Concise Total Synthesis of (\pm)-Aloperine and epi-Aloperine

Daniele Passarella,• Marco Angoli, Alessandra Giardini, Giordano Lesma, Alessandra Silvani, Bruno Danieli.

Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
Daniele.Passarella@unimi.it

Experimental Section

2-[(Methoxy-methyl-carbamoyl)-methyl]-piperidine-1-carboxylic acid tert-butyl ester (8). To a solution of carboxylic acid $7(1 \mathrm{~g}, 4.11 \mathrm{mmol}$), N, O-dimethylhydroxylamine hydrochloride (401 $\mathrm{mg}, 4.11$), DMPA ($840 \mathrm{mg}, 6.85 \mathrm{mmol}$) in THF (150 ml), DCC ($850 \mathrm{mg}, 4.13 \mathrm{mmol}$) dissolved in THF (20 ml) was added dropwise. After 17 h at room temperature the reaction mixture was filtered and the solvent was evaporated. The resulting oil was purified by column chromatography (EtOAc-hexane 1:2) to give $8(834 \mathrm{mg}, 71 \%)$. $\mathrm{R}_{\mathrm{f}}($ EtOAc-hexane, $1: 1) 0.13 ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.80-4.60(1 \mathrm{H}, \mathrm{m}), 3.99(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=13 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.13(3 \mathrm{H}, \mathrm{s}), 2.80(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=$ $13 \mathrm{~Hz}), 2.62(1 \mathrm{H}$, A portion of AB system $), 2.58(1 \mathrm{H}, \mathrm{B}$ portion of AB system $), 1.68-1.55(4 \mathrm{H}$, $\mathrm{m}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.54-1.33(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,79.5,60.5,48.7,47.6$, 39.1, 34.1, 33.0, 28.4 (3C), 25.2, 18.9. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 58.72; H, 9.16; N, 9.78. Found: C, 58.79. H, 9.22. N, 9.67.

2-(2-Oxo-4-trimethylsilanyl-but-3-ynyl)-piperidine-1-carboxylic acid tert-butyl ester (9) from 8. A solution of trimethylsilylacetylene ($372 \mu \mathrm{l}, 2.64 \mathrm{mmol}$) in THF (9 ml) was treated with $\mathrm{n}-\mathrm{BuLi}$ $(993 \mu \mathrm{l}, 2 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After 30 minutes the resulting solution was added to a solution of amide $8(300 \mathrm{mg}, 1.05 \mathrm{mmol})$ in THF-MeOH $(15 \mathrm{ml}-414 \mu \mathrm{l})$ at $-50^{\circ} \mathrm{C}$. After 1 h at $-5^{\circ} \mathrm{C} \mathrm{AcOH}$ $(90 \mu \mathrm{l})$ was added at $-70^{\circ} \mathrm{C}$. After 5 minutes NaCl was added and the mixture was extracted with EtOAc. By column chromatography (EtOAc-hexane, $1: 3$) compound 9 ($150 \mathrm{mg}, 42 \%$) was obtained as an oil. R_{f} (EtOAc-hexane, $\left.1: 3\right) \quad 0.4 ;{ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 4.75-4.15$ $(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=13 \mathrm{hz}), 2.85-2.65(3 \mathrm{H}, \mathrm{m}), 1.75-1.30(6 \mathrm{H}, \mathrm{m}), 1.44(9 \mathrm{H}, \mathrm{s}), 0.29(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR (50.3 MHz, CDCl_{3}) $\delta 185.2,154.4,102.1,97.9,79.5,47.5,45.5,39.0,28.4,28.2$ (3C), $25.1,18.8,-0.9(3 \mathrm{C})$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$: C, 63.12; H, 9.04; N, 4.33. Found: C, 63.21. H, 9.10. N, 4.38.

2-(2-Oxo-but-3-ynyl)-piperidine-1-carboxylic acid tert-butyl ester (10)

To a solution of compound $9(112 \mathrm{mg}, 0.34 \mathrm{mmol})$ in THF-MeOH ($5 \mathrm{ml}-138 \mu \mathrm{l})$, TBAF (1 M in THF, $130 \mu \mathrm{l}$) was added at $-20^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, \mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the organic solvent, gave compound 10 as an oil (71 mg , $84 \%) . \mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}-$ hexane, $1: 4) 0.2 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88-4.77(1 \mathrm{H}, \mathrm{m}), 4.08-3.93$ $(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=13 \mathrm{~Hz}), 2.90-2.65(3 \mathrm{H}, \mathrm{m}), 1.80-1.30(7 \mathrm{H}, \mathrm{m}), 1.45(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}(50.3 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 184.9,154.5,81.6,79.8,78.8,47.3,45.8,39.2,28.7,28.3$ (3C), 25.1, 18.8. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 66.91 ; \mathrm{H}, 8.42$; N, 5.57. Found: C, 66.85. H, 8.48. N, 5.50.

2-(2-Oxo-4-trimethylsilanyl-but-3-ynyl)-piperidine-1-carboxylic acid tert-butyl ester (9) from 11. Trimethylsilylacetylene ($373 \mathrm{mg}, 3.80 \mathrm{mmol}$) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of ethylmagnesiumbromide ($506 \mathrm{mg}, 3.80 \mathrm{mmol}$) dissolved in THF (10 ml). This solution was stirred for 1 h at $5-15^{\circ} \mathrm{C}$ and for 15 min at room temperature. A solution of the aldehyde $\mathbf{1 1}(724 \mathrm{mg}, 3.18$ mmol) in THF (6 ml) was then added dropwise over a $30-\mathrm{min}$ period. The reaction solution was allowed to stir for an additional 30 min before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(satd) }}$ and concentrated.

The resulting mixture was extracted with AcOEt , the organic phase was washed with $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(satd) }}$ and brine. The evaporation of the solvent gave a mixture of diastereoisomers $\mathbf{1 2}(890 \mathrm{mg}, 86 \%)$ that were directly used for the next step. A DMSO solution ($280 \mu \mathrm{l}, 3.91 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added to a solution of oxalyl chloride ($170 \mu \mathrm{l}, 1.96 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ over a period of 5 min . After the mixture was stirred for 30 min , a solution of $\mathbf{1 2}(198 \mathrm{mg}, 0.61 \mathrm{mmol})$ was added to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and the reaction mixture was stirred at the same temperature for 90 min . $\mathrm{Et}_{3} \mathrm{~N}(115 \mu \mathrm{l}, 8.15 \mathrm{mmol})$ was then added to the reaction mixture, which was gradually warmed to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with water and brine, dried and concentrated to dryness to give $\mathbf{9}$ as a brown oil ($172 \mathrm{mg}, 87 \%$) that was directly used for the next step.

2-(2-Hydroxy-4-trimethylsilanyl-but-3-ynyl)-piperidine-1-carboxylic acid tert-butyl ester (12) A small amount of diastereomeric mixture $\mathbf{1 2}$ was purified by chromatography (AcOEt:cyclohexane 1:4). 12a R_{f} (AcOEt:cyclohexane 1:4) 0.38 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.64(1 \mathrm{H}, \mathrm{bs}), 4.50-4.20$ $(1 \mathrm{H}, \mathrm{m}), 4.17-4.13(1 \mathrm{H}, \mathrm{m}), 4.01-3.90(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10,3 \mathrm{~Hz}), 2.28-2.15(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10,3$ $\mathrm{Hz}), 1.80-1.39(25 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,106.5,80.8,77.4$ (tentatively assigned), 59.5, 46.5, 39.9, 39.0, 29.6, 28.8 (3C), 25.7, 19.6, 0.3 (3C). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}: \mathrm{C}, 62.72$; H, 9.60; N, 4.30. Found: C, 62.68. H, 9.62. N, 4.27. 12b R_{f} (AcOEt:cyhexane 1:4) 0.30; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.82-4.77(1 \mathrm{H}, \mathrm{bs}), 4.62-4.39(2 \mathrm{H}, \mathrm{m})$, 4.02-3.84 ($1 \mathrm{H}, \mathrm{m}$), 2.98-2.80 ($1 \mathrm{H}, \mathrm{m}$), $2.24(1 \mathrm{H}$, ddd, $\mathrm{J}=14,11,3 \mathrm{~Hz}), 1.74(1 \mathrm{H}$, ddd, J=15, 5, 4), 1.70-1.40 (24H, m). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,106.5,80.8,77.4$ (tentatively assigned), 60.2, 46.3, 39.9, 37.0, 29.9, 28.9 (3C), 25.9, 19.7, 0.4 (3C). Anal. Calcad. for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}: \mathrm{C}, 62.72$; H, $9.60 ; \mathrm{N}, 4.30$. Found: C, 62.74 . H, 9.58. N, 4.27.

2-[2-Benzyl-6-oxo-1,4,5,6-tetrahydro-pyridin-3-yl)-2-oxo-ethyl]-piperidine-1-carboxylic acid tert-butyl ester (13)

Benzylamine ($354 \mu \mathrm{l}, 3.25 \mathrm{mmol}$) was added to a solution of $\mathbf{1 0}(743 \mathrm{mg}, 2.96 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After the solution was warmed to room temperature, stirring was maintained for 18 h . Acryloyl chloride ($263 \mu \mathrm{l}, 3.25 \mathrm{mmol}$) was added at room temperature. After being heated for 18 h at reflux, the solution was washed with a saturated aqueous NaHCO_{3} and the organic layer extracted with EtOAc. Evaporation of the solvent and column chromatography (AcOEt-cyhexane, 1:3) gave a yellow oil ($683 \mathrm{mg}, 56 \%$). $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.55 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.20(6 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{A}$ portion of AB system), $4.68(1 \mathrm{H}, \mathrm{B}$ portion of AB system $), 4.60-4.52(1 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=13$ Hz), 2.82-2.65 ($5 \mathrm{H}, \mathrm{m}$), $2.57(2 \mathrm{H}, \mathrm{bs}), 1.98-1.40(6 \mathrm{H}, \mathrm{m}), 1.45(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz , CDCl_{3}) $\delta 195.8,169.8,155.1,136.6,128.8$ (2C), 128.0, 127.8 (3C), 118.5, 79.6, 50.2, 49.1, 39.8, 38.4, 30.7, 28.4 (3C), 27.5, 25.1, 18.8, 18.6. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 69.88 ; H, 7.82; N , 6.79. Found: C, 69.93. H, 7.80. N, 6.82. EIMS 412 (6\%), 356 (10%), 339 (16%), 312 (100%), 214 (80\%).

1-Benzyl-6-(1-tert-butoxycarbonyl-piperidin-2-yl)-2-oxo-1,2,3,4,6,7,8,8a-octahydro-quinoline8 -carboxylic acid methyl ester (16 and 17)

To a solution of $\mathbf{1 3}(424 \mathrm{mg}, 1.03 \mathrm{mmol})$ in THF-MeOH ($1: 2,30 \mathrm{ml}$), $\mathrm{NaBH}_{4}(56 \mathrm{mg}, 1.48 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was poured into a $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(satd) }}$ and extracted with AcOEt. The crude $\mathbf{1 4}$ was directly dissolved in toluene (10 ml) and refluxed in presence of pTSA (8 $\mathrm{mg}, 0.043 \mathrm{mmol}$) and methyl acrylate ($6 \mathrm{ml}, 66.7 \mathrm{mmol}$). After 10 days, the solution was concentrated in vacuum and the residue was purified by chromatography (AcOEt-hexane, 1:1) to give 16 ($280 \mathrm{mg}, 56 \%$) and 17 ($140 \mathrm{mg}, 28 \%$). 16: R_{f} (AcOEt-hexane 1:1) $0.22 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.10(5 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{bs}), 5.42(1 \mathrm{H}$, A portion of AB system), $4.05(1 \mathrm{H}, \mathrm{bd}$, $\mathrm{J}=11 \mathrm{~Hz}), 4.02(1 \mathrm{H}$, B portion of AB system), 3.92-3.82 $(1 \mathrm{H}, \mathrm{m}), 3.59(3 \mathrm{H}, \mathrm{s}), 3.22-3.12(1 \mathrm{H}, \mathrm{m})$, 2.90-2.80 $(1 \mathrm{H}, \mathrm{m}), 2.54-2.30(8 \mathrm{H}, \mathrm{m}), 1.85-1.70(2 \mathrm{H}, \mathrm{m}), 1.70-1.45(4 \mathrm{H}, \mathrm{m}), 1.45(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR
(75.4 MHz, CDCl_{3}) $\delta 172.9,172.0,155.0,137.0,135.5,128.6-126.8(5 \mathrm{C}), 123.2,79.2,55.9,51.8$, 46.1, 42.8, 40.0, 39.0, 34.6, 32.2, 29.5, 28.7, 28.3 (3C), 25.8, 25.3, 18.8. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 69.78; H, 7.94; N, 5.80. Found: C, 69.84. H, 7.91. N, 5.76. 17: $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.19 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.15(5 \mathrm{H}, \mathrm{m}), 5.42(1 \mathrm{H}, \mathrm{bs}), 5.31(1 \mathrm{H}$, A portion of AB system), 4.15-3.85 (3H, m), 3.59 (3H, s), 3.15-3.05 (1H, m), 2.75-2.25 (9H, m), 1.95-1.20 (6H, m), $1.45(9 \mathrm{H}$, s). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 172.9,172.0,155.0,137.0,135.5,128.6-126.8$ (5C), 122.8, $77.4,56.4,53.4,46.5,42.3,40.0,39.8,32.6,29.6,28.5(3 C), 25.9,25.3,18.7$. Anal. Found. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}:: \mathrm{C}, 69.83$. H, 7.90. N, 5.79.

2-[2-Benzyl-6-oxo-1,4,5,6-tetrahydro-pyridin-3-yl)-vinyl]-piperidine-1-carboxylic acid tertbutyl ester (15). A solution of $14(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in toluene (3 ml) was heated at $70^{\circ} \mathrm{C}$. After 30 min , the solvent was evaporated and the residue was purified by chromatography (AcOEt:hexane $1: 1)$ to give $15(45 \mathrm{mg}, 88 \%) .15$ (AcOEt-cyhexane, $1: 1 . \mathrm{R}_{\mathrm{f}}=0.32$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.55-7.15(5 \mathrm{H}, \mathrm{m}), 6.05(1 \mathrm{H}, \mathrm{s}), 5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}), 5.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16,5 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{m})$, $4.70(2 \mathrm{H}, \mathrm{s}), 3.92(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=12 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{bt}, \mathrm{J}=12 \mathrm{~Hz}), 2.62(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}), 2.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9$ $\mathrm{Hz}), 1.82-1.50(6 \mathrm{H}, \mathrm{m}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.2,155.5,136.7,130.9$, 128.6 (5C), 127.5, 125.5, 117.8, 79.5, 52.0, 49.1, 39.7, 30.7, 29.5, 28.3 (3C), 25.4, 20.5, 19.5. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.70; H, 8.13; N, 7.06. Found: C, 72.68. H, 8.17. N, 7.04.

1-Benzyl-2-oxo-6-piperidin-2-yl -1,2,3,4,6,7,8,8a-octahydro-quinoline-8-carboxylic acid methyl ester (18)
 1-Benzyl-2-oxo-6-piperidin-2-yl -1,2,3,4,6,7,8,8a-octahydro-quinoline-8-carboxylic acid methyl ester (19)

To a solution of $\mathbf{1 6}$ or $\mathbf{1 7}(150 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{ml}), \mathrm{CF}_{3} \mathrm{COOH}(2.1 \mathrm{ml}, 27 \mathrm{mmol})$ was added. After 2 h at room temperature, water was added and the solution was basificated with $\mathrm{NH}_{4} \mathrm{OH}$. Evaporation of the organic layer gave 18 or 19 in quantitative yield. 18: $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EtOH $\mathrm{NH}_{4} \mathrm{OH}$ conc. $\left.5 \% 4: 1\right) 0.5 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.05(5 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{bs}), 5.20$ $(1 \mathrm{H}$, A portion of AB system $), 4.31(1 \mathrm{H}, \mathrm{B}$ portion of AB system), 3.92-3.83 $(1 \mathrm{H}, \mathrm{m}), 3.56(3 \mathrm{H}, \mathrm{s})$, 3.12-2.95 ($2 \mathrm{H}, \mathrm{m}$), 2.70-0.85 ($16 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 172.7,172.2,137.2,133.6$, 128.6 (2C), 127.8 (2C), 127.3, 123.1, 59.8, 56.7, 51.5, 47.2, 46.6, 39.3, 38.1, 32.7, 30.4, 29.3, 26.3, 26.1, 25.4. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.22; H, 7.91; N, 7.32. Found: C, 72.27. H, 7.95. N, 7.32. EIMS 382 (23\%), 322 (48%), 299 (100%). 19: R_{f} (AcOEt: $\mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N} 15: 1: 2$) 0.45; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.05(5 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{bs}), 5.24(1 \mathrm{H}$, A portion of AB system), $4.09(1 \mathrm{H}, \mathrm{B}$ portion of AB system $), 3.90-3.85(1 \mathrm{H}, \mathrm{m}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.12-3.01(2 \mathrm{H}, \mathrm{m}), 2.65-0.85$ $(16 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,172.2,137.1,133.3,129.6$ (2C), 127.6 (2C), 127.3, 122.4, 60.4, 56.4, 51.5, 47.5, 46.5, 39.4, 37.9, 32.6, 30.7, 29.2, 26.7, 26.2, 24.1. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$: Found: C, 72.28. H, 7.95. N, 7.30.

1-Benzyl-8-hydroxymethyl-6-piperidin-2-yl-1,2,3,4,6,7,8,8a-octahydro-1H-quinoline (20) 1-Benzyl-8-hydroxymethyl-6-piperidin-2-yl-1,2,3,4,6,7,8,8a-octahydro-1H-quinoline (21)

To a suspension of $\mathrm{LiAlH}_{4}(115 \mathrm{mg}, 3.03 \mathrm{mmol})$ in THF $(15 \mathrm{ml})$, a solution of $\mathbf{1 8}$ or $\mathbf{1 9}(430 \mathrm{mg}$, 1.12 mmol) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was maintained at $0^{\circ} \mathrm{C}$ for 6 h . $\mathrm{LiAlH}_{4}(402 \mathrm{mg}, 10.58 \mathrm{mmol})$ was added in several portions and after 4 days at room temperature the reaction was concluded. AcOEt was added and after 2 h the reaction mixture was poured into water. The organic layer was concentrated to give a yellow oil ($361 \mathrm{mg}, 94 \%$) that was directly used in the next step. A little amount was purified by chromatography ($\mathrm{AcOEt}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N} 15: 1: 1$). 20: $\mathrm{R}_{\mathrm{f}}\left(\mathrm{AcOEt}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N} 15: 1: 1\right) 0.13 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.10(5 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}$, $\mathrm{bs}), 4.00(1 \mathrm{H}$, A portion of AB system $), 3.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,10 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,10 \mathrm{~Hz})$, $3.31(1 \mathrm{H}, \mathrm{B}$ portion of AB system $), 3.22(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=12.5 \mathrm{~Hz}), 2.88-2.75$
$(1 \mathrm{H}, \mathrm{m}), 2.70-1.22(19 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.2,135.9,128.8(2 \mathrm{C}), 128.7$ (2C), 127.3, 124.4, 63.3, 61.6, 60.9, 51.6, 47.2, 39.9, 36.4, 34.4 (2C), 31.0, 30.1, 26.3, 24.9, 23.4. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.60 ; \mathrm{H}, 9.47$; N, 8.23. Found: C, 77.62; H, 9.49; N, 8.20. 21: R_{f} (AcOEt: MeOH: $\left.\mathrm{Et}_{3} \mathrm{~N} 15: 1: 1\right) 0.23 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.15(5 \mathrm{H}, \mathrm{m}), 5.61(1 \mathrm{H}$, bs), $3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,10 \mathrm{~Hz}), 3.88(1 \mathrm{H}$, A portion of AB system $), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,10 \mathrm{~Hz})$, $3.52(1 \mathrm{H}$, B portion of AB system $), 3.41-3.35(1 \mathrm{H}, \mathrm{m}), 3.18-3.08(1 \mathrm{H}, \mathrm{m}), 2.85-2.71(1 \mathrm{H}, \mathrm{m}), 2.70-$ $2.55(1 \mathrm{H}, \mathrm{m}), 2.50-1.15(18 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4,135.1,128.8(2 \mathrm{C}), 128.4$ (2C), 127.1, 123.1, 64.0, 61.3, 60.3, 54.5, 50.0, 47.0, 39.7, 36.6, 33.7, 29.6, 25.9, 25.7, 24.7, 21.6. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$: Found: C, 77.64 ; H, 9.51; N, 8.25.

Formation and reduction of $\mathbf{N - C 6}$ imine from compound $18 . \mathrm{NCS}$ ($19 \mathrm{mg}, 0.141 \mathrm{mmol}$) was stirred in THF $(2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and a solution of $\mathbf{1 8}(50 \mathrm{mg}, 0.130 \mathrm{mmol})$ in THF $(1 \mathrm{ml})$ was added. After 1.5 h water was added and the organic layer was concentrated to give the crude $\mathrm{N}-\mathrm{Cl}$ derivative as a colorless oil. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and $\mathrm{DBU}(0.169$ $\mathrm{mmol}, 26 \mathrm{mg}, 26 \mu \mathrm{l}$) was added. After 8 h the solvent was evaporated, the crude mixture containing the imine product was directly dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{NaBH}_{3} \mathrm{CN}(16 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added. After 1 h the reaction mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a mixture containing compounds 18 and 19.

N-Benzyl-aloperine (22)
1-Benzyl-1,3,4,6,6a,7,8,9,10,12,13,13a-dodecahydro-2H-6,13-methano-dipyrido[1,2-a,3',2’e]azocine (23)
To a solution of $\mathbf{2 0}$ or $21(361 \mathrm{mg}, 1.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}), \mathrm{PPh}_{3}(695 \mathrm{mg}, 2.65 \mathrm{mmol})$ and CBr_{4} ($421 \mathrm{mg}, 1.27 \mathrm{mmol}$) were added and the reaction mixture was stirred at room temperature for 3 h . Dry $\mathrm{Et}_{3} \mathrm{~N}(361 \mu \mathrm{l}, 2.60 \mathrm{mmol})$ was added and, after 15 h , the solution was poured into HCl 1 N . The aqueous solution was basified with $\mathrm{NH}_{4} \mathrm{OH}$ conc. and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent and chromatographic purification (hexane: $\mathrm{Et}_{3} \mathrm{~N} 30: 1$) gave respectively 22 (153 mg , 45%) or 23 (143 mg, 42\%). 22: R_{f} (AcOEt: hexane: $\mathrm{Et}_{3} \mathrm{~N} 15: 10: 1$) $0.48 ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.11(5 \mathrm{H}, \mathrm{m}), 5.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}), 4.12(1 \mathrm{H}$, A portion of AB system$), 3.01(1 \mathrm{H}$, B portion of AB system $), 2.98-1.25(22 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.6,133.8,128.6$ (2C), 128.1 (2C), 127.9, 126.6, 65.6, 65.1, 57.8, 55.8, 52.5, 51.7, 35.7, 33.7, 32.6, 29.6, 25.6 (2C), 25.2, 23.5. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2}$: C, 81.93; H, 9.38; N, 8.69. Found: C, 81.90. H, 9.41. N, 8.73. EIMS 322 (25\%), 231 (100%). 23: R_{f} (AcOEt: hexane: $\mathrm{Et}_{3} \mathrm{~N} 10: 15: 1$) 0.7; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.11(5 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}), 4.14(1 \mathrm{H}$, A portion of AB system$), 3.20$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{B}$ portion of AB system $), 3.00-2.70(2 \mathrm{H}, \mathrm{m}), 2.32-2.15(1 \mathrm{H}, \mathrm{m}), 2.10-$ $1.15(18 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.7,138.4,128.7$ (2C), 128.2 (2C), 126.6, 122.4, $65.9,64.8,58.2,56.4,56.3,53.4,35.6,34.4,32.8,31.1,30.5,25.9,25.6,25.0$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2}$. Found: C, 81.94. H, 9.39. N, 8.71.

(\pm)-Aloperine (1)

1,3,4,6,6a,7,8,9,10,12,13,13a-dodecahydro-2H-6,13-methano-dipyrido[1,2-a,3',2’-e]azocine (24)

To a solution of 22 or $23(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $(600 \mu \mathrm{l})$ maintained at room temperature, $\mathrm{Et}_{3} \mathrm{~N}(1.20 \mathrm{ml})$, lithium $(53 \mathrm{mg}, 7.57 \mathrm{mmol})$ and ethylendiamine (redistilled from $\mathrm{Na}, 123 \mu \mathrm{l}, 1.82$ $\mathrm{mmol})$ were added. After 2 h , THF $(600 \mu \mathrm{l}), \mathrm{Et}_{3} \mathrm{~N}(1.20 \mathrm{ml})$ and ethylendiamine $(123 \mu \mathrm{l})$ were added. After $3 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl} 5 \%(5 \mathrm{ml})$ and water $(5 \mathrm{ml})$ were added and the reaction mixture was stirred for 10 min . The aqueous layer was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with CHCl_{3}. After evaporation of organic layer, a yellow oil was obtained. Chromatography purification (AcOEt: $\left.\mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N} 15: 5: 2\right)$ gave respectively $1(28 \mathrm{mg}, 80 \%)$ or $\mathbf{2 4}$ ($29 \mathrm{mg}, 83 \%$). 1: R_{f} (AcOEt: MeOH: $\left.\mathrm{Et}_{3} \mathrm{~N} 15: 5: 2\right) 0.15 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 5.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8$
$\mathrm{Hz})$, 3.15-3.05 $(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4,6 \mathrm{~Hz}), 2.87-2.75(1 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.1,2.8$ $\mathrm{Hz}), 2.65-2.45(2 \mathrm{H}, \mathrm{m}), 2.40-1.15(16 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,126.9,60.1$, $58.1,55.1,47.6,46.0,34.9,32.5,31.6,29.6,27.1,25.4$ (2C), 20.2. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2}: \mathrm{C}$, 77.53; H, 10.42; N, 12.05. Found: C, 77.58. H, 10.42. N, 12.02. 24: $\mathrm{R}_{\mathrm{f}}\left(\mathrm{AcOEt}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}\right.$ $15: 5: 2) 0.21 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta 5.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$), $3.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz})$, 3.15-3.04 ($1 \mathrm{H}, \mathrm{m}$), 2.98-2.86 ($1 \mathrm{H}, \mathrm{m}$), 2.75-2.60 ($2 \mathrm{H}, \mathrm{m}$), 2.38-2.25 ($1 \mathrm{H}, \mathrm{m}$), 2.20-1.10 ($17 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 140.7,121.5,66.6,58.4,57.6,56.3,47.2,35.6,33.8,33.4,32.7$, 30.8, 30.4, 26.0, 24.9. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2}$: C, 77.53; H, 10.42; N, 12.05. Found: C, 77.57. H, 10.38. N, 12.03.

