Supplementary Material for:

Kinetic Resolution of Racemic Lactones by Conjugate Additions of Allylic Organolithium Species: Formation of 3 Centers with High Diatereo- and Enantioselectivities

Sung H. Lim and Peter Beak*
Department of Chemistry
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Experimental

General. All air-sensitive reactions were performed in oven or flame dried glassware under nitrogen with freshly distilled solvents. Toluene was distilled over CaH_{2}, and diethyl ether, tetrahydrofuran (THF) was distilled from sodium and benzophenone. Commercial (-)-sparteine (Aldrich) was distilled and stored under nitrogen. Commercially available TEEDA was used to obtain racemic product and used without purification. n - BuLi solution in hexanes $(1.6 \mathrm{M})$ was titrated prior to use against N-pivaloyl-o-toluidine. All other commercial reagents were used without further purification, unless otherwise indicated.

Preparative high-pressure liquid chromatography (HPLC) was performed using Rainin SD 200 pump system equipped with Dynamax-60-A $8 \mu \mathrm{~m}$ silica column (Rainin Instrument Co., $25 \mathrm{~cm} \times 21.4 \mathrm{~mm}$ i.d.) and Knauer UV detector (254 nm). Analytical chiral stationary phase HPLC was performed using Rainin HPXL pump systems. Either Whelk-O (Regis Chemical Co., $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ i.d.) or Chiralpak AD (Chiral Technologies Inc. $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ i.d.) was used to obtain product enantiomeric purity. Analytical thin layer chromatography (TLC) was done on Merck silica plates (0.25 mm)
with QF-254 indicator. Either UV light or alkaline KMnO_{4} was used for TLC visualization. Flash chromatography was performed suing 230-400 mesh silica gel. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired using either a Varian U400 ($400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100.6$ $\mathrm{MHz}{ }^{13} \mathrm{C}$) or U500 ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$) spectrometer using CDCl_{3}, acetone- d_{6} or DMSO as a solvent. Chemical shifts are reported in ppm relative to the solvent. Mass spectral data was obtained at the University of Illinois Mass Spectrometry Laboratory. Thomas-Hoover capillary melting point apparatus was used to determine uncorrected melting points. Purity of the sample is established to be $>95 \%$ based on ${ }^{13} \mathrm{C}$ NMR spectra. Diastereomeric purity was determined by ${ }^{1} \mathrm{H}$ NMR integration.
"Standard workup" refers to dilution with diethyl ether, addition of $\mathrm{H}_{2} \mathrm{O}$, separation of phases, extraction of the aqueous layer with ether (3x), combination of the organic phases, drying with MgSO_{4} and concentration by rotary evaporation.

4

Representative Kinetic Resolution of Racemic Michael Acceptors: Preparation of

 (3R, 2'R, 3''S)-(4-Methoxy-phenyl)-[3-(2'-methyl-5-oxo-tetrahydro-furan-3-yl)-3''-phenyl-propenyl]-carbamic acid tert-butyl ester (4)To a stirring solution of $\mathbf{1}(249 \mathrm{mg}, 0.73 \mathrm{mmol})$ under a N_{2} atmosphere in 10 mL of toluene, (-)-sparteine $(0.19 \mathrm{~mL}, 0.80 \mathrm{mmol})$ was added. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and $n-\mathrm{BuLi}(0.51 \mathrm{~mL}, 0.80 \mathrm{mmol})$ was added and stirred for 15 min . The resulting mixture was slowly added to a precooled solution of 5-methyl 5 H -furan-2one ($0.17 \mathrm{~mL}, 1.83 \mathrm{mmol}$) and $\mathrm{TMSCl}(0.47 \mathrm{~mL}, 3.7 \mathrm{mmol})$ in 5 mL of toluene. After stirring for 1 hr , the reaction mixture was quenched with MeOH , and warmed to rt. 3.7 mL of TBAF (3.7 mmol) was added and stirred for additional 30 mins . The standard work-up afforded the crude product as a yellow oil, which was purified by column chromatography (25% ethyl acetate in hexane) to give the product as a clear oil (246 mg , $0.563 \mathrm{~mol}, 77 \%) .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.35(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.43(\mathrm{~s}, 9 \mathrm{H})$,
$1.91(\mathrm{dd}, 1 \mathrm{H}, J=17.7,6.8 \mathrm{~Hz}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, 1 \mathrm{H}, J=17.4,8.9 \mathrm{~Hz}), 2.89(\mathrm{bs}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{dd}, 1 \mathrm{H}, J=10.5,9.8 \mathrm{~Hz}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~m}$,
 $28.1,33.2,44.6,48.2,55.8,80.3,114.3,126.8,127.5,128.5,129.3,134.3,153.5,158.4$, 175.8. HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{O}_{5}$: 437.2202; found: 437.2203. The enantiomeric purity was determined to be $94: 6$ by CSP-HPLC analysis on a Pirkle concept Whelk-O column with $15 \%(\mathrm{v} / \mathrm{v})$ isopropyl alcohol/hexane mobile phase by a flow rate $1.2 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 44.6 min and the minor enantiomer had a retention time of 40.0 min .

5
(3R, 2'R, $3^{\prime \prime} S$)-(4-Methoxy-phenyl)-[3-(2'-ethyl-5-oxo-tetrahydro-furan-3-yl)-3'’-phenyl-propenyl]-carbamic acid tert-butyl ester ($3 R, 2^{\prime} R, 3^{\prime} ' S$)-(5)

The general kinetic resolution procedure was followed using 1 ($183 \mathrm{mg}, 0.54$ mmol) and 5-ethyl-5H-furan-2-one ($152 \mathrm{mg}, 1.36 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (30% ethylacetate in hexane) to afford 5 (152 $\mathrm{mg}, 0.337 \mathrm{mmol}, 62 \%$) as a white crystals, and recovered $>32 \%$ of 5-ethyl-5H-furan-2one. Melting point of 5; 110-112 ${ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}$ of 5-ethyl-5H-furan-2-one $=+30^{\circ}(c=$ $8 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}$) (lit. ${ }^{9}[\alpha]^{20}{ }_{\mathrm{D}}=103^{\mathrm{o}}, c=2.71 \mathrm{~g} / \mathrm{mL}, \mathrm{CHCl}_{3}, S$-enantiomer). ${ }^{1} \mathbf{H}$-NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.98(\mathrm{t}, 3 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{bs}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}), 6.67$ $(\mathrm{m}, 2 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 9.98,28.3,28.60,32.87,44.8,45.48,55.78,81.80,85.17,114.60,127.0,127.84$, 128.80, 129.56, 132.93, 134.44, 141.05, 153.76, 158.40, 176.46. HRMS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{1} \mathrm{O}_{5}$: 451.2359; found: 451.2356. The enantiomeric purity was determined to be 95:5 by CSP-HPLC analysis on a Chiralpak column with 40% (v/v) isopropyl alcohol/hexane mobile phase by a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 13.6 min and the minor enantiomer had a retention time of 4.6 min .

6
(3R, 2'R, 3''S)-(4-Methoxy-phenyl)-[3-(2'-propyl-5-oxo-tetrahydro-furan-3-yl)-3''-phenyl-propenyl]-carbamic acid tert-butyl ester ($3 R, 2^{\prime} R, 3^{\prime \prime} S$)-(6)

The general kinetic resolution procedure was followed using 1 ($110 \mathrm{mg}, 0.32$ mmol) and 5-propyl-5H-furan-2-one ($90 \mathrm{mg}, 0.71 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (25% ethylacetate in hexane) to afford $6(93 \mathrm{mg}$, $0.20 \mathrm{mmol}, 62 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.44(\mathrm{~m}$, $11 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{~m}$, $1 \mathrm{H}), 4.91(\mathrm{t}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H})$,
 $46.00,55.78,81.86,83.71,114.60,127.02,127.84,128.77,129.56,134.48,141.04$, 153.75, 158.43, 176.46. HRMS: Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{1} \mathrm{O}_{5}$: 465.2515; found: 465.2520. The enantiomeric purity was determined to be $96: 4$ by CSP-HPLC analysis on a Chiralpak column with $40 \%(\mathrm{v} / \mathrm{v})$ isopropyl alcohol/hexane mobile phase by a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 8.0 min and the minor enantiomer had a retention time of 4.5 min .

7
(3R, 2'R, 3'S)-(4-Methoxy-phenyl)-[3-(2'-hexyl-5-oxo-tetrahydro-furan-3-yl)-3''-phenyl-propenyl]-carbamic acid tert-butyl ester ($3 R, 2$ ' $R, 3$, $' S$) -(7)

The general kinetic resolution procedure was followed using 1 ($155 \mathrm{mg}, 0.46$ mmol) and 5-hexyl-5H-furan-2-one ($180 \mathrm{mg}, 1.07 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (25% ethylacetate in hexane) to afford 7 (160 $\mathrm{mg}, 0.32 \mathrm{mmol}, 69 \%) .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.913(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.30$ $(\mathrm{m}, 7 \mathrm{H}), 1.44(\mathrm{~m}, 9 \mathrm{H}), 1.56(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{dd}, 1 \mathrm{H}, J=16.7,4.5 \mathrm{~Hz}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.29$
$(\mathrm{dd}, 1 \mathrm{H}, J=17.2,8.6 \mathrm{~Hz}), 2.84(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{t}, 1 \mathrm{H}, J=10.3$ $\mathrm{Hz}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.30,22.76,25.59,28.35,29.19,31.90,32.78,35.72,44.67,46.02$, $55.79,83.92,114.62,127.03,127.85,128.77,129.53,134.43,153.75,158.48,176.50$. HRMS: Calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{1} \mathrm{O}_{5}$: 507.2985 ; found: 507.2992. The enantiomeric purity was determined to be 96:4 by CSP-HPLC analysis on a Chiralpak column with 15% (v/v) isopropyl alcohol/hexane mobile phase by a flow rate $0.8 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 9.9 min and the minor enantiomer had a retention time of 8.0 min .

8
($3 R, 2^{\prime} R, 3^{\prime}{ }^{\prime} S$)-[3-(2'-Hex-3-enyl-5-oxo-tetrahydro-furan-3-yl)-3''-phenyl-propenyl]-(4-methoxy-phenyl)-carbamic acid tert-butyl ester ($3 R, 2$ ' $R, 3^{\prime \prime} S$)-(8)

The general kinetic resolution procedure was followed using 1 ($103 \mathrm{mg}, 0.30$ mmol) and (3Z)-5-hex-3-enyl-5H-furan-2-one ($112 \mathrm{mg}, 0.67 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (25% ethylacetate in hexane) to afford $\mathbf{8}(118 \mathrm{mg}, 0.23 \mathrm{mmol}, 76 \%) . \quad{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.99(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 1.43(\mathrm{~m}, 9 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}$, $2 \mathrm{H}), 2.82(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{t}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 5.31(\mathrm{~m}, 1 \mathrm{H})$, $5.47(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.53,20.78,23.45,28.34,32.93,35.76,44.60,46.22,55.79$, $81.95,83.33,114.63,127.05,127.49,127.83,128.78,128.86,129.40,133.34,134.37$, 141.04, 153.72, 158.51, 176.34. HRMS: Calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{1} \mathrm{O}_{5}$: 505.2828; found: 505.2824. The enantiomeric purity was determined to be $96: 4$ by CSP-HPLC analysis on a Chiralpak column with $15 \%(\mathrm{v} / \mathrm{v})$ isopropyl alcohol/hexane mobile phase by a flow rate $0.8 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 11.0 min and the minor enantiomer had a retention time of 8.1 min .

10

11
(3S, $\quad 2 ' R, \quad 3 " S)$-\{3-[2'-(tert-Butyl-dimethyl-silanyloxymethyl)-5-oxo-tetrahydro-furan-3-yl]-3"-phenyl-propenyl\}-(4-methoxy-phenyl)-carbamic acid tert-butyl ester (3S, $\left.2^{\prime} R, 3^{\prime} ' S\right)$-(10) and (3S, $\left.2^{\prime} S, 3^{\prime} ' S\right)$-\{3-[2'-(tert-butyl-dimethyl-silanyloxymethyl)-5-trimethylsilanyloxy-2,3-dihydro-furan-3-yl]-3"'-phenyl-propenyl\}-(4-methoxy-phenyl)-carbamic acid tert-butyl ester ($3 S, 2^{\prime} S, 3^{\prime}$ ' S)-(11)
The general kinetic resolution procedure was followed using 1 ($203 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 5-(tert-butyl-dimethyl-silanyloxymethyl)-5H-furan-2-one ($180 \mathrm{mg}, 0.78 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (25% ethylacetate in hexane) to afford $10(240 \mathrm{mg}, 0.42 \mathrm{mmol}, 70 \%)$, and $11(68 \mathrm{mg}, 10.6 \mathrm{mmol}, 18 \%)$. 10: ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$, $1.81(\mathrm{bd}, 1 \mathrm{H}, J=17.9 \mathrm{~Hz}), 2.39(\mathrm{dd}, 1 \mathrm{H}, J=17.9,9.2 \mathrm{~Hz}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{bs}, 1 \mathrm{H})$, $3.60(\mathrm{dd}, 1 \mathrm{H}, J=11.4,2.3 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}, J=11.4,2.7 \mathrm{~Hz}), 4.37(\mathrm{bs}$, $1 \mathrm{H}), 4.89(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.37,-5.30,18.39,26.01,28.35,33.51$, 42.44, 45.04, 55.78, 65.20, 83.08, 83.11, 114.64, 126.97, 127.85, 128.77, 129.75, 134.35, 141.13, 153.77, 158.46, 177.04. HRMS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{Si}$: 567.3016; found: 567.3023. 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.12(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.77(\mathrm{bd}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{bs}, 1 \mathrm{H}), 3.37(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{bt}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 6.73(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H})$, $6.93(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.17,-2.08,18.4,25.9$, 28.1, 35.3, 44.6, 46.3, 55.8, 64.9, 81.8, 114.3, 126.9, 128.0, 128.6, 134.1, 153.6, 178.9. HRMS: Calcd for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{Si}_{2}$: 639.3411; found: 639.3407.

(3S, 2'R, $\quad 3^{\prime} ' S$)-[3-(2'-Hydroxymethyl-5-oxo-tetrahydro-furan-3-yl)-3''-phenyl-propenyl]-(4-methoxy-phenyl)-carbamic acid tert-butyl ester (3S, $\mathbf{2}^{\prime} R, 3^{\prime} \boldsymbol{\prime} S$) -(12)
From 10: To a stirring solution of $\mathbf{1 0}(976 \mathrm{mg}, 1.72 \mathrm{mmol})$ in 15 mL of THF, 1.9 mL of TBAF (1.9 mmol) was added and stirred for 30 min . The solvent was removed and the resulting oil was purified by column chromatography (50% ethylacetate in hexane) to afford 12 ($765 \mathrm{mg}, 1.69 \mathrm{mmol}, 98 \%$). From 11: To a stirring solution of $\mathbf{1 1}$ (54 mg , $0.085 \mathrm{mmol})$ in 15 mL of THF, 0.17 mL of TBAF (0.17 mmol) was added and stirred for 30 min . The solvent was removed and the resulting oil was purified by column chromatography (50% ethylacetate in hexane) to afford 12 ($35 \mathrm{mg}, 0.077 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.92(\mathrm{dd}, 1 \mathrm{H}, J=18.3,5.8 \mathrm{~Hz}), 2.23(\mathrm{bs}$, $1 \mathrm{H}), 2.36(\mathrm{dd}, 1 \mathrm{H}, J=18.3,9.3 \mathrm{~Hz}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{bs}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{dd}, 1 \mathrm{H}, J=10.6,9.4 \mathrm{~Hz}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{bd}$, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 28.4,33.5,41.8,45.0,55.8,64.3,82.1,83.9,114.6,127.1,127.7,128.6,128.8$, 129.7, 134.5, 140.8, 153.8, 158.4, 176.6. HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{O}_{6}$: xxxx; found: xxxx.

14
($3 R, 5{ }^{\prime} R, 3^{\prime \prime} R$)-(4-Methoxy-phenyl)-[3-(5'-methyl-2-oxo-tetrahydro-pyran-4-yl)-3''-phenyl-propenyl]-carbamic acid tert-butyl ester ($3 R, 5^{\prime} R, 3^{\prime} \cdot R$)-(14)

The general kinetic resolution procedure was followed using 1 ($76 \mathrm{mg}, 0.22$ mmol) and 5-methyl-5,6-dihydro-pyran-2-one ($55 \mathrm{mg}, 0.49 \mathrm{mmol}$) to afford crude mixture which was purified by column chromatography (35% ethylacetate in hexane) to afford 14 ($68 \mathrm{mg}, 0.15 \mathrm{mmol}, 68 \%$) as a mixture of diasteromers ($75: 25 \mathrm{dr}$). Using TEEDA as a ligand, rac-14 ($83 \mathrm{mg}, 0.18 \mathrm{mmol}, 62 \%$) was obtained with $98: 2 \mathrm{dr}$ from 1 ($101 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 5-methyl-5,6-dihydro-pyran-2-one ($44 \mathrm{mg}, 0.39 \mathrm{mmol}$). Major diastereomers: ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.97(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.42(\mathrm{~s}, 9 \mathrm{H})$, $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{bs}, 1 \mathrm{H}), 1.91(\mathrm{dd}, 1 \mathrm{H}, J=15.9,7.8 \mathrm{~Hz}), 2.17(\mathrm{dd}, 1 \mathrm{H}, J=16.0,7.0$
$\mathrm{Hz}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=11.4,6.0 \mathrm{~Hz}), 4.11(\mathrm{dd}, 1 \mathrm{H}, J=11.4$, $4.0 \mathrm{~Hz}), 5.05(\mathrm{dd}, 1 \mathrm{H}, J=10.8,9.5 \mathrm{~Hz}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 7.01$ $(\mathrm{m}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 18.90,28.37,30.91,32.31$, 43.82, 46.47, 55.79, 71.98, 81.71, 114.46, 126.87, 127.96, 128.44, 128.60, 129.34, 134.65, 153.84, 158.24, 172.98. HRMS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{1} \mathrm{O}_{5}$: 451.2359; found: 451.2365. The enantiomeric purity was determined to be $98: 2$ for major and $93: 7$ for minor diastereomer by CSP-HPLC analysis on a Chiralpak column with 20% (v/v) isopropyl alcohol/hexane mobile phase by a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$. For major diastereomer, the major enantiomer had a retention time of 25.3 min and the minor enantiomer had a retention time of 10.5 min . For minor diastereomer, the major enantiomer had a retention time of 11.5 min and the minor enantiomer had a retention time of 6.0 min .

15
(3R, $\quad 5 \prime R, \quad 3 ' \operatorname{R})$-(4-Methoxy-phenyl)-[3-(5'-ethyl-2-oxo-tetrahydro-pyran-4-yl)-3'’-phenyl-propenyl]-carbamic acid tert-butyl ester ($3 R, 5^{\prime} R, 3^{\prime} \cdot R$)-(15)

The general kinetic resolution procedure was followed using 1 ($84 \mathrm{mg}, 0.25$ mmol) and 5-ethyl-5,6-dihydro-pyran-2-one ($69 \mathrm{mg}, 0.55 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (35% ethylacetate in hexane) to afford $\mathbf{1 5}$ ($75 \mathrm{mg}, 0.16 \mathrm{mmol}, 65 \%$) as a mixture of diastereomers ($80: 20 \mathrm{dr}$). Using TEEDA as a ligand, rac-15 ($460 \mathrm{mg}, 0.99 \mathrm{mmol}, 73 \%$) was obtained with 89:11 dr from $1(457 \mathrm{mg}$, 1.35 mmol) and 5-ethyl-5,6-dihydro-pyran-2-one ($220 \mathrm{mg}, 1.75 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$-NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.79(\mathrm{bs}, 1 \mathrm{H}), 1.86(\mathrm{dd}, 1 \mathrm{H}, J=15.4,7.7 \mathrm{~Hz}), 2.07(\mathrm{dd}, 1 \mathrm{H}, J=16.0,7.0 \mathrm{~Hz}), 2.89(\mathrm{~m}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=11.7,4.8 \mathrm{~Hz}), 4.08(\mathrm{dd}, 1 \mathrm{H}, J=11.5,4.3 \mathrm{~Hz}), 5.03$ $(\mathrm{dd}, 1 \mathrm{H}, J=10.9,9.2 \mathrm{~Hz}), 6.68(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 7.15$ $(\mathrm{m}, 3 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 11.66,26.13,28.36,32.62,37.43,42.23,47.00$, $55.79,69.26,81.70,114.48,126.87,127.86,128.45,128.63,129.46,134.77,153.81$,
158.22, 173.27. HRMS: Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{1} \mathrm{O}_{5}$: 465.2515q; found: 465.2513. The enantiomeric purity was determined to be 98:2 for major and 93:7 for minor diastereomer by CSP-HPLC analysis on a Chiralpak column with $20 \%(\mathrm{v} / \mathrm{v})$ isopropyl alcohol/hexane mobile phase by a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$. For major diastereomer, the major enantiomer had a retention time of 21.4 min and the minor enantiomer had a retention time of 9.7 min . For minor diastereomer, the major enantiomer had a retention time of 11.0 min and the minor enantiomer had a retention time of 13.3 min .

18
(4R, 1'R)-4-\{3-[tert-Butoxycarbonyl-(4-methoxy-phenyl)-amino]-1'-phenyl-allyl\}-2-oxo-pyrrolidine-1-carboxylic acid tert-butyl ester ($4 R, 1^{\prime} R$)-(18)

A solution of $1(246 \mathrm{mg}, 0.73 \mathrm{mmol})$ and (-)-sparteine ($0.18 \mathrm{~mL}, 0.80 \mathrm{mmol})$ in 15 mL of toulene was cooled to $-78{ }^{\circ} \mathrm{C}$, and $n-\mathrm{BuLi}(0.50 \mathrm{~mL}, 0.80 \mathrm{mmol})$ was added dropwise. After stirring for 30 min , premixed solution of $\mathbf{1 6}(199 \mathrm{mg}, 1.09 \mathrm{mmol})$ and TMSCl ($0.21 \mathrm{~mL}, 1.64 \mathrm{mmol}$) in 5 mL of toluene was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h , and then quenched with MeOH . The solution was warmed to rt , and TBAF ($1.64 \mathrm{~mL}, 1.64 \mathrm{mmol}$) was added. Standard workup and flash chromatography (35% ethyl acetate in hexane) provided 18 ($220 \mathrm{mg}, 0.42 \mathrm{mmol}, 58 \%$) with $87: 13 \mathrm{dr}$. The diastereomers were separated using preparative HPLC (12% ethylacetate in hexane to 20% ethylacetate in hexane) to provide a single diastereomer ($185 \mathrm{mg}, 35 \mathrm{mmol}, 48 \%$). Major diastereomer: ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.41$ (s, $9 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.88(\mathrm{dd}, 1 \mathrm{H}, J=18.2,8.6 \mathrm{~Hz}), 2.12(\mathrm{dd}, 1 \mathrm{H}, J=17.7,8.2), 2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.72(\mathrm{bs}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=11.1,7.9 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.92(\mathrm{t}$, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 6.69(\mathrm{bd}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H})$, $7.15(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.27,28.33,37.20,37.77,45.0,50.1$, $55.8,81.78,83.0,114.49,126.90,127.79,128.67,134.37,141.45,153.71,158.46$, 173.30. HRMS: Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$: 522.2730; found: 522.2728. The enantiomeric purity was determined to be $83: 17$ by CSP-HPLC analysis on a Chiralpak column with
$40 \%(\mathrm{v} / \mathrm{v})$ isopropyl alcohol/hexane mobile phase by a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 19.8 min and the minor enantiomer had a retention time of 8.33 min .

19
(3R, 1'S, 2''R)-3-\{3-[tert-Butoxycarbonyl-(4-methoxy-phenyl)-amino]-1-phenyl-allyl\}-2-methyl-5-oxo-pyrrolidine-1-carboxylic acid tert-butyl ester ($3 R, 1 ' S, \mathbf{2}^{\prime}{ }^{\prime} R$)(19)

The general kinetic resolution procedure was followed using 1 ($97 \mathrm{mg}, 0.29$ $\mathrm{mmol})$ and 17 ($169 \mathrm{mg}, 0.86 \mathrm{mmol}$) to afford crude mixture, which was purified by column chromatography (25% ethylacetate in hexane) to afford a major diasteromer of 19 ($90 \mathrm{mg}, 0.165 \mathrm{mmol}, 58 \%$), and a mixture of minor diastereomer and electrophile. The mixture was purified with preparatory HPLC (12% ethylacetate in hexane) to afford minor diastereomer of $19(45 \mathrm{mg}, 0.083 \mathrm{mmol}, 29 \%)$ and recovered $17(102 \mathrm{mg}, 0.52$ $\mathrm{mmol}, 60 \%)$. With TEEDA as a ligand rac-19 ($52 \mathrm{mg}, 0.10 \mathrm{mmol}, 36 \%$) was obtained as a single diastereomer from $1(90.7 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $17(79 \mathrm{mg}, 0.40 \mathrm{mmol}) .[\alpha]^{20}{ }_{\mathrm{D}}$ of $17=+17^{\circ}\left(c=23 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. ${ }^{12}[\alpha]^{20}{ }_{\mathrm{D}}=145^{\circ}, c=1 \mathrm{~g} / \mathrm{mL}, \mathrm{CHCl}_{3}, S$-enantiomer $)$. Major diastereomoer: ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.29(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.45(\mathrm{~s}$, $9 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.77(\mathrm{~d}, 1 \mathrm{H}, J=18.5 \mathrm{~Hz}), 1.84(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.36(\mathrm{dd}, 1 \mathrm{H}, J=$ $18.2,8.6 \mathrm{~Hz}), 2.51(\mathrm{bs}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{q}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.82(\mathrm{dd}, 1 \mathrm{H}, J=11.0$, $9.9 \mathrm{~Hz}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 20.89,28.35,28.38,35.19,44.11,44.56,55.87,57.49,82.90,114.67$, 126.85, 128.05, 128.67, 129.00, 134.01, 141.38, 150.19, 153.71, 158.77, 173.20. HRMS: Calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$: 536.2886; found: 536.2868. The enantiomeric purity was determined to be 53:47 by CSP-HPLC analysis on a Chiralpak column with 20% (v/v) isopropyl alcohol/hexane mobile phase by a flow rate $0.6 \mathrm{~mL} / \mathrm{min}$. The major enantiomer had a retention time of 12.8 min and the minor enantiomer had a retention time of 10.7 min . Minor diastereomer: ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$,
$1.42(\mathrm{~s}, 9 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.77(\mathrm{~d}, 1 \mathrm{H}, J=18.3 \mathrm{~Hz}), 1.85(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.36(\mathrm{dd}$, $1 \mathrm{H}, J=18.1,8.6 \mathrm{~Hz}), 2.51(\mathrm{bs}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{q}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 4.82(\mathrm{dd}, 1 \mathrm{H}$, $J=10.7,10.0 \mathrm{~Hz}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 3 \mathrm{H})$.

