Supporting Information

Compound 12. (1,5-Cyclooctadiene)bis(methyldiphenylphosphine) iridium (I) hexafluorophosphate ($0.03 \mathrm{~g}, 0.03$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$) was stirred in degassed THF (3 mL) and activated under a H_{2} atmosphere (1 atm) until the opaque red suspension became a clear, slightly orange solution. Ar was then bubbled through the solution for 5 minutes to remove any H_{2}. The activated catalyst was then added to peracetylated α-allyl lactoside $\mathbf{1 1}(0.21 \mathrm{~g}, 0.31 \mathrm{mmol})$ in degassed THF (3 mL) and stirred for 24 hrs . The orange mixture was then concentrated under reduced pressure and subjected to column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{R}_{\mathrm{f}} 0.30\right)$ using 55:45 pet. ether/EtOAc as the eluent to afford a foam $(0.17 \mathrm{~g}, 80 \%, 10: 1$ $\alpha: \beta)$.
Yield $=80 \%(10: 1 \alpha: \beta)(10 \mathrm{~mol} \%$, 1day, unoptimized $)$
$\mathbf{R}_{\mathbf{f}}=0.30(50 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=68-70^{\circ} \mathrm{C}$

IR (film, NaCl) 2969, 2943, 1763, 1449, 1379, 1230, 1055, 898, 767, $610 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 1.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}), 2.002(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{ddd}, J=2.3,5.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}$, $7 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{dd}, J=7.7,10.3,1 \mathrm{H}), 5.28(\mathrm{~m}, 3 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H})$, 5.62 (ddd, $J=1.6,6.4,15.4,1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 20.4,20.5,20.8,20.81,60.8,62.3,66.6,69.0,70.0,70.3,70.5,70.6,70.9,72.8,76.9$, 101.1, 123.0, 133.8, 169.1, 169.6, 169.9, 169.94, 170.1, 170.2, 170.4

HRMS Calcd for $\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{4 0}} \mathbf{O}_{\mathbf{1 7}}\left(\mathrm{M}^{+}\right): 660.2266$. Found: 660.2241

General Procedure for Olefin Metathesis. To a stirring solution of the olefinic glycoside and allyl amino acid or allyl peptide in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{M})$ was added Grubbs' catalyst \mathbf{A} or \mathbf{B} (see specific mol \% below) and refluxed for 1-2 days. The solution was concentrated in vacuo and subjected to column chromatography.

Compound $6\left(\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Fmoc}\right)$.
Yield $=74 \%(10 \mathrm{~mol} \%, 16 \mathrm{~h})$
$\mathbf{R}_{\mathbf{f}}=0.19$ ($40 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=149-152^{\circ} \mathrm{C}$

IR (film, NaCl) 3318, 3074, 3039, 2952, 2908, 1754, 1702, 1658, 1545, 1449, 1274, 1213, 1099, 1055, 750, $697 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.71$
$(\mathrm{m}, 2 \mathrm{H}), 3.87(\mathrm{brt}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$
$11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 17 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 23.4,34.5,34.9,46.7,47.2,52.2,67.0,67.5,71.7,72.0,73.1,74.2,75.1,119.9,125.3$, $126.9,127.0,127.4,127.6,127.65,127.7,127.8,128.1,128.35,128.4,128.5,130.2,137.3,137.6,138.1,141.2,143.9$, 144.1, 156.1, 169.5, 172.1

HRMS Calcd for $\mathbf{C}_{\mathbf{5 1}} \mathbf{H}_{54} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{9}}\left(\mathrm{M}^{+}\right)$: 838.3829. Found: 838.3842

Compound 6 ($\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Boc}$).
Yield $=78 \%(10 \mathrm{~mol} \%, 16 \mathrm{~h})$
$\mathbf{R}_{\mathbf{f}}=0.19$ ($40 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=120-122^{\circ} \mathrm{C}$

IR (film, NaCl) 3319, 2943, 2908, 1763, 1685, 1641, 1519, 1379, 1177, 1134, 1099, 1055, 750, $706 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~m}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=7.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{brd}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{dd}, J=11.9,19.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 5.48$ $(\mathrm{m} 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.9,1 \mathrm{H}), 7.27(\mathrm{~m}, 15 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 23.3,28.3,34.6,35.3,47.1,52.1,67.7,67.8,71.8,72.1,73.0,73.1,74.3,75.0,79.7$, $126.5,127.5,127.6,127.7,127.8,127.9,128.0,128.4,128.5,130.4,137.3,137.6,138.2,155.3,169.6,172.5$
HRMS Calcd for $\mathbf{C}_{\mathbf{4} 1} \mathbf{H}_{\mathbf{5 2}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{9}}\left(\mathrm{M}^{+}\right)$: 716.3673. Found: 716.3665

Compound $9\left(\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Fmoc}\right)$.
Yield $=82 \%(10 \mathrm{~mol} \%, 24 \mathrm{~h})$
$\mathbf{R}_{\mathbf{f}}=0.17$ ($50 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=165-167^{\circ} \mathrm{C}$

IR (film, NaCl) 3336, 3039, 2952, 2873, 1728, 1667, 1536, 1457, 1221, 1073, 916, 750, $706 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 4 \mathrm{H})$,
$3.80(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~m}, 10 \mathrm{H}), 5.51(\mathrm{dd}, J=5.5,15.7,1 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=8.3,1 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $9.3,1 \mathrm{H}), 7.27(\mathrm{~m}, 17 \mathrm{H}), 7.37(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4,2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4,2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 23.3,35.2,47.1,48.9,52.4,67.1,67.7,68.8,72.2,72.4,73.2,73.3,74.8,119.9,125.2$, $126.5,127.1,127.6,127.7,127.8,127.9,128.1,128.4,128.5,128.6,131.4,137.3,137.5,138.1,141.2,143.8,156.0$, 170.0, 172.0

HRMS Calcd for $\mathbf{C}_{\mathbf{5 0}} \mathbf{H}_{\mathbf{5 2}} \mathbf{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{9}}\left(\mathrm{M}^{+}\right)$: 824.3673. Found: 824.3676

Compound 9 ($\left.\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Boc}\right)$.
Yield $=77 \%(10 \mathrm{~mol} \%, 48 \mathrm{~h})$
$\mathbf{R}_{\mathbf{f}}=0.18$ ($50 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=67-69^{\circ} \mathrm{C}$

IR (film, NaCl) 3310, 2943, 2873, 1719, 1667, 1536, 1466, 1370, 1169, 1090, 750, $706 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=6.5,10.1,1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 5 \mathrm{H})$, $4.62(\mathrm{~d}, J=11.5,1 \mathrm{H}), 5.18(\mathrm{~d}, J=8.0,1 \mathrm{H}), 5.49(\mathrm{dd}, J=5.2,15.5,1 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=9.0,1 \mathrm{H}), 7.29(\mathrm{~m}$, 15 H)
${ }^{13} \mathbf{C}$ NMR (500 MHz$)\left(\mathrm{CDCl}_{3}\right) \delta 23.3,28.3,35.4,48.7,52.3,67.8,68.9,72.3,72.5,73.2,73.7,74.9,75.0,79.9,127.1$, 127.6, 127.7, 127.8, 127.9, 128.0, 128.4, 128.5, 130.6, 137.4, 137.7, 138.1, 155.3, 169.9, 172.3

HRMS Calcd for $\mathbf{C}_{\mathbf{4 0}} \mathbf{H}_{\mathbf{5 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{9}}\left(\mathrm{M}^{+}\right)$: 702.3516. Found: 702.3494

Compound $6\left(\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Fmoc}\right.$).
Yield $=65 \%$ (6.5:1 trans:cis-) ($10 \mathrm{~mol} \%$ each day, 2 days)
$\mathbf{R}_{\mathbf{f}}=0.25$ ($70 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3345, 3021, 2960, 1754, 1676, 1545, 1457, 1379, 1248, 1047, $767 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.076(\mathrm{~s}, 3 \mathrm{H}), 2.083(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.53$ $(\mathrm{m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 4 \mathrm{H}), 4.93(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=7.0$ $\mathrm{Hz}), 5.46(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H})$, 7.76 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 20.7,20.8,20.82,23.2,30.1,31.1,35.3,47.1,49.8,52.4,53.5,60.8,61.2,67.0,67.5$, $69.6,70.5,71.1,120.0,125.0,125.1,125.2,125.8,127.0,127.7,128.6,129.6,141.3,143.8,143.9,155.8,168.9,169.6$, 170.6, 170.7, 172.1

HRMS Calcd for $\mathbf{C}_{36} \mathbf{H}_{42} \mathbf{N}_{2} \mathbf{O}_{12}\left(\mathrm{M}^{+}\right): 694.2738$. Found: 694.2726

Compound 6 ($\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Boc}$).
Yield $=60 \%$ (12.5:1 trans:cis-) ($10 \mathrm{~mol} \%$ each day, 2 days $)$
$\mathbf{R}_{\mathrm{f}}=0.25$ ($70 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3358, 2986, 2952, 1754, 1527, 1440, 1379, 1239, 1169, $1065 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 9 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.45(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=6.2,12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1H)
${ }^{13} \mathbf{C}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 20.7,20.8,23.2,26.8,28.3,30.1,30.9,34.6,35.4,49.6,50.2,52.3,53.0,53.4,60.6$, $61.3,62.3,67.1,67.5,68.6,69.3,69.8,70.2,70.8,71.9,74.1,74.3,75.6,79.9,126.1,127.2,128.5,129.4,155.2,168.9$, 169.6, 170.6, 170.9, 172.5

HRMS Calcd for $\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{4 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{1 2}}\left(\mathrm{M}^{+}\right): 572.2581$. Found: 572.2581

Yield $=89 \%$
$\mathbf{R}_{\mathbf{f}}=0.20$ (70\% EtOAc:pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3362, 2961, 2873, 1754, 1536, 1449, 1379, 1239, 1178, 1055, 924, 741
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.56(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.07$
$(\mathrm{s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 20.7,20.8,23.2,24.6,25.0,26.6,28.3,32.7,50.8,52.3,53.1,61.6,67.8,70.2,71.4$, 155.3, 169.0, 169.6, 170.6, 171.1, 173.3

HRMS Calcd for $\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{4 2}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{1 2}}\left(\mathrm{M}^{+}\right): 574.2738$. Found: 574.2714
To a stirring solution of FSI-242 ($65 \mathrm{mg}, 0.114 \mathrm{mmol}$) in $\mathrm{MeOH}(0.6 \mathrm{~mL})$ and EtOAc $(0.6 \mathrm{~mL})$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$ was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%)(7 \mathrm{mg})$. The reaction mixture was filtered through Celite after stirring overnight. The filtrate was concentrated under reduced pressure and subjected to column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{R}_{\mathrm{f}} 0.20,70 \% \mathrm{EtOAc}\right.$:pet. ether) to give TBIII-245 as a film ($58 \mathrm{mg}, 89 \%$).

Compound 7.
Yield $=(q u)$
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3537, 2960, 2873, 1658, 1449, 1379, 1222, 1178, $1055 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.49$ $(\mathrm{m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=2.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 22.6,26.1,26.2,26.7,28.7,32.7,52.6,55.0,63.1,72.4,72.9,74.3,74.7,128.3,129.3$,
158.2, 173.5, 175.1

HRMS Calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{3 6}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{9}}\left(\mathrm{M}^{+}\right)$: 448.2421 . Found: 448.2424
To a stirring solution of $\mathrm{Na}^{\mathrm{o}}(5 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added TBIII-245 ($30 \mathrm{mg}, 0.05 \mathrm{mmol}$). After stirring for 2 hrs, the reaction mixture was quenched by careful addition of Amberlite IR-120 to ensure that the pH did not become acidic and cause cleavage of the Boc-group. The mixture was then filtered, and the filtrate concentrated under a reduced pressure to give TBIII-253 as a white glass (23 mg , qu).

Compound 9 ($\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Fmoc}$).
Yield $=69 \% ~(10 \mathrm{~mol} \%$ each day, 2 days)
$\mathbf{R}_{\mathbf{f}}=0.25$ (70\% EtOAc/pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3345, 3021, 2960, 1754, 1676, 1536, 1457, 1379, 1239, 1055, $767 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.94$ $(\mathrm{m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t},, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t},, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d},, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.77 (d, , J = 7.0 Hz, 2H)
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 20.7,23.0,36.0,47.1,51.2,52.7,53.8,62.3,67.1,68.5,70.3,70.8,73.8,120.0,125.0$, 126.3, 127.1, 127.8, 131.6, 141.3, 143.7, 155.6, 169.1, 170.1, 170.8, 171.5, 171.7

HRMS Calcd for $\mathbf{C}_{35} \mathbf{H}_{40} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{1 2}}\left(\mathrm{M}^{+}\right): 680.2581$. Found: 680.2600

Compound 9 ($\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Boc}$).
Yield $=77 \%$ ($10 \mathrm{~mol} \%$ each day, 2 days)
$\mathbf{R}_{\mathbf{f}}=0.24(70 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3336, 2986, 2943, 1754, 1536, 1379, 1239, 1169, $1047 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H} \operatorname{NMR}(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=2.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=5.1,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 20.6,20.7,23.0,28.2,35.9,51.1,52.5,53.3,62.3,68.6,70.1,70.9,74.0,80.2,125.8$, 132.2, 154.9, 169.1, 170.1, 170.8, 171.4, 172.0

HRMS Calcd for $\mathbf{C}_{25} \mathbf{H}_{38} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{1 2}}\left(\mathrm{M}^{+}\right): 558.2425$. Found: 558.2422

Compound 14.
Experimental: Fmoc-Allyl-Gly ($200 \mathrm{mg}, 0.57 \mathrm{mmol}, 1 \mathrm{eq}$), $\mathrm{H}_{2} \mathrm{~N}$-Phe-Ome ($136 \mathrm{mg}, 0.57 \mathrm{mmol}$, 1eq), PyBop ${ }^{\circledR}$ (328 $\mathrm{mg}, 0.63 \mathrm{mmol}, 1.1 \mathrm{eq})$ and DIEA $(0.2 \mathrm{~mL}, 148 \mathrm{mg}, 1.14 \mathrm{mmol})$ were stirred in dry THF $(10 \mathrm{~mL})$ for 5 h . The reaction mixture was then concentrated, redissolved in EtOAc (25 mL), and extracted sequentially with 5% citric acid (25 mL), 2 times with 5% sodium bicarbonate (25 mL), and 2 times with water (25 mL). The organic layer was dried with sodium sulfate and concentrated under reduced pressure. The white solid was then redissolved in 10% diethylamine in DMF (5 mL). This mixture was stirred at room temperature for 1 hour. The resulting solution was concentrated under high vacuum to a residue. This residue was then dissolved in a $1: 1$ solution of THF and DMF (30 mL). Boc-protected alanine ($108 \mathrm{mg}, 0.572 \mathrm{mmol}, 1 \mathrm{eq}$) and PyBop ($328 \mathrm{mg}, 0.628 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to this solution and stirred at room temperature under argon. Diisoproplyethylamine ($0.1 \mathrm{~mL}, 0.572 \mathrm{mmol}, 1 \mathrm{eq}$) was added, and the reaction was allowed to stir for 16 hours. The mixture was concentrated under reduced pressure and redissolved in ethyl acetate (50 mL). The resulting solution was extracted sequentially with 5% citric acid (25 mL), 2 times with 5% sodium bicarbonate (25 mL), and 2 times with water (25 mL). The organic layer was dried with sodium sulfate and concentrated under reduced pressure. The white solid was subjected tocolumn chromatography $\left(\mathrm{SiO}_{2}, \mathrm{R}_{\mathrm{f}} 0.25,50 \%\right.$ $\mathrm{EtOAc} /$ pet. ether) to give FSI-209 as a pale yellow solid ($153 \mathrm{mg}, 60 \%$, overall)
Yield $=60 \%$ (overall)
$\mathbf{R}_{\mathbf{f}}=0.25$ ($50 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=98-100^{\circ} \mathrm{C}$

IR (film, NaCl) 3310, 3065, 2986, 1754, 1650, 1527, 1457, 1379, 1256, 1178, 1038, 933, 863, 758, $697 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.48(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ (ddd, $J=6.0,13.9$, $26.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H})$, $6.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 18.0,28.3,36.2,37.7,50.2,52.2,52.3,53.2,80.3,119.1,127.1,128.6,129.2,132.6$, 135.7, 155.7, 170.3, 171.5, 172.5

HRMS Calcd for $\mathbf{C}_{23} \mathbf{H}_{33} \mathbf{N}_{\mathbf{3}} \mathbf{O}_{\mathbf{6}}\left(\mathrm{M}^{+}\right)$: 447.2369 . Found: 447.2370
Literature: 1. Coste, J.; Le-Nguyen, D.; Castro, B. Tetrahedron Lett. 1990, 31, 205-208. 2. Walkup, R.; Cole, D.;
Whittlesey, B. J. Org. Chem. 1995, 60, 2630-2634. 3. Høeg-Jensen, T.; Jakobsen, M.; Olsen, C.; Holm, A.;
Tetrahedron Lett. 1991, 32, 7617-7620.

Compound 12 ($\mathrm{R}^{2}=\mathrm{Fmoc}$).
Yield $=57 \%$ ($10 \mathrm{~mol} \%$ each day, 2 days)
$\mathbf{R}_{\mathrm{f}}=0.14$ ($50 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3380, 3021, 2952, 1754, 1519, 1457, 1379, 1230, 1064, $758 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~m}, 19 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H})$, $3.77(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 6 \mathrm{H}), 4.43(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 20.5,20.6,20.8,20.9,29.74,69.7,69.8,70.7,71.0,101.4,120.0,125.1$, 126.9, 127.0, 129.7, 141.2, 143.7, 143.9, 155.7, 169.2, 169.6, 169.9, 170.0, 170.4

HRMS Calcd for $\mathbf{C}_{\mathbf{4 8}} \mathbf{H}_{\mathbf{5 7}} \mathbf{N O}_{\mathbf{2 1}}\left(\mathrm{M}^{+}\right)$: 983.3423 . Found: 983.3458

Compound 12 ($\left.\mathrm{R}^{2}=\mathrm{Boc}\right)$.
Yield $=73 \%$ ($10 \mathrm{~mol} \%$ each day, 2 days) (TBIII-221)
$\mathbf{R}_{\mathrm{f}}=0.21$ ($50 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3371, 3021, 2986, 1754, 1510, 1449, 1379, 1239, 1178, 1064, $767 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)($ major isomer) $\delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 2.07(\mathrm{~m}, 22 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 5.34$ (m, 2H), $5.46(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 20.5,20.51,20.6,20.7,20.8,20.9,23.8,28.2,29.7,35.5,41.8,52.2$,
$53.0,60.8,62.1,63.5,66.6,66.7,68.7,69.0,69.6,69.8,70.1,70.4,70.5,70.7,70.71,70.9,71.0,71.6,73.2,76.4,79.9$, $96.2,96.5,101.3,102.2,127.1,128.4,128.7,129.2,155.1,169.1,169.5,169.9,170.0,170.3,170.7,172.4$
HRMS Calcd for $\mathbf{C}_{38} \mathbf{H}_{55} \mathbf{N O}_{\mathbf{2 1}}\left(\mathrm{M}^{+}\right)$: 861.3267 . Found: 861.3279

Compound 13 ($\mathrm{R}^{2}=$ Fmoc).
Yield $=60 \%$ ($10 \mathrm{~mol} \%, 2$ days)
$\mathbf{R}_{\mathrm{f}}=0.11(60 \% \mathrm{EtOAc} /$ pet. ether $)$
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3362, 2934, 2855, 1754, 1527, 1449, 1379, 1230, 1055, 915, $750 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major product) $\delta 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.14$ $(\mathrm{s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 6 \mathrm{H}), 4.14(\mathrm{~m}, 5 \mathrm{H}), 4.45(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H})$, $5.23(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major product) $\delta 20.4,20.6,20.7,20.8,29.7,30.9,35.7,47.1,52.8,53.4,60.8,62.4$, $66.6,67.0,68.9,69.0,70.0,70.2,70.4,70.7,71.0,72.0,76.8,101.2,120.0,125.0,126.5,127.0,127.7,131.0,141.3$, $143.8,155.5,169.2,169.7,169.9,170.0,170.1,170.3,170.5,171.9$
HRMS Calcd for $\mathbf{C}_{\mathbf{4 7}} \mathbf{H}_{55} \mathbf{N O}_{\mathbf{2 1}}\left(\mathrm{M}^{+}\right)$: 969.3267 . Found: 969.3250

Compond 15.
Yield $=60 \%$ ($10 \mathrm{~mol} \%$ each day, 2 days)
$\mathbf{R}_{\mathbf{f}}=0.28$ ($70 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=122-124^{\circ} \mathrm{C}$

IR (film, NaCl) 3319, 3039, 2978, 2933, 1737, 1658, 1536, 1510, 1466, 1379, 1256, 1178, 1099, 916, 741, $697 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.71$ (dt, $J=4.7,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=5.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=6.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~m}, 4 \mathrm{H})$, $4.23(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~m}, 8 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=6.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 20 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 18.7,23.3,28.3,29.6,34.4,38.0,49.7,51.8,52.2,53.2,67.6,69.6,72.1,72.2,72.6$, $73.2,74.5,74.7,79.5,127.0,127.5,127.7,127.8,127.9,128.1,128.4,128.5,128.6,129.2,131.6,135.9,137.2,137.9$, 155.5, 170.3, 171.4, 173.7

HRMS Calcd for $\mathbf{C}_{52} \mathbf{H}_{64} \mathbf{N}_{4} \mathbf{O}_{\mathbf{1 1}}\left(\mathrm{M}^{+}\right)$: 920.4572 . Found: 920.4541

Compound 16.
Yield $=39 \%$ ($10 \mathrm{~mol} \%$ each day, 2 days)
$\mathbf{R}_{\mathbf{f}}=0.09$ ($80 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3301, 2925, 2855, 1754, 1667, 1536, 1440, 1379, 1239, 1178, 1047, $767 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.43$ $(\mathrm{m}, 4 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 5 \mathrm{H}), 4.39(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=7.0,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=$ $7.5,1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 18.4,20.8,23.3,28.3,29.7,31.7,35.2,37.7,49.3,50.1,52.3,52.6$, $53.3,61.1,67.5,69.3,70.2,71.8,80.0,127.1,127.8,128.6,129.2,135.8,155.4,168.9,169.7,170.4,170.8,171.6$, 172.7

HRMS Calcd for $\mathbf{C}_{\mathbf{5 3}} \mathbf{H}_{\mathbf{6 6}} \mathbf{N}_{\mathbf{4}} \mathbf{O}_{\mathbf{1 1}}\left(\mathrm{M}^{+}\right)$: 790.3637 Found: 790.3651

Compound 17.
Yield $=57 \%$ ($10 \mathrm{~mol} \%$, 2 days)
$\mathbf{R}_{\mathbf{f}}=0.17$ ($70 \% \mathrm{EtOAc} /$ pet. ether)
m.p. $=\mathrm{n} / \mathrm{a}$

IR (film, NaCl) 3353, 2978, 2934, 1754, 1667, 1510, 1449, 1379, 1230, 1064, 924, $741 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)($ major isomer) $\delta 1.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}$, $6 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}) .3 .69(\mathrm{~m}, 5 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 5 \mathrm{H}), 4.31$ $(\mathrm{m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{dd}, J=7.5,23.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (dd, $J=7.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $\delta 18.1,20.5,20.6,20.7,20.8,28.3,29.8,35.4,37.6,50.2,52.3,52.5$, $53.2,60.8,62.1,66.7,68.7,69.6,70.7,70.9,71.5,76.3,101.4,127.1,127.5,128.6,129.1,129.4,135.7,169.1,169.4$, $169.5,169.9,170.0,170.2,170.4,170.5,170.7,171.5,172.6$
HRMS Calcd for $\mathbf{C}_{53} \mathbf{H}_{66} \mathbf{N}_{4} \mathbf{O}_{\mathbf{1 1}}\left(\mathrm{M}^{+}\right): 1079.4322$. Found: 1079.4336

*Unable to be purified due to tripeptide dimer being present.

*Unable to be purified due to tripeptide dimer being present.

