was performed on Whatman precoated plates of silica gel $60 \mathrm{~F}_{254}$. All reactions were carried out under an atmosphere of dry nitrogen using oven-dried or flame-dried glassware and freshly distilled and dried solvents. p-Tolylsulfenyl chloride was obtained from 4-methylbenzenethiol using $\mathrm{SO}_{2} \mathrm{Cl}_{2}$. ${ }^{1}$ 1-Methoxy-2-methylpropene was prepared by pyrolysis of the corresponding acetal using p-toluenesulfonic acid as a catalyst. Other chemicals were purchased from Aldrich Chemical Co.

General procedure for synthesis of glycosides 10a-15a

A 50 mL three neck round bottom flask was charged under dry N_{2} with 20 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $0.28 \mathrm{~mL}(0.50 \mathrm{mmol})$ of a $1.8 M$ solution of $p-\mathrm{TolSCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to -78 C and $0.5 \mathrm{~mL}(0.5 \mathrm{mmol})$ of a 1.0 M solution of 1-methoxy-2methylpropene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added dropwise (the red-orange color of p - TolSCl disappeared and the mixture became colorless). Then $0.60 \mathrm{~mL}(0.60 \mathrm{mmol})$ of a 1.0 M solution of SnCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was introduced followed by $0.8 \mathrm{~mL}(0.4 \mathrm{mmol})$ of a 0.5 M solution of exo-glucal in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred for 3 hours at - 78 C . To obtain glycoside 6, the reaction mixture was poured into an ice cold saturated aqueous solution of NaHCO_{3}. To form glycoside 7, a cold ($-78^{\circ} \mathrm{C}$) suspension of 1.2 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 4 mL of dry MeOH was added to the reaction complex and was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Glycoside 8 was synthesized by adding $4.0 \mathrm{~mL}(4.0 \mathrm{mmol})$ of a cold $\left(-78{ }^{\circ} \mathrm{C}\right) 1.0 \mathrm{M}$ solution of NaCNBH_{3} in THF to the reaction complex; the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . To prepare glycoside $9,4.0 \mathrm{~mL}(4.0 \mathrm{mmol})$ of a 1.0 M solution of NaCNBH_{3} in THF was added to the reaction complex; the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was extracted with ether $(3 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent removal, the crude product was purified using gradient elution column
chromatography (hexane to $6: 1$ hexane-ethyl acetate) and/or preparative TLC (10:1 hexane-ethyl acetate).
(2S)-Methoxy-3-methyl-1-C-[2,3,4,6-tetra-O-benzyl-1-hydroxy- β-D-glucopyranosyl]-3-(p-tolylsulfanyl)butane (10a)

Colorless oil; $\mathrm{R}_{f} 0.26$ (1:6 hexane-ethyl acetate); $[\alpha]^{21}{ }_{\mathrm{D}}-11.6^{\circ}\left(c 0.90, \mathrm{CHCl}_{3}\right)$; IR (neat, $v, \mathrm{~cm}^{-1}$): $3449 \mathrm{br}(\mathrm{OH})$; H NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.01$ and 1.12 (two s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.65$ $\left(\mathrm{dd}, J_{1 a^{\prime}, 2^{\prime}}=2.8, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=14.3,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)\right), 2.07\left(\mathrm{dd}, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=11.5, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=14.3,1 \mathrm{H}\right.$, $\left.\mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)\right), 1.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.28\left(\mathrm{~d}, J_{2,3}=9.5,1 \mathrm{H}, \mathrm{H}(2)\right), 3.42(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.64 (br t, $\left.J_{3,4}=J_{4,5}=9.5,1 \mathrm{H}, \mathrm{H}(4)\right), 3.67\left(\mathrm{dd}, J_{5,6 \mathrm{a}}=1.8, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.5,1 \mathrm{H}\right.$, $\mathrm{H}(6 \mathrm{a})$), 3.73 (dd, $\left.J_{5,6 \mathrm{~b}}=6.4, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.5,1 \mathrm{H}, \mathrm{H}(6 \mathrm{~b})\right), 3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)\right), 4.11$ (ddd, $J_{4,5}$ $\left.=9.5, J_{5,6 \mathrm{a}}=1.8, J_{5,6 \mathrm{~b}}=6.4,1 \mathrm{H}, \mathrm{H}(5)\right), 4.13\left(\mathrm{t}, J_{3,4}=J_{2,3}=9.5,1 \mathrm{H}, \mathrm{H}(3)\right), 4.50$ and 4.57 (two d, $J_{\mathrm{AB}}=12.2,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.62 and 4.69 (two d, $J_{\mathrm{AB}}=11.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.90 and 4.91 (two d, $J_{\mathrm{AB}}=10.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.94 and 4.96 (two d, $J_{\mathrm{AB}}=10.8,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.28 (m, 24H, H-arom); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 21.2,24.4$, and $25.8\left(3 \mathrm{CH}_{3}\right), 36.3\left(\mathrm{CH}_{2}\right), 52.8$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 61.1\left(\mathrm{OCH}_{3}\right), 69.4,73.3,74.8,75.3$, and $75.7\left(5 \mathrm{OCH}_{2}\right.$ groups $)$, 70.7, 78.9, 83.4, 83.5, and 85.1 (5 CHOR groups), $98.2(C(\mathrm{OH}) \mathrm{O}), 127.5,127.6,127.7,127.9$, $128.1,128.2,128.3,128.4,128.5,128.6,128.7,129.1,129.3$, 129.5 , and 137.6 (CHarom), 138.1, $138.3,138.5,138.8$, and 138.9 (C-arom); HRMS: Calcd for $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{SNa}$ 785.3489; Found: $(\mathrm{MNa})^{+} m / z 785.3488$.
(2S)-Methoxy-3-methyl-1-C-[2,3,4,6-tetra-O-benzyl-1-methoxy- β-D-glucopyranosyl]-3-(p-tolylsulfanyl)butane (11a)

Colorless oil; $\mathrm{R}_{f} 0.31$ (1:6 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+23.3^{\circ}\left(c 0.78, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.10$ and 1.17 (two s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12\left(\mathrm{dd}, J_{1 a^{\prime}, 2^{\prime}}=9.3, J_{\mathrm{a}^{\mathrm{a}}, 1 \mathrm{~b}^{\prime}}=15.3,1 \mathrm{H}\right.$, $\left.\mathrm{H}\left(1 \mathrm{a}^{\prime}\right)\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~d}, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=0, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=15.3,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)\right), 3.31(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.37\left(\mathrm{~d}, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=0, J_{1 \mathrm{a}^{\prime}, 2^{\prime}}=9.3,1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)\right), 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61\left(\mathrm{~d}, J_{2,3}=9.0\right.$, $1 \mathrm{H}, \mathrm{H}(2)), 3.73\left(\mathrm{dd}, J_{5,6 \mathrm{a}}=1.1, J_{6 \mathrm{a}, 6 \mathrm{~b}}=8.0,1 \mathrm{H}, \mathrm{H}(6 \mathrm{a})\right), 3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(6 \mathrm{~b}), \mathrm{H}(5)), 3.80$ (dd, $J_{3,4}=9.0, J_{4,5}=4.2,1 \mathrm{H}, \mathrm{H}(4)$), $4.17\left(\mathrm{br} \mathrm{t}, J_{3,4}=J_{2,3}=9.0,1 \mathrm{H}, \mathrm{H}(3)\right), 4.48$ and 4.53 (two d, $J_{\mathrm{AB}}=11.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.65 and 4.88 (two d, $J_{\mathrm{AB}}=10.8,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.87 and 5.03 (two d, $J_{\mathrm{AB}}=11.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.89 and 4.94 (two d, $J_{\mathrm{AB}}=11.0,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.28 (m, 24H, H-arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 21.2,24.2$, and $26.7\left(3 \mathrm{CH}_{3}\right), 34.8\left(\mathrm{CH}_{2}\right), 48.2$ $\left(\mathrm{OCH}_{3}\right), 54.3\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 60.6\left(\mathrm{OCH}_{3}\right), 69.0,73.8,75.0,75.3$, and $75.5\left(5 \mathrm{OCH}_{2}\right.$ groups), $71.9,78.6,82.5,83.8$, and 83.9 (5 CHOR groups), $101.6\left(C\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right), 127.4,127.5$, $127.6,127.7,127.8,127.9,128.0,128.1,128.2,128.3,128.4,129.3,137.6,138.1$, and 138.3 (CH-arom), 138.4, 138.5, 138.6, 138.7, and 138.8 (C-arom); HRMS: Calcd for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{SO}_{7} 800.3746$; Found: $\mathrm{M}^{+} m / z 799.3644$.
(2R)-Methoxy-3-methyl-1-C-[2,3,4,6-tetra-O-benzyl-1-methoxy- β-D-glucopyranosyl]-3-(p-tolylsulfanyl)butane (11b)

Colorless oil; $\mathrm{R}_{f} 0.29$ (1:6 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+13.2^{\circ}\left(c 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.18$ and 1.25 (two s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10\left(\mathrm{dd}, J_{1 \mathrm{a}^{\prime}, 2^{\prime}}=10.9, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=14.9,1 \mathrm{H}\right.$, $\left.\mathrm{H}\left(1 \mathrm{a}^{\prime}\right)\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67\left(\mathrm{dd}, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=1.2, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=14.9,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)\right), 3.31$ and 3.33 (two s, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$ groups), $3.50\left(\mathrm{dd}, J_{1 b^{\prime}, 2^{\prime}}=1.2, J_{1 a^{\prime}, 2^{\prime}}=10.9,1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)\right.$), $3.70\left(\mathrm{~d}, J_{2,3}=\right.$ $9.1,1 \mathrm{H}, \mathrm{H}(2)), 3.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(4), \mathrm{H}(5)), 3.74\left(\mathrm{dd}, J_{5,6 \mathrm{a}}=1.2, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.6,1 \mathrm{H}, \mathrm{H}(6 \mathrm{a})\right)$, $3.85\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.6, J_{5,6 \mathrm{~b}}=3.1,1 \mathrm{H}, \mathrm{H}(6 \mathrm{~b})\right), 4.15\left(\mathrm{br} \mathrm{t}, J_{3,4}=J_{2,3}=9.1,1 \mathrm{H}, \mathrm{H}(3)\right), 4.50$ and 4.56 (two d, $J_{\mathrm{AB}}=11.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.60 and 4.86 (two d, $J_{\mathrm{AB}}=10.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.84 and 4.90 (two d, $J_{\mathrm{AB}}=11.0,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.87 and 4.94 (two d, $J_{\mathrm{AB}}=10.9,2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.28 (m, $24 \mathrm{H}, \mathrm{H}$-arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 21.6$, 23.1, and $27.2\left(3 \mathrm{CH}_{3}\right.$ groups), $30.8\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{OCH}_{3}\right), 53.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 60.8\left(\mathrm{OCH}_{3}\right), 69.6,73.7,75.5,75.6\right.$, and $76.1\left(5 \mathrm{OCH}_{2}\right.$ groups), $72.3,78.9,82.9,83.8$, and 84.1 (5 CHOR groups), 101.4 $\left(C\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right), 127.2,127.3,127.4,127.5,127.6,127.9,128.0,128.1,128.2,128.3,128.4$, 128.5, 128.6, 128.9, and 129.3 (CH-arom), 137.6, 138.4, 138.6, 138.8 and 138.9 (Carom); HRMS: Calcd for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{SO}_{7} 800.3746$; Found: $\mathrm{M}^{+} m / z 799.3644$.

(2S)-Methoxy-3-methyl-1-C-[2,3,4,6-tetra-O-benzyl- β-D-glucopyranosyl]-3-(ptolylsulfanyl)butane (12a)

Colorless oil; $\mathrm{R}_{f} 0.35$ (1:7 ethyl acetate-hexane); $[\alpha]^{19}{ }_{\mathrm{D}}-15.5^{\circ}\left(c 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.12$ and 1.18 (two s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92\left(\mathrm{ddd}, J_{1 b^{\prime}, 2^{\prime}}=10.6, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=13.0\right.$, $\left.J_{1 \mathrm{~b}^{\prime}, 1}=2.3,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)\right), 1.98\left(\mathrm{ddd}, J_{1 \mathrm{a}^{\prime}, 2^{\prime}}=2.6, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=13.0, J_{1 \mathrm{a}^{\prime}, 1}=10.6,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)\right)$, $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.33\left(\mathrm{t}, J_{3,4}=J_{4,5}=9.2,1 \mathrm{H}, \mathrm{H}(4)\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.45\left(\mathrm{br} \mathrm{d}, J_{1,2}\right.$ $\left.=9.2, J_{1 b^{\prime}, 1}=2.3, J_{1 a^{\prime}, 1}=10.6,1 \mathrm{H}, \mathrm{H}(1)\right), 3.48\left(\mathrm{dd}, J_{1 b^{\prime}, 2^{\prime}}=10.6, J_{1 a^{\prime}, 2^{\prime}}=2.6,1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)\right)$, $3.65\left(\mathrm{t}, J_{2,3}=J_{1,2}=9.2,1 \mathrm{H}, \mathrm{H}(2)\right), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3)), 3.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(6 \mathrm{a}), \mathrm{H}(6 \mathrm{~b})), 4.55$ and 4.63 (two d, $J_{\mathrm{AB}}=12.2,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.61 and 4.86 (two d, $J_{\mathrm{AB}}=10.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.68 and 4.88 (two d, $J_{\mathrm{AB}}=11.2,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.89 and 4.92 (two d, $J_{\mathrm{AB}}=3.56,2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.30\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}\right.$-arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 21.6,24.4$, and $26.6\left(3 \mathrm{CH}_{3}\right.$ groups), $34.1\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 61.8\left(\mathrm{OCH}_{3}\right), 69.9,73.9,75.4,75.6\right.$, and $75.9(5$ OCH_{2} groups), 76.6, 79.1, 79.2, 83.0, 83.7, and 87.9 (6 CHOR groups), 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 129.2, 129.3, 129.4, $137.4,137.7,137.9$, and 138.1 (CH-arom), 138.2, 138.5, 138.7, 138.9, and 140.9 (Carom); HRMS: Calcd for $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{SNa}, 769.3539$; Found: (MNa) ${ }^{+} m / z 769.3539$.
(2S)-Methoxy-1-C-[2,3,4,6-tetra-O-benzyl-1-hydroxy- β-D-glucopyranosyl]-3-(ptolyl)sulfonylpropane (13a)

Colorless oil; $\mathrm{R}_{f} 0.25$ (1:5 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+2.52^{\circ}\left(c 1.79, \mathrm{CHCl}_{3}\right)$; IR (neat, $\left.v, \mathrm{~cm}^{-1}\right): 3430 \mathrm{br}(\mathrm{OH}) ;^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.53\left(\mathrm{dd}, J_{1^{\prime}, 2^{\prime}}=2.3, J_{1 \mathrm{a}^{\prime}, 1 b^{\prime}}=\right.$ $\left.14.4,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)\right), 2.07\left(\mathrm{dd}, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=11.1,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.82\left(\mathrm{dd}, J_{3 \mathrm{a}^{\prime}, 2^{\prime}}=\right.$ $\left.7.1, J_{3 \mathrm{a}^{\prime}, 3 \mathrm{~b}^{\prime}}=13.5,1 \mathrm{H}, \mathrm{H}\left(3 \mathrm{a}^{\prime}\right)\right), 2.98\left(\mathrm{dd}, J_{3 \mathrm{~b}^{\prime}, 2^{\prime}}=4.1,1 \mathrm{H}, \mathrm{H}\left(3 \mathrm{~b}^{\prime}\right)\right), 3.22\left(\mathrm{br} \mathrm{d}, J_{2,3}=9.6\right.$,
$1 \mathrm{H}, \mathrm{H}(2)), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61\left(\mathrm{dd}, J_{5,6 \mathrm{a}}=1.9, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.9,1 \mathrm{H}, \mathrm{H}(6 \mathrm{a})\right), 3.62(\mathrm{br} \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.6,1 \mathrm{H}, \mathrm{H}(4)\right), 3.72$ (dd, $\left.J_{5,6 \mathrm{~b}}=4.3,1 \mathrm{H}, \mathrm{H}(6 \mathrm{~b})\right), 3.98$ (dddd, $1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)$), 4.03 (ddd, $1 \mathrm{H}, \mathrm{H}(5)$), 4.05 (br t, $1 \mathrm{H}, \mathrm{H}(3)$), 4.48 and 4.52 (two d, $J_{\mathrm{AB}}=12.2,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.58 and 4.87 (two d, $J_{\mathrm{AB}}=14.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.60 and 4.85 (two d, $J_{\mathrm{AB}}=11.0,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.88 and 4.90 (two d, $J_{\mathrm{AB}}=10.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.28 (m, 24H, H-arom); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.2\left(\mathrm{CH}_{3}\right), 38.4$ and $40.1\left(2 \mathrm{CH}_{2}\right.$ groups $), 57.1\left(\mathrm{OCH}_{3}\right), 69.6,73.8$, $75.2,75.8$, and $76.0\left(5 \mathrm{OCH}_{2}\right.$ groups), $71.3,77.7,89.2,83.6$, and 83.9 (5 CHOR groups), $97.9(C(\mathrm{OH}) \mathrm{O}), 127.3,127.4,127.5,127.6,127.7,127.8,127.9,128.2,128.3,128.4$, 128.5, 128.6, 129.8, 130.6, (CH-arom), 132.5, 136.6, 138.2, 138.4, 138.5 and 138.8 (Carom); HRMS: Calcd for $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{SNa} 757.3175$; Found: (MNa) ${ }^{+} m / z 757.3175$.

(2S)-Methoxy-1-C-[2,3,4,6-tetra-O-benzyl-1-methoxy- β-D-glucopyranosyl]-3-(ptolyl)sulfonylpropane (14a)

Colorless oil; $\mathrm{R}_{f} 0.33$ (1:5 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+27.13^{\circ}\left(c 0.81, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.10\left(\mathrm{dd}, J_{1 \mathrm{a}^{\prime}, 2^{\prime}}=8.1, J_{\mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=14.6,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)\right.$), 2.15 (dd, $\left.J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=4.7,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.05\left(\mathrm{dd}, J_{3 \mathrm{a}^{\prime}, 2^{\prime}}=6.3, J_{3 \mathrm{a}^{\prime}, 3 \mathrm{~b}^{\prime}}=13.5,1 \mathrm{H}\right.$, $\mathrm{H}\left(3 \mathrm{a}^{\prime}\right)$), 3.07 (dd, $J_{3 \mathrm{~b}^{\prime}, 2^{\prime}}=4.7,1 \mathrm{H}, \mathrm{H}\left(3 \mathrm{~b}^{\prime}\right)$), 3.20 and 3.23 (two s, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$ groups), $3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)\right), 3.63\left(\mathrm{~d}, J_{2,3}=9.0,1 \mathrm{H}, \mathrm{H}(2)\right), 3.64\left(\mathrm{dd}, J_{3,4}=9.0, J_{4,5}=10.1,1 \mathrm{H}\right.$, $\mathrm{H}(4)) 3.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{a})), 3.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5)), 3.75\left(\mathrm{dd}, J_{5,6 \mathrm{~b}}=3.5, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.7,1 \mathrm{H}\right.$, $\mathrm{H}(6 \mathrm{~b})$), 4.08 (br t, 1H, H(3)), 4.48 and 4.55 (two d, $J_{\mathrm{AB}}=12.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.60 and 4.87 (two d, $J_{\mathrm{AB}}=10.8,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.70 and 4.75 (two d, $J_{\mathrm{AB}}=10.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.85 and 4.88 (two d, $J_{\mathrm{AB}}=5.8,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $7.28\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}\right.$-arom) ; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 21.4\left(\mathrm{CH}_{3}\right), 34.9$ and $39.2\left(2 \mathrm{CH}_{2}\right), 47.9$ and $57.4\left(2 \mathrm{OCH}_{3}\right), 69.4,73.7,75.5$, 75.8 , and $76.1\left(5 \mathrm{OCH}_{2}\right.$ groups), $72.4,77.1,78.9,82.2$, and 83.8 (5 CHOR groups), 100.7 $\left(C\left(\mathrm{OCH}_{3}\right) \mathrm{O}\right), 127.3,127.4,127.5,127.6,127.7,127.8,127.9,128.2,128.3,128.4,129.7$, 130.6, 132.9, 136.4, (CH-arom), 138.1, 138.3, 138.5, 138.6, 138.7 and 138.8 (C-arom); HRMS: Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{SNa} 771.3331$; Found: $(\mathrm{MNa})^{+} m / z 771.3331$.
(2S)-Methoxy-1-C-[2,3,4,6-tetra-O-benzyl- β-D-glucopyranosyl]-3-(ptolyl)sulfonylpropane (15a)

Colorless oil; $\mathrm{R}_{f} 0.29$ (1:5 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+5.72^{\circ}\left(c 0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 1.87 (ddd, $J_{\mathrm{la}^{\prime}, 1^{\prime}}=4.5, J_{1 \mathrm{a}^{\prime}, 2^{\prime}}=8.5, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=14.2,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)$), 2.07 (ddd, $J_{1 \mathrm{~b}^{\prime}, 1^{\prime}}=2.7, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=6.9,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.05\left(\mathrm{dd}, J_{3 \mathrm{a}^{\prime}, 2^{\prime}}=6.5, J_{3 \mathrm{a}^{\prime}, 3 \mathrm{~b}^{\prime}}=\right.$ $\left.13.4,1 \mathrm{H}, \mathrm{H}\left(3 \mathrm{a}^{\prime}\right)\right), 3.11\left(\mathrm{dd}, J_{3 \mathrm{~b}^{\prime}, 2^{\prime}}=5.2,1 \mathrm{H}, \mathrm{H}\left(3 \mathrm{~b}^{\prime}\right)\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 4), 3.35 (ddd, $\left.J_{1,2}=9.6,1 \mathrm{H}, \mathrm{H}(1)\right), 3.39-3.65\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}(5), \mathrm{H}\left(2^{\prime}\right), \mathrm{H}(2), \mathrm{H}(3), \mathrm{H}(6 \mathrm{a})\right.$, and $\mathrm{H}(6 \mathrm{~b})$), 4.52 and 4.58 (two d, $J_{\mathrm{AB}}=12.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.59 and 4.89 (two d, $J_{\mathrm{AB}}=$ $9.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.66 and 4.82 (two d, $J_{\mathrm{AB}}=10.8,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.87 and 4.91 (two d, $\left.J_{\mathrm{AB}}=11.2,2 \mathrm{H}, \mathrm{C} H_{2} \mathrm{Ph}\right), 7.28(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}$-arom $) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 20.9 $\left(\mathrm{CH}_{3}\right), 34.6$ and $38.7\left(2 \mathrm{CH}_{2}\right.$ groups), $57.0\left(\mathrm{OCH}_{3}\right), 69.4,73.9,75.4,75.6$, and $76.0(5$ OCH_{2} groups), 76.4, 77.5, 78.9, 79.3, 82.6 and 87.8 (6 CHOR groups), 127.5, 127.6, $127.7,127.8,127.9,128.0,128.1,128.2,128.3,128.4,129.6,130.0,130.1$ and 133.2
(CH-arom), 136.0, 138.0, 138.1, 138.2, 138.3 and 138.6 (C-arom); HRMS: Calcd for $\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{SNa} 741.3225$; Found: (MNa) ${ }^{+} m / z 741.3224$.
(2S)-Hydroxy-3-methyl-1-C-[2,3,4,6-tetra-O-benzyl- β-D-glucopyranosyl]-3-(ptolylsulfanyl)butane (16a)

Colorless oil; $\mathrm{R}_{f} 0.19$ (1:4 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}-23.2^{\circ}\left(c 0.43, \mathrm{CHCl}_{3}\right)$; IR (neat, $v, \mathrm{~cm}^{-1}$): $3467 \mathrm{br}(\mathrm{OH})$; H NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.30$ and 1.37 (two s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.95$ (ddd, $J_{1 a^{\prime}, 2^{\prime}}=4.9, J_{1 a^{\prime}, 1 \mathrm{~b}^{\prime}}=15.0, J_{1 \mathrm{a}^{\prime}, 1}=7.9,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)$), 2.23 (ddd, $J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=5.8, J_{1 \mathrm{a}^{\prime}, 1 b^{\prime}}=$ $15.0, J_{1 \mathrm{~b}^{\prime}, 1}=2.8,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)$), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.27$ (br t, $J_{\mathrm{la}^{\prime}, 2^{2}}=4.9, J_{\mathrm{lb}^{\prime}, 2^{2}}=5.8,1 \mathrm{H}$, $\left.\mathrm{H}\left(2^{\prime}\right)\right), 3.33\left(\mathrm{t}, J_{1,2}=J_{2,3}=9.2,1 \mathrm{H}, \mathrm{H}(2)\right), 3.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.46\left(\mathrm{ddd}, J_{4,5}=9.5, J_{5,6 \mathrm{a}}\right.$ $\left.=1.9, J_{5,6 \mathrm{~b}}=4.9,1 \mathrm{H}, \mathrm{H}(5)\right), 3.56\left(\mathrm{dd}, J_{3,4}=8.9, J_{4,5}=9.5,1 \mathrm{H}, \mathrm{H}(4)\right), 3.58\left(\mathrm{dd}, J_{5,6 \mathrm{~b}}=4.9\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.8,1 \mathrm{H}, \mathrm{H}(6 \mathrm{~b})\right), 3.64\left(\mathrm{dd}, J_{5,6 \mathrm{a}}=1.9, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.8,1 \mathrm{H}, \mathrm{H}(6 \mathrm{a})\right), 3.72\left(\mathrm{dd}, J_{3,4}=8.9\right.$, $J_{2,3}=9.2,1 \mathrm{H}, \mathrm{H}(2)$), 3.88 (ddd, $J_{1,2}=9.2, J_{1 a^{\prime}, 1}=7.9, J_{1 b^{\prime}, 1}=2.8,1 \mathrm{H}, \mathrm{H}(1)$), 4.48 and 4.58 (two d, $J_{\mathrm{AB}}=12.2,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.52 and 4.56 (two d, $J_{\mathrm{AB}}=11.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.79 and 4.86 (two d, $J_{\mathrm{AB}}=10.9,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.85 and 4.87 (two d, $J_{\mathrm{AB}}=11.0,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.30 (m, 24H, H-arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 21.1,27.8$, and $28.4\left(3 \mathrm{CH}_{3}\right), 33.6\left(\mathrm{CH}_{2}\right), 65.3$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 73.5,74.9,75.0,75.5$, and $78.4\left(5 \mathrm{OCH}_{2}\right.$ groups $), 60.2,68.9,76.6,78.4,82.2$, and 87.2 (6 CHOR groups), 126.9, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.2, 128.3, $128.4,128.5,128.6,129.7,131.8,133.1,136.4,137.5,137.9$, and $138.1(\mathrm{CH}-$ arom $)$, 138.2 , 138.5, 138.7, 138.9, and 140.9 (C-arom); HRMS: Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{SNa}$, 755.3382 ; Found: $(\mathrm{MNa})^{+} m / \mathrm{z} 755.3382$.
(2R)-Hydroxy-3-methyl-1-C-[2,3,4,6-tetra-O-benzyl- β-D-glucopyranosyl]-3-(ptolylsulfanyl)butane (16b)

Colorless oil; $\mathrm{R}_{f} 0.25$ (1:4 ethyl acetate-hexane); $[\alpha]^{21}{ }_{\mathrm{D}}+15.5^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right)$; IR (neat, $v, \mathrm{~cm}^{-1}$): $3458 \mathrm{br}(\mathrm{OH})$; H NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.15$ and 1.24 (two s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.61$ (ddd, $J_{1 \mathrm{a}^{\prime}, 2^{\prime}}=2.8, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=13.7, J_{1 \mathrm{a}^{\prime}, 1}=10.6,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{a}^{\prime}\right)$), 1.83 (ddd, $J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=12.4, J_{1 \mathrm{a}^{\prime}, 1 \mathrm{~b}^{\prime}}=$ 13.7, $J_{1 \mathrm{~b}^{\prime}, 1}=2.0,1 \mathrm{H}, \mathrm{H}\left(1 \mathrm{~b}^{\prime}\right)$), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.85 (br.s, $1 \mathrm{H}, \mathrm{OH}$), 2.95 (ddd, $J_{4,5}=9.5$, $\left.J_{5,6 \mathrm{a}}=7.9, J_{5,6 \mathrm{~b}}=1.6,1 \mathrm{H}, \mathrm{H}(5)\right), 3.06\left(\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.9, J_{5,6 \mathrm{~b}}=1.6,1 \mathrm{H}, \mathrm{H}(6 \mathrm{~b})\right), 3.28(\mathrm{br} \mathrm{t}$, $\left.J_{1,2}=J_{2,3}=9.0,1 \mathrm{H}, \mathrm{H}(2)\right), 3.38\left(\mathrm{dd}, J_{1 \mathrm{~b}^{\prime}, 2^{\prime}}=12.4, J_{1 \mathrm{a}^{\prime} 2^{\prime}}=2.8,1 \mathrm{H}, \mathrm{H}\left(2^{\prime}\right)\right), 3.42(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}(6 \mathrm{a})$), 3.60 (br t, $J_{4,5}=J_{3,4}=9.5,1 \mathrm{H}, \mathrm{H}(4)$), 3.62 (ddd, $J_{1 \mathrm{a}^{\prime}, 1}=10.6, J_{1 \mathrm{~b}, 1}=2.0, J_{1,2}=$ $9.0,1 \mathrm{H}, \mathrm{H}(1)$), 3.66 (br t, $J_{2,3}=9.0, J_{3,4}=9.5,1 \mathrm{H}, \mathrm{H}(3)$), 4.45 (two d, $J_{\mathrm{AB}}=12.4,2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.55 and 4.80 (two d, $J_{\mathrm{AB}}=10.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.63 and 4.86 (two d, $J_{\mathrm{AB}}=11.4$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.62$ and $4.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}-\operatorname{arom}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, §): 20.9, 26.3, and $26.9\left(3 \mathrm{CH}_{3}\right), 34.9\left(\mathrm{CH}_{2}\right), 72.5\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 68.0,73.4,74.9,75.0$, and $75.6\left(5 \mathrm{OCH}_{2}\right.$ groups), 61.2, 76.6, 78.3, 78.5, 81.8, and 87.4 (6 CHOR groups), 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 129.6, 129.8, 130.7, $131.5,133.7,136.2,136.8$, and 137.5 (CH-arom), 138.0,138.1, 138.2, 138.3, and 138.6, (C-arom); HRMS: Calcd for $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{SNa}, 755.3382$; Found: (MNa) ${ }^{+} \mathrm{m} / \mathrm{z} 755.3382$.

Reference

1. Fiser, M.; Fiser, L. F. P. Reagents for Organic Synthesis, Vol. 5; Wiley: New York, 1975; p. 523.
