A General Method for the Enantioselective Synthesis of Pantolactone Derivatives

David A. Evans*, Jimmy Wu, Craig E. Masse, and David W. C. MacMillan

Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

Supporting Information

General Information. All reactions were carried out under an atmosphere of argon or nitrogen in ovendried glassware with magnetic stirring. THF and CH₂Cl₂ were purified by passage through a bed of activated alumina.¹ Solvents and reagents were purified prior to use following the guidelines of Perrin and Armarego.² ScCl₃thf₃ was prepared according to literature procedure.³ AgSbF₆ was purchased from the Cerac Chemical Co., stored in an inert atmosphere dry box and used without further purification. Me₄NHB(OAc)₃ was prepared according to literature procedure.⁴ Et₂BOMe was purchased from Aldrich Chemical Co. and used as is after distillation. Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and ceric ammonium nitrate stain followed by heating. Optical rotations were measured on a Jasco DIP-0181 digital polarimiter with a sodium lamp and are reported as follows: []^{T °C} (c g/100 mL, solvent). Infrared spectra were recorded on a Perkin Elmer 1600 series FT-IR spectrometer. ¹H NMR spectra were recorded on a Varian Inova-500 (500 MHz) or Varian Mercury-400 (400 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at Data reported as (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, b=broad; 7.26 ppm). integration; coupling constant(s) in Hz). Proton-decoupled ¹³C NMR spectra were recorded on Varian Inova-500 (125 MHz) or Varian Mercury-400 (100 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.0 ppm). High resolution mass spectra were obtained on Jeol AX-505 or SX-102 spectrometers at the Harvard University Mass Spectrometry Laboratory. Analytical high performance liquid chromatography (HPLC) was performed on a Hewlett-Packard 1100 Series HPLC with a diode array detector using the indicated chiral column.

General Procedure for the Catalyzed Reaction of Thiosilylketene Acetals with Ethyl Glyoxylate. A dry flask was charged with $ScCl_3(thf)_3$ (0.10 equiv) and phenyl-pyridyl-bis(oxazolinyl) ligand (0.11 equiv) in an inert atmosphere (N₂) glove box. In a separate flask, also in an inert atmosphere (N₂) glove box, was charged AgSbF₆ (0.9 equiv). Both flasks were brought out of the glove box and the flask containing the metal/ligand was charged with CH_2Cl_2 (2 mL) and stirred at rt for 30 minutes. The resulting solution was transferred to the flask containing AgSbF₆ via syringe and the mixture stirred for 30 minutes followed by cooling to -78 °C. Ethyl glyoxylate (1.5 equiv) and thiosilylketene acetal (1.0 equiv) were added sequentially and stirred for 3 h at -78 °C. After the reaction was complete, the mixture was filtered through silica with Et₂O and the silyl ether was hydrolyzed with 1N HCl in EtOAc (30 min, 25 °C) to give the hydroxy ester which was purified by flash chromatography.⁵

General Procedure for the Catalyzed Reaction of Enolsilanes with Ethyl Glyoxylate. A dry flask was charged with ScCl₃(thf)₃ (0.15 equiv) and *t*-Bu-pyridyl-bis(oxazolinyl) ligand (0.17 equiv) in an

inert atmosphere (N₂) glove box. In a separate flask, also in an inert atmosphere (N₂) glove box, was charged AgSbF₆ (0.14 equiv). Both flasks were brought out of the glove box and the flask containing the metal/ligand was charged with CH₂Cl₂ (1 mL) and stirred at rt for 1 h. The resulting solution was transferred to the flask containing AgSbF₆ via syringe and the mixture stirred for 30 minutes followed by cooling to -78 °C. Ethyl glyoxylate (1.5 equiv), enolsilane (1.0 equiv), and TMS-Cl (2 equiv) were added sequentially and the reaction stirred for 16 h at -35 °C. After the reaction was complete, the mixture was filtered through silica with Et₂O and the silyl ether was hydrolyzed with 1N HCl in EtOAc (30 min, 25 °C) to give the hydroxy ester which was purified by flash chromatography.⁵

General Procedure (A): Raney Nickel Reduction/Cyclization of Thioesters to Pantolactones. To a round bottom flask containing a magnetic stirring bar, was added isopropanol (1.0 mL) and Raney Ni (1.0 mL of a slurry in H₂O, 0.5 g catalyst/mL of settled material). This mixture was purged with hydrogen from a balloon under vigorous stirring. To this suspension of Raney Ni, was added a solution of the aldol adduct (1.0 equiv) in Et₂O (0.52 mL, 0.25 M). The reaction mixture was stirred vigorously until the aldol adduct was completely consumed (15-30 min), as determined by TLC (30% EtOAc/hexanes). The reaction mixture was then filtered through a pad of Celite and washed repeatedly with EtOH (3 x 25 mL). The filtrate was concentrated *in vacuo* to provide the unpurified lactone. Purification by flash chromatography (30–40% EtOAc/hexanes) provided the title compounds.

General Procedure (B): Syn Reduction/Cyclization of Hydroxy-Esters to Pantolactones. To an oven dried flask was added $Me_4NHB(OAc)_3$ (8.4 equiv) and MeCN/AcOH (1:1 v/v) to afford a 0.9 M solution which was stirred for 30 min at rt before cooling to -20 °C. To this mixture, was added a solution of hydroxy-ester (1.0 equiv) in MeCN (0.65 M) and aged for 1 hr at -20 °C before warming to 0 °C and aging for an additional 16 hr. To the reaction was added sat. Rochelle's salt and sat. NaHCO₃ and then extracted with with CH₂Cl₂ (4 x 10 mL). The organic layers were combined and washed with NaHCO₃ (10 mL). The aqueous layer was back-extracted with CH₂Cl₂ (4 x 10 mL). The organic layers were combined and concentrated *in vacuo* to afford a colorless oil which was transferred to a dry flask and charged with benzene (0.23 mL), 3 Å MS (25 mg), and *p*-TSA (0.5 equiv). The reaction was stirred at rt for 30 min. and diluted with Et₂O (2 mL). Triethylamine (6 drops) was added to the mixture which was then filtered through a plug of silica gel and flushed with Et₂O (50 mL). Concentration of the solvent *in vacuo* provided the desired product analytically pure.

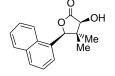
(*R*)-4-Hydroxy-2-oxa-spiro[4.5]decan-3-one (Table 2, entry 1). The title compound was prepared according to General Procedure A and isolated as a colorless oil (89 % yield): $[]_D^{25}$ +16.3 ° (*c* 0.5, CHCl₃); IR (film) 3442, 2938, 2860, 1762, 1559, 1473, 1164, 1103, 990 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) 4.33 (d, 1H, *J*=9.2 Hz), 4.10 (d, 1H, *J*=4.3 Hz), 3.87 (dd, 1H, *J*=1.4, 9.2 Hz), 3.49 (d, 1H, *J*=4.4 Hz), 1.77-1.54 (m, 6H), 1.44-1.35 (m, 2H), 1.26-1.16 (m, 2H); ¹³C NMR (100 MHz, CHCl₃) 178.0, 75.6, 73.7, 44.0, 33.6, 25.8, 25.3, 22.9, 21.8; HRMS (CI, NH₃): Exact mass calcd for C₈H₁₂O₃ [M + NH₄]⁺, 188.1287. Found 188.1283.

(*R*)-4-Hydroxy-2-oxa-spiro[4.4]nonan-3-one (Table 2, entry 2). The title compound was prepared according to General Procedure A and isolated as a colorless oil (94 % yield): $[]_D^{25}$ +19.3 ° (*c* 1.5, CHCl₃); IR (film) 3390, 2952, 2869, 1768, 1318, 1289, 1201, 1146, 1100, 992 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) 4.33 (d, 1H, *J*=3.9 Hz), 4.12 (d, 1H, *J*=8.8 Hz), 4.00 (dd, 1H, *J*=0.9, 8.8 Hz), 3.38 (br, 1H), 2.03-1.96 (m, 1H), 1.93-1.86 (m, 1H), 1.80-1.58 (m, 5H), 1.44-1.38 (m, 1H); ¹³C NMR (100 MHz, CHCl₃) 177.8, 76.0, 73.6, 51.6, 33.5, 29.1, 25.0, 24.9; HRMS (CI, NH₃): Exact mass calcd for $C_8H_{12}O_3$ [M + NH₄]⁺, 174.1130. Found 174.1125.

(*R*)-4,4-Diethyl-3-hydroxy-dihydro-furan-2-one (Table 2, entry 3). The title compound was prepared according to the General Procedure A to provide the pure product as a light yellow oil (95% yield) after flash chromatography 40% EtOAc/hexanes: [$]_D^{25}$ –12.0° (*c* 0.33, MeOH); IR (neat) 3423, 2976, 1754, 1637, 1461 cm⁻¹; ¹H NMR (500 MHz, CDCl₃)

4.21 (br d, 1H, J = 2.8 Hz), 4.16 (d, 1H, J = 8.8 Hz), 3.87 (d, 1H, J = 9.2 Hz), 2.55 (br d, 1H, J = 2.4 Hz), 1.65-1.42 (m, 4H), 0.98 (t, 3H, J = 8.0 Hz), 0.90 (t, 3H, J = 7.6 Hz); ¹³C NMR (125 MHz, CDCl₃)

178.2, 74.8, 73.1, 46.7, 28.1, 21.4, 8.49, 8.05; HRMS (CI/NH₃) exact mass calcd for $C_8H_{15}O_3$ [M+H]⁺, 159.1021. Found 159.1019. Assay of enantiomeric excess: GC analysis (-Cyclodextrin, 60 °C, 3 °C/min at 25 psi; t_r (major)= 24.38, t_r (minor) = 24.0), 95 % ee.


(*R*)-3-Hydroxy-4,4-dimethyl-dihydro-furan-2-one (Table 2, entry 4). The title compound was prepared according General Procedure A to provide the pure product as a light yellow oil (95% yield) after flash chromatography with 30% EtOAc/hexanes: [$]_D^{25}$ -54.0 ° (*c* 0.25, H₂O); IR (neat) 3442, 2092, 1758, 1638, 1124 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 4.11 (br s, 1H), 4.03 (d, 1H, *J* = 9.0 Hz), 3.94 (d, 1H, *J* = 8.5 Hz), 1.24 (s, 3H), 1.08 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) 177.4, 76.3, 75.7, 40.9, 22.9, 18.8; HRMS (CI/NH₃) exact mass calcd for C₆H₁₁O₃ [M+H]⁺, 131.0708. Found 131.0710. Assay of enantiomeric excess: GC analysis (-Cyclodextrin, 60 °C, 3 °C/min at 25 psi, t_r (major)= 16.77, t_r (minor) = 17.29), 94% ee.

 $\begin{array}{l} (S,S)-4-Hydroxy-1-phenyl-2-oxa-spiro[4.4]nonan-3-one (Table 2, entry 5). The title compound was prepared according to General Procedure B and isolated as an amorphous white solid (80 % yield). X-ray quality crystals were obtained by recrystallization in hot EtOAc/hexanes: [<math>]_D^{25}$ –14.5 ° (*c* 0.195, CHCl₃); IR (CHCl₃) 3566, 3108, 2960, 2875, 2359, 1784, 1456 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) 7.42-7.26 (m, 5H), 5.31 (s, 1H), 4.51 (d, 1H, *J*=3.0 Hz), 2.81 (d, 1H, *J*=3.2 Hz), 2.04-1.89 (m, 2H), 1.71-1.49 (m, 3H), 1.43-1.34 (m, 1H), 1.27-1.20 (m, 1H), 1.01-0.93 (m, 1H); ¹³C NMR (100 MHz, CHCl₃) 176.9, 134.5, 128.8, 128.6, 126.7, 84.9, 57.2, 34.1, 25.7, 25.0, 24.6; HRMS (EI): Exact mass calcd for C₁₄H₁₆O₃ [M]⁺, 232.1100. Found 232.1097. Assay of enantiomeric excess: HPLC analysis (Chiracel AD, 10 % *i*PrOH/hexanes, 0.7 mL/min, 215 nm; t_r (major) = 16.3, t_r (minor) = 18.3), 99 % ee.

4F-Ph Me

(*S*,*S*)-3-Hydroxy-4,4-dimethyl-5-(4-fluorophenyl)-dihydro-furan-2-one (Table 2, entry 6). The title compound was prepared according to General Procedure B and isolated as a colorless oil (71 % yield): $[]_D^{25}$ –53.0 ° (*c* 0.54, CHCl₃); IR (CHCl₃) 3564, 3449, 2970, 2917, 1775, 1611, 1514 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) 7.26 (t, 2H, 200 (t, 2H, 4.200 Hz) 5.00 (t, 1H) 4.24 (t, 1H) 1.27 (t, 2H) 0.62 (t, 2H) ¹³C NMP (100

J=8.8 Hz), 7.09 (t, 2H, *J*=8.8 Hz), 5.09 (s, 1H), 4.34 (s, 1H), 1.27 (s, 3H), 0.62 (s, 3H); ¹³C NMR (100 MHz, CHCl₃) 176.8, 163.0 (d, *J*=248 Hz), 129.7, 128.0 (d, *J*=7.6 Hz), 115.6 (d, *J*=22.1 Hz), 88.5, 46.5, 22.6, 14.8; HRMS (EI): Exact mass calcd for $C_{12}H_{13}O_3F$ [M]⁺,224.0849. Found 224.0844.

(*S*,*S*)-3-Hydroxy-4,4-dimethyl-5-naphthalen-1-yl-dihydro-furan-2-one (Table 2, entry 7). The title compound was prepared according to General Procedure B and isolated as an amorphous pale yellow solid (75 % yield): $[]_D^{25}$ –131.0 ° (*c* 0.61, CHCl₃); IR (CHCl₃) 3562, 3013, 2971, 1780, 1466, 1121 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) 7.97-7.87 (m, 3H), 7.61 (d, 1H, *J*=6.6 Hz), 7.56-7.51 (m, 3H), 6.10 (s, 1H),

4.53 (s, 1H), 1.37 (s, 3H), 0.71 (s, 3H); ¹³C NMR (100 MHz, CHCl₃) 177.1, 133.9, 131.0, 129.7, 129.4, 129.3, 126.6, 125.9, 125.7, 125.3, 123.1, 82.2, 77.9, 47.6, 24.2, 15.7; HRMS (EI): Exact mass calcd for $C_{16}H_{16}O_3$ [M]⁺, 256.1099. Found 256.1100.

 $\begin{array}{c} (S,S) - 3 - Hydroxy - 4,4 - dimethyl - 5 - phenyl - dihydro-furan - 2 - one (Table 2, entry 8). \\ \text{The title compound was prepared according to General Procedure B and isolated as an amorphous white solid (70 % yield): <math>[]_D^{25} - 45.1 \circ (c \ 0.41, \text{CHCl}_3); \text{IR (CHCl}_3) 3567, 3450, 3013, 2970, 2934, 2361, 1785, 1774 \text{ cm}^{-1}; ^1\text{H NMR (400 MHz, CHCl}_3) 7.42 - 7.36 (m, 3H), 7.29 - 7.26 (m, 2H), 5.11 (s, 1H), 4.35 (s, 1H), 2.90 (br, 1H), 1.29 (s, 3H), 0.63 (s, 3H); ^{13}\text{C NMR (100 MHz, CHCl}_3) 177.0, 133.9, 128.8, 128.6, 126.2, 86.0, 77.5, 46.5, 22.7, 14.9; HRMS (EI): Exact mass calcd for C₁₂H₁₄O₃ [M]⁺, 206.0943. Found 206.0939. \\ \end{array}$

O O Ph[°] Me Me (*S*,*R*)-3-Hydroxy-4,4-dimethyl-5-phenyl-dihydro-furan-2-one (Table 2, entry 9). To a dry flask was charged 2-Hydroxy-3,3-dimethyl-4-oxo-4-phenyl-butyric acid ethyl ester (24.2 mg, 0.097 mmol), Et₂BOMe (12.6 μ L, 0.13 mmol), and THF/MeOH (4:1 v/v, 0.7 mL) and aged at RT for 1 h. After cooling to -78 °C, NaBH₄ (9.0 mg, 0.24 mmol) was added

and the reaction was aged at -78 °C for 21 h. To the reaction was added AcOH (1mL). After aging at rt for 1 h, the mixture was azeotroped *in vacuo* with MeOH (3 x 50 mL, 50 °C) and diluted with Et₂O. The mixture was washed with sat. NaHCO₃ and then back extracted with Et₂O. The organic layers were combined, dried with MgSO₄ and concentrated *in vacuo* to afford a colorless oil which was transferred to a dry flask and charged with benzene (1 mL), 3 Å MS (25 mg), and *p*-TSA (0.5 equiv). The reaction was stirred at rt for 30 minutes and diluted with Et₂O (4 mL). Triethylamine (6 drops) was added to the mixture, which was then filtered through a plug of silica gel and flushed with Et₂O (50 mL). The solvent was removed *in vacuo* and the residue chromatographed (5-15 % EtOAc/hexanes) to afford the title compound as a colorless oil (73 % yield): []_D²⁵ –58.5 ° (*c* 0.59, CHCl₃); IR (CHCl₃) 3577, 3450, 3018, 2967, 1770, 1605, 1455 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.40-7.32 (m, 3H), 7.18-7.15 (m, 2H), 5.28 (s, 1H), 4.21 (d, 1H, *J*=3.7), 2.91 (d, 1H, *J*=3.7), 1.26 (s, 3H), 0.81 (s, 3H); ¹³C NMR (100 MHz, CHCl₃) 177.3, 135.8, 128.7, 126.0, 88.7, 75.0, 44.0, 21.9, 20.9; HRMS (EI): Exact mass calcd for C₁₂H₁₄O₃ [M]⁺, 206.0943. Found 206.0942.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518-1520.

² Perrin, D. D. and Armarego, W. L. F. *Purification of Laboratory Chemicals*; 3rd ed., Pergamon Press, Oxford, 1988.

³ Manzer, L. E. Inorg. Synth. 1982, 21, 139-140.

⁴ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578.

⁵ See preceeding article in this issue for full characterization of compounds.

X-ray crystallographic data for entry 5, table 2.

Table 1. Crystal data and structure refinement for JWU2t.				
Identification code jwu2t				
Empirical formula	npirical formula C14 H16 O3			
Formula weight	232.27			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P2(1)2(1)2(1)			
Unit cell dimensions	a = 6.1337(8) Å	= 90°.		
	b = 7.5487(10) Å	= 90°.		
	c = 25.784(3) Å	= 90°.		
Volume	1193.9(3) Å ³			
Z	4			
Density (calculated)	1.292 Mg/m ³			
Absorption coefficient	0.090 mm ⁻¹			
F(000)	496			
Crystal size	.8 x .8 x 6.5 mm ³			
Theta range for data collection	1.58 to 28.29°.			
Index ranges	-7<=h<=8, -10<=k<=9, -27<=l<=33			
Reflections collected	8021			
Independent reflections	2880 [R(int) = 0.0967]			
Completeness to theta = 28.29°	99.0 %			
Absorption correction	None			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2880 / 0 / 155			
Goodness-of-fit on F ²	s-of-fit on F^2 1.129			
Final R indices [I>2sigma(I)]	R1 = 0.0802, wR2 = 0.1823			

R indices (all data)	R1 = 0.0889, wR2 = 0.1871
Absolute structure parameter	-2(2)
Largest diff. peak and hole	0.310 and -0.309 e. Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters Å² $x \ 10^3$) for JWU2t. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
O(1)	-2542(4)	3549(3)	9259(1)	36(1)
C(2)	2588(5)	1400(4)	8140(1)	26(1)
O(3)	125(4)	3015(3)	8699(1)	29(1)
C(4)	2166(4)	1987(4)	8685(1)	24(1)
O(2)	-453(4)	936(3)	9912(1)	37(1)
C(6)	3984(6)	-229(4)	9328(1)	36(1)
C(7)	417(5)	-1008(4)	8948(1)	32(1)
C(8)	4675(5)	830(4)	8003(1)	35(1)
C(9)	3508(7)	309(5)	7133(1)	43(1)
C(10)	-816(5)	2871(4)	9168(1)	27(1)
C(11)	5114(6)	252(5)	7504(2)	42(1)
C(12)	976(5)	1441(4)	7762(1)	30(1)
C(13)	677(5)	1784(4)	9512(1)	26(1)
C(14)	1435(6)	898(5)	7258(1)	38(1)
C(15)	1847(5)	585(4)	9119(1)	23(1)
C(16)	1733(11)	-2618(6)	9070(4)	127(4)
C(17)	3849(10)	-2165(6)	9219(3)	90(2)

Table 2. Bond lengths [Å] and angles [°] for JWU2t.

O(1)-C(10)	1.200(4)
C(2)-C(12)	1.388(4)
C(2)-C(8)	1.396(5)
C(2)-C(4)	1.496(4)
O(3)-C(10)	1.344(4)
O(3)-C(4)	1.473(4)

C(4)-C(15)	1.551(4)
O(2)-C(13)	1.396(4)
C(6)-C(17)	1.490(6)
C(6)-C(15)	1.545(4)
C(7)-C(16)	1.493(6)
C(7)-C(15)	1.552(4)
C(8)-C(11)	1.385(5)
C(9)-C(11)	1.374(6)
C(9)-C(14)	1.385(5)
C(10)-C(13)	1.517(4)
C(12)-C(14)	1.392(5)
C(13)-C(15)	1.538(4)
C(16)-C(17)	1.396(8)
C(12)-C(2)-C(8)	118.8(3)
C(12)-C(2)-C(4)	122.0(3)
C(8)-C(2)-C(4)	119.2(3)
C(10)-O(3)-C(4)	110.1(2)
O(3)-C(4)-C(2)	109.0(2)
O(3)-C(4)-C(15)	103.6(2)
C(2)-C(4)-C(15)	119.7(2)
C(17)-C(6)-C(15)	106.1(3)
C(16)-C(7)-C(15)	105.4(3)
C(11)-C(8)-C(2)	120.7(3)
C(11)-C(9)-C(14)	120.4(3)
O(1)-C(10)-O(3)	121.5(3)
O(1)-C(10)-C(13)	130.4(3)
O(3)-C(10)-C(13)	108.2(3)
C(9)-C(11)-C(8)	119.8(3)
C(2)-C(12)-C(14)	120.3(3)
O(2)-C(13)-C(10)	112.4(3)
O(2)-C(13)-C(15)	116.6(2)
C(10)-C(13)-C(15)	102.3(2)
C(9)-C(14)-C(12)	119.8(3)
C(13)-C(15)-C(6)	113.6(2)

C(13)-C(15)-C(4)	97.6(2)
C(6)-C(15)-C(4)	114.6(2)
C(13)-C(15)-C(7)	112.3(2)
C(6)-C(15)-C(7)	105.7(2)
C(4)-C(15)-C(7)	113.3(2)
C(17)-C(16)-C(7)	111.2(4)
C(16)-C(17)-C(6)	110.1(4)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	39(1)	36(1)	33(1)	3(1)	4(1)	8(1)
C(2)	31(2)	18(1)	29(2)	1(1)	4(1)	-4(1)
O(3)	39(1)	24(1)	23(1)	0(1)	0(1)	5(1)
C(4)	25(1)	20(1)	26(1)	-1(1)	-1(1)	-5(1)
O(2)	45(1)	44(1)	21(1)	6(1)	1(1)	7(1)
C(6)	34(2)	36(2)	38(2)	4(1)	-8(1)	6(1)
C(7)	39(2)	27(1)	30(2)	-2(1)	-1(1)	-9(1)
C(8)	35(2)	35(2)	36(2)	-3(1)	-1(1)	2(1)
C(9)	63(2)	37(2)	28(2)	-11(1)	17(2)	-5(2)
C(10)	36(2)	21(1)	24(1)	-2(1)	1(1)	-7(1)
C(11)	37(2)	43(2)	46(2)	-13(2)	12(2)	2(2)
C(12)	32(2)	30(1)	27(2)	-2(1)	1(1)	-1(1)
C(13)	31(2)	27(1)	21(1)	-4(1)	-4(1)	1(1)
C(14)	51(2)	36(2)	27(2)	-4(1)	-4(2)	-8(2)
C(15)	30(1)	21(1)	19(1)	-1(1)	-3(1)	-4(1)
C(16)	95(4)	25(2)	262(11)	-23(4)	-83(6)	1(2)
C(17)	88(4)	38(2)	145(6)	-2(3)	-51(4)	21(3)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for JWU2t. The anisotropic displacement factor exponent takes the form: -2 2 [$h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}$]

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)

for JWU2t.

	Х	у	Z	U(eq)	
H(4)	3359	2773	8790	28	
H(2)	349	829	10164	55	
H(6A)	5235	286	9154	43	
H(6B)	4119	-19	9698	43	
H(7A)	-949	-1020	9137	38	
H(7B)	104	-947	8580	38	
H(8)	5782	838	8250	42	
H(9)	3815	-50	6796	51	
H(11)	6493	-173	7420	50	
H(12)	-417	1834	7846	36	
H(13)	1756	2581	9668	31	
H(14)	353	930	7006	46	
H(16A)	1035	-3272	9349	153	
H(16B)	1790	-3380	8768	153	
H(17A)	4861	-2472	8944	108	
H(17B)	4253	-2826	9527	108	

Table 6. Torsion angles [°] for JWU2t.

C(10)-O(3)-C(4)-C(2)	151.9(2)
C(10)-O(3)-C(4)-C(15)	23.3(3)
C(12)-C(2)-C(4)-O(3)	-15.7(4)
C(8)-C(2)-C(4)-O(3)	162.9(3)
C(12)-C(2)-C(4)-C(15)	103.2(3)
C(8)-C(2)-C(4)-C(15)	-78.2(4)
C(12)-C(2)-C(8)-C(11)	-2.4(5)
C(4)-C(2)-C(8)-C(11)	179.0(3)
C(4)-O(3)-C(10)-O(1)	-177.1(3)
C(4)-O(3)-C(10)-C(13)	3.4(3)
C(14)-C(9)-C(11)-C(8)	-1.7(6)

C(2)-C(8)-C(11)-C(9)	2.8(5)
C(8)-C(2)-C(12)-C(14)	0.9(4)
C(4)-C(2)-C(12)-C(14)	179.4(3)
O(1)-C(10)-C(13)-O(2)	25.8(4)
O(3)-C(10)-C(13)-O(2)	-154.7(2)
O(1)-C(10)-C(13)-C(15)	151.7(3)
O(3)-C(10)-C(13)-C(15)	-28.9(3)
C(11)-C(9)-C(14)-C(12)	0.2(6)
C(2)-C(12)-C(14)-C(9)	0.1(5)
O(2)-C(13)-C(15)-C(6)	-76.0(3)
C(10)-C(13)-C(15)-C(6)	161.0(2)
O(2)-C(13)-C(15)-C(4)	162.9(2)
C(10)-C(13)-C(15)-C(4)	39.9(3)
O(2)-C(13)-C(15)-C(7)	43.8(3)
C(10)-C(13)-C(15)-C(7)	-79.2(3)
C(17)-C(6)-C(15)-C(13)	129.9(4)
C(17)-C(6)-C(15)-C(4)	-119.1(4)
C(17)-C(6)-C(15)-C(7)	6.4(5)
O(3)-C(4)-C(15)-C(13)	-38.5(2)
C(2)-C(4)-C(15)-C(13)	-160.1(3)
O(3)-C(4)-C(15)-C(6)	-158.9(2)
C(2)-C(4)-C(15)-C(6)	79.6(3)
O(3)-C(4)-C(15)-C(7)	79.8(3)
C(2)-C(4)-C(15)-C(7)	-41.8(4)
C(16)-C(7)-C(15)-C(13)	-123.4(5)
C(16)-C(7)-C(15)-C(6)	0.9(5)
C(16)-C(7)-C(15)-C(4)	127.2(5)
C(15)-C(7)-C(16)-C(17)	-8.6(9)
C(7)-C(16)-C(17)-C(6)	13.2(10)
C(15)-C(6)-C(17)-C(16)	-12.1(8)

Symmetry transformations used to generate equivalent atoms: