Concise Total Synthesis of (±)-Aloperine and epi-Aloperine

Daniele Passarella, Marco Angoli, Alessandra Giardini, Giordano Lesma, Alessandra Silvani, Bruno Danieli.

Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy

Daniele.Passarella@unimi.it

Experimental Section

2-[(Methoxy-methyl-carbamoyl)-methyl]-piperidine-1-carboxylic acid *tert*-butyl ester (8). To a solution of carboxylic acid 7 (1 g, 4.11 mmol), *N,O*-dimethylhydroxylamine hydrochloride (401 mg, 4.11), DMPA (840 mg, 6.85 mmol) in THF (150 ml), DCC (850 mg, 4.13 mmol) dissolved in THF (20 ml) was added dropwise. After 17 h at room temperature the reaction mixture was filtered and the solvent was evaporated. The resulting oil was purified by column chromatography (EtOAc-hexane 1:2) to give **8** (834 mg, 71%). R_f (EtOAc-hexane, 1:1) 0.13; 1 H NMR (300 MHz, CDCl₃) δ 4.80 – 4.60 (1H, m), 3.99 (1H, bd, J = 13 Hz), 3.68 (3H, s), 3.13 (3H, s), 2.80 (1H, bt, J = 13 Hz), 2.62 (1H, A portion of AB system), 2.58 (1H, B portion of AB system), 1.68 – 1.55 (4H, m), 1.45 (9H, s), 1.54 – 1.33 (2H, m). 13 C NMR (75.4 MHz, CDCl₃) δ 155.0, 79.5, 60.5, 48.7, 47.6, 39.1, 34.1, 33.0, 28.4 (3C), 25.2, 18.9. Anal. Calcd. for $C_{14}H_{26}N_2O_4$: C, 58.72; H, 9.16; N, 9.78. Found: C, 58.79. H, 9.22. N, 9.67.

2-(2-Oxo-4-trimethylsilanyl-but-3-ynyl)-piperidine-1-carboxylic acid *tert*-butyl ester (9) from **8**. A solution of trimethylsilylacetylene (372 μl, 2.64 mmol) in THF (9 ml) was treated with n-BuLi (993 μl, 2 mmol) at -78 °C. After 30 minutes the resulting solution was added to a solution of amide **8** (300 mg, 1.05 mmol) in THF-MeOH (15 ml-414 μl) at -50 °C. After 1 h at -5 °C AcOH (90 μl) was added at -70 °C. After 5 minutes NaCl was added and the mixture was extracted with EtOAc. By column chromatography (EtOAc-hexane, 1:3) compound **9** (150 mg, 42%) was obtained as an oil. R_f (EtOAc-hexane, 1:3) 0.4; ¹H NMR (300 MHz, CDCl₃) δ 4.75-4.15 (1H, m), 3.98 (1H, bd, J= 13 hz), 2.85-2.65 (3H, m), 1.75-1.30 (6H, m), 1.44 (9H,s), 0.29 (9H, s). ¹³C NMR (50.3 MHz, CDCl₃) δ 185.2, 154.4, 102.1, 97.9, 79.5, 47.5, 45.5, 39.0, 28.4, 28.2 (3C), 25.1, 18.8, -0.9 (3C). Anal. Calcd. for C₁₇H₂₉NO₃Si: C, 63.12; H, 9.04; N, 4.33. Found: C, 63.21. H, 9.10. N, 4.38.

2-(2-Oxo-but-3-ynyl)-piperidine-1-carboxylic acid *tert*-butyl ester (10)

To a solution of compound **9** (112mg, 0.34 mmol) in THF-MeOH (5 ml-138 μ l), TBAF (1M in THF, 130 μ l) was added at –20°C. After 30 min, NH₄Cl solution was added and the solution was extracted with CH₂Cl₂. Evaporation of the organic solvent, gave compound **10** as an oil (71mg, 84%). R_f (EtOAc-hexane, 1:4) 0.2; ¹H NMR (300 MHz, CDCl₃) δ 4.88-4.77 (1H, m), 4.08-3.93 (1H, bd, J=13 Hz), 2.90-2.65 (3H, m), 1.80-1.30 (7H, m), 1.45 (9H, s). ¹³C NMR (50.3 MHz, CDCl₃) δ 184.9, 154.5, 81.6, 79.8, 78.8, 47.3, 45.8, 39.2, 28.7, 28.3 (3C), 25.1, 18.8. Anal. Calcd. for C₁₄H₂₁NO₃: C, 66.91; H, 8.42; N, 5.57. Found: C, 66.85. H, 8.48. N, 5.50.

2-(2-Oxo-4-trimethylsilanyl-but-3-ynyl)-piperidine-1-carboxylic acid *tert*-butyl ester (9) from **11**. Trimethylsilylacetylene (373 mg, 3.80 mmol) was added to a cold (0°C) solution of ethylmagnesiumbromide (506 mg, 3.80 mmol) dissolved in THF (10 ml). This solution was stirred for 1 h at 5-15°C and for 15 min at room temperature. A solution of the aldehyde **11** (724 mg, 3.18 mmol) in THF (6 ml) was then added dropwise over a 30-min period. The reaction solution was allowed to stir for an additional 30 min before being quenched with NH₄Cl_(satd) and concentrated.

The resulting mixture was extracted with AcOEt, the organic phase was washed with NH₄Cl_(satd) and brine. The evaporation of the solvent gave a mixture of diastereoisomers **12** (890 mg, 86%) that were directly used for the next step. A DMSO solution (280 μ l, 3.91 mmol) in CH₂Cl₂ (2 ml) was added to a solution of oxalyl chloride (170 μ l, 1.96 mmol) in CH₂Cl₂ (13 ml) at –78°C over a period of 5 min. After the mixture was stirred for 30 min, a solution of **12** (198 mg, 0.61 mmol) was added to the CH₂Cl₂ solution and the reaction mixture was stirred at the same temperature for 90 min. Et₃N (115 μ l, 8.15 mmol) was then added to the reaction mixture, which was gradually warmed to room temperature and diluted with CH₂Cl₂. The CH₂Cl₂ solution was washed with water and brine, dried and concentrated to dryness to give **9** as a brown oil (172 mg, 87%) that was directly used for the next step.

2-(2-Hydroxy-4-trimethylsilanyl-but-3-ynyl)-piperidine-1-carboxylic acid *tert*-butyl ester (12) A small amount of diastereomeric mixture 12 was purified by chromatography (AcOEt:cyclohexane 1:4). 12a R_f (AcOEt:cyclohexane 1:4) 0.38; ¹H NMR (400 MHz, CDCl₃) δ 4.64 (1H, bs), 4.50-4.20 (1H, m), 4.17-4.13 (1H, m), 4.01-3.90 (1H, m), 2.75 (1H, td, J=10, 3 Hz), 2.28-2.15 (1H, td, J=10, 3 Hz), 1.80-1.39 (25H, m). ¹³C NMR (100.6 MHz, CDCl₃) δ 154.5, 106.5, 80.8, 77.4 (tentatively assigned), 59.5, 46.5, 39.9, 39.0, 29.6, 28.8 (3C), 25.7, 19.6, 0.3 (3C). Anal. Calcd. for C₁₇H₃₁NO₃Si: C, 62.72; H, 9.60; N, 4.30. Found: C, 62.68. H, 9.62. N, 4.27. 12b R_f (AcOEt:cyhexane 1:4) 0.30; ¹H NMR (400 MHz, CDCl₃) δ 4.82-4.77 (1H, bs), 4.62-4.39 (2H, m), 4.02-3.84 (1H, m), 2.98-2.80 (1H, m), 2.24 (1H, ddd, J=14, 11, 3 Hz), 1.74 (1H, ddd, J=15, 5, 4), 1.70-1.40 (24H, m). ¹³C NMR (100.6 MHz, CDCl₃) δ 154.5, 106.5, 80.8, 77.4 (tentatively assigned), 60.2, 46.3, 39.9, 37.0, 29.9, 28.9 (3C), 25.9, 19.7, 0.4 (3C). Anal. Calcad. for C₁₇H₃₁NO₃Si: C, 62.72; H, 9.60; N, 4.30. Found: C, 62.74. H, 9.58. N, 4.27.

2-[2-Benzyl-6-oxo-1,4,5,6-tetrahydro-pyridin-3-yl)-2-oxo-ethyl]-piperidine-1-carboxylic acid *tert*-butyl ester (13)

Benzylamine (354 μl, 3.25 mmol) was added to a solution of **10** (743 mg, 2.96 mmol) at 0°C. After the solution was warmed to room temperature, stirring was maintained for 18 h. Acryloyl chloride (263 μl, 3.25 mmol) was added at room temperature. After being heated for 18 h at reflux, the solution was washed with a saturated aqueous NaHCO₃ and the organic layer extracted with EtOAc. Evaporation of the solvent and column chromatography (AcOEt-cyhexane, 1:3) gave a yellow oil (683 mg, 56%). R_f (EtOAc) 0.55; 1 H NMR (300 MHz, CDCl₃) δ 7.70-7.20 (6H, m), 4.92 (1H, A portion of AB system), 4.68 (1H, B portion of AB system), 4.60-4.52 (1H, m), 3.90 (1H, bd, J=13 Hz), 2.82-2.65 (5H, m), 2.57 (2H, bs), 1.98-1.40 (6H, m), 1.45 (9H, s). 13 C NMR (75.4 MHz, CDCl₃) δ 195.8, 169.8, 155.1, 136.6, 128.8 (2C), 128.0, 127.8 (3C), 118.5, 79.6, 50.2, 49.1, 39.8, 38.4, 30.7, 28.4 (3C), 27.5, 25.1, 18.8, 18.6. Anal. Calcd. for $C_{24}H_{32}N_2O_4$: C, 69.88; H, 7.82; N, 6.79. Found: C, 69.93. H, 7.80. N, 6.82. EIMS 412 (6%), 356 (10%), 339 (16%), 312 (100%), 214 (80%).

1-Benzyl-6-(1-tert-but oxy carbonyl-piperidin-2-yl)-2-oxo-1, 2, 3, 4, 6, 7, 8, 8a-octahydro-quinoline-8-carboxylic acid methyl ester (16 and 17)

To a solution of **13** (424 mg, 1.03 mmol) in THF-MeOH (1:2, 30 ml), NaBH₄ (56 mg, 1.48 mmol) was added at 0°C. After 2 h, the reaction mixture was poured into a NH₄Cl_(satd) and extracted with AcOEt. The crude **14** was directly dissolved in toluene (10 ml) and refluxed in presence of pTSA (8 mg, 0.043 mmol) and methyl acrylate (6 ml, 66.7 mmol). After 10 days, the solution was concentrated in vacuum and the residue was purified by chromatography (AcOEt-hexane, 1:1) to give **16** (280 mg, 56%) and **17** (140 mg, 28%). **16**: R_f (AcOEt-hexane 1:1) 0.22; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.10 (5H, m), 5.50 (1H, bs), 5.42 (1H, A portion of AB system), 4.05 (1H, bd, J=11 Hz), 4.02 (1H, B portion of AB system), 3.92-3.82 (1H, m), 3.59 (3H, s), 3.22-3.12 (1H, m), 2.90-2.80 (1H, m), 2.54-2.30 (8H, m), 1.85-1.70 (2H, m), 1.70-1.45 (4H, m), 1.45 (9H, s). ¹³C NMR

(75.4 MHz, CDCl₃) δ 172.9, 172.0, 155.0, 137.0, 135.5, 128.6-126.8 (5C), 123.2, 79.2, 55.9, 51.8, 46.1, 42.8, 40.0, 39.0, 34.6, 32.2, 29.5, 28.7, 28.3 (3C), 25.8, 25.3, 18.8. Anal. Calcd. for $C_{28}H_{38}N_2O_5$: C, 69.78; H, 7.94; N, 5.80. Found: C, 69.84. H, 7.91. N, 5.76. **17**: R_f (EtOAc) 0.19; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.15 (5H, m), 5.42 (1H, bs), 5.31 (1H, A portion of AB system), 4.15-3.85 (3H, m), 3.59 (3H, s), 3.15-3.05 (1H, m), 2.75-2.25 (9H, m), 1.95-1.20 (6H, m), 1.45 (9H, s). ¹³C NMR (75.4 MHz, CDCl₃) δ 172.9, 172.0, 155.0, 137.0, 135.5, 128.6-126.8 (5C), 122.8, 77.4, 56.4, 53.4, 46.5, 42.3, 40.0, 39.8, 32.6, 29.6, 28.5 (3C), 25.9, 25.3, 18.7. Anal. Found. for $C_{28}H_{38}N_2O_5$:: C, 69.83. H, 7.90. N, 5.79.

2-[2-Benzyl-6-oxo-1,4,5,6-tetrahydro-pyridin-3-yl)-vinyl]-piperidine-1-carboxylic acid *tert***butyl ester (15).** A solution of **14** (50 mg, 0.13 mmol) in toluene (3 ml) was heated at 70°C. After 30 min, the solvent was evaporated and the residue was purified by chromatography (AcOEt:hexane 1:1) to give **15** (45 mg, 88%). **15** (AcOEt-cyhexane, 1:1. $R_f = 0.32$). ¹H NMR (200 MHz, CDCl₃) δ 7.55 - 7.15 (5H, m), 6.05 (1H, s), 5.96 (1H, d, J=16 Hz), 5.45 (1H, dd, J=16, 5 Hz), 4.84 (1H, m), 4.70 (2H, s), 3.92 (1H, bd, J=12Hz), 2.81 (1H, bt, J=12 Hz), 2.62 (2H, t, J=9 Hz), 2.47 (2H, t, J=9 Hz), 1.82 - 1.50 (6H, m), 1.40 (9H, s); ¹³C NMR (50.2 MHz, CDCl₃) δ 179.2, 155.5, 136.7, 130.9, 128.6 (5C), 127.5, 125.5, 117.8, 79.5, 52.0, 49.1, 39.7, 30.7, 29.5, 28.3 (3C), 25.4, 20.5, 19.5. Anal. Calcd. for $C_{24}H_{32}N_{2}O_{3}$: C, 72.70; H, 8.13; N, 7.06. Found: C, 72.68. H, 8.17. N, 7.04.

1-Benzyl-2-oxo-6-piperidin-2-yl -1,2,3,4,6,7,8,8a-octahydro-quinoline-8-carboxylic acid methyl ester (18)

1-Benzyl-2-oxo-6-piperidin-2-yl -1,2,3,4,6,7,8,8a-octahydro-quinoline-8-carboxylic acid methyl ester (19)

To a solution of **16** or **17** (150 mg, 0.27 mmol) in CH₂Cl₂ (9 ml), CF₃COOH (2.1 ml, 27 mmol) was added. After 2 h at room temperature, water was added and the solution was basificated with NH₄OH. Evaporation of the organic layer gave **18** or **19** in quantitative yield. **18**: R_f (CH₂Cl₂:EtOH-NH₄OH conc. 5% 4:1) 0.5; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.05 (5H, m), 5.50 (1H, bs), 5.20 (1H, A portion of AB system), 4.31 (1H, B portion of AB system), 3.92-3.83 (1H, m), 3.56 (3H, s), 3.12-2.95 (2H, m), 2.70-0.85 (16H, m). ¹³C NMR (75.4 MHz, CDCl₃) δ 172.7, 172.2, 137.2, 133.6, 128.6 (2C), 127.8 (2C), 127.3, 123.1, 59.8, 56.7, 51.5, 47.2, 46.6, 39.3, 38.1, 32.7, 30.4, 29.3, 26.3, 26.1, 25.4. Anal. Calcd. for C₂₃H₃₀N₂O₃: C, 72.22; H, 7.91; N, 7.32. Found: C, 72.27. H, 7.95. N, 7.32. EIMS 382 (23%), 322 (48%), 299 (100%). **19**: R_f (AcOEt: MeOH: Et₃N 15:1:2) 0.45; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.05 (5H, m), 5.64 (1H, bs), 5.24 (1H, A portion of AB system), 4.09 (1H, B portion of AB system), 3.90-3.85 (1H, m), 3.54 (3H, s), 3.12-3.01 (2H, m), 2.65-0.85 (16H, m). ¹³C NMR (75.4 MHz, CDCl₃) δ 172.7, 172.2, 137.1, 133.3, 129.6 (2C), 127.6 (2C), 127.3, 122.4, 60.4, 56.4, 51.5, 47.5, 46.5, 39.4, 37.9, 32.6, 30.7, 29.2, 26.7, 26.2, 24.1. Anal. Calcd. for C₂₃H₃₀N₂O₃: Found: C, 72.28. H, 7.95. N, 7.30.

1-Benzyl-8-hydroxymethyl-6-piperidin-2-yl-1,2,3,4,6,7,8,8a-octahydro-1*H*-quinoline (20) 1-Benzyl-8-hydroxymethyl-6-piperidin-2-yl-1,2,3,4,6,7,8,8a-octahydro-1*H*-quinoline (21)

To a suspension of LiAlH₄ (115mg, 3.03 mmol) in THF (15 ml), a solution of **18** or **19** (430 mg, 1.12 mmol) was added dropwise at 0°C. The reaction mixture was maintained at 0°C for 6 h. LiAlH₄ (402 mg, 10.58 mmol) was added in several portions and after 4 days at room temperature the reaction was concluded. AcOEt was added and after 2 h the reaction mixture was poured into water. The organic layer was concentrated to give a yellow oil (361 mg, 94%) that was directly used in the next step. A little amount was purified by chromatography (AcOEt:MeOH:Et₃N 15:1:1). **20**: R_f (AcOEt: MeOH: Et₃N 15:1:1) 0.13; 1 H NMR (300 MHz, CDCl₃) δ 7.55-7.10 (5H, m), 5.51 (1H, bs), 4.00 (1H, A portion of AB system), 3.91 (1H, dd, J=12.5, 10 Hz), 3.65 (1H, dd, J=12.5, 10 Hz), 3.31 (1H, B portion of AB system), 3.22 (1H, bd, J=7.5 Hz), 3.13 (1H, bd, J=12.5 Hz), 2.88-2.75

(1H, m), 2.70-1.22 (19H, m). 13 C NMR (100.6 MHz, CDCl₃) δ 139.2, 135.9, 128.8 (2C), 128.7 (2C), 127.3, 124.4, 63.3, 61.6, 60.9, 51.6, 47.2, 39.9, 36.4, 34.4 (2C), 31.0, 30.1, 26.3, 24.9, 23.4. Anal. Calcd. for $C_{22}H_{32}N_2O$: C, 77.60; H, 9.47; N, 8.23. Found: C, 77.62; H, 9.49; N, 8.20. **21**: R_f (AcOEt: MeOH: Et₃N 15:1:1) 0.23; 1 H NMR (300 MHz, CDCl₃) δ 7.40-7.15 (5H, m), 5.61 (1H, bs), 3.90 (1H, dd, J=12.5, 10 Hz), 3.88 (1H, A portion of AB system), 3.69 (1H, dd, J=12.5, 10 Hz), 3.52 (1H, B portion of AB system), 3.41-3.35 (1H, m), 3.18-3.08 (1H, m), 2.85-2.71 (1H, m), 2.70-2.55 (1H, m), 2.50-1.15 (18H, m). 13 C NMR (75.4 MHz, CDCl₃) δ 139.4, 135.1, 128.8 (2C), 128.4 (2C), 127.1, 123.1, 64.0, 61.3, 60.3, 54.5, 50.0, 47.0, 39.7, 36.6, 33.7, 29.6, 25.9, 25.7, 24.7, 21.6. Anal. Calcd. for $C_{22}H_{32}N_2O$: Found: C, 77.64; H, 9.51; N, 8.25.

Formation and reduction of N-C6 imine from compound 18. NCS (19 mg, 0.141 mmol) was stirred in THF (2 ml) at 0 °C and a solution of **18** (50 mg, 0.130 mmol) in THF (1 ml) was added. After 1.5 h water was added and the organic layer was concentrated to give the crude N-Cl derivative as a colorless oil. The crude product was dissolved in CH₂Cl₂ (2 ml) and DBU (0.169 mmol, 26 mg, 26 μl) was added. After 8 h the solvent was evaporated, the crude mixture containing the imine product was directly dissolved in CH₂Cl₂ and NaBH₃CN (16 mg, 0.25 mmol) was added. After 1 h the reaction mixture was poured into water and extracted with CH₂Cl₂ to give a mixture containing compounds **18** and **19**.

N-Benzyl-aloperine (22)

1-Benzyl-1,3,4,6,6a,7,8,9,10,12,13,13a-dodecahydro-2H-6,13-methano-dipyrido[1,2-a,3',2'-e]azocine (23)

To a solution of **20** or **21** (361 mg, 1.06 mmol) in CH₂Cl₂ (40 ml), PPh₃ (695 mg, 2.65 mmol) and CBr₄ (421 mg, 1.27 mmol) were added and the reaction mixture was stirred at room temperature for 3 h. Dry Et₃N (361 µl, 2.60 mmol) was added and, after 15h, the solution was poured into HCl 1N. The aqueous solution was basified with NH₄OH conc. and extracted with CH₂Cl₂. Evaporation of the solvent and chromatographic purification (hexane: Et₃N 30:1) gave respectively 22 (153 mg, 45%) or **23** (143 mg, 42%). **22**: R_f (AcOEt: hexane: Et₃N 15:10:1) 0.48; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.11 (5H, m), 5.58 (1H, d, J=4.5 Hz), 4.12 (1H, A portion of AB system), 3.01 (1H, B portion of AB system), 2.98-1.25 (22H, m). ¹³C NMR (75.4 MHz, CDCl₃) δ 139.6, 133.8, 128.6 (2C), 128.1 (2C), 127.9, 126.6, 65.6, 65.1, 57.8, 55.8, 52.5, 51.7, 35.7, 33.7, 32.6, 29.6, 25.6 (2C), 25.2, 23.5. Anal. Calcd. for C₂₂H₃₀N₂: C, 81.93; H, 9.38; N, 8.69. Found: C, 81.90. H, 9.41. N, 8.73. EIMS 322 (25%), 231 (100%). **23**: R_f (AcOEt: hexane: Et₃N 10:15:1) 0.7; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.11 (5H, m), 5.45 (1H, d, J=5 Hz), 4.14 (1H, A portion of AB system), 3.20 (1H, d, J=10 Hz), 2.90 (1H, B portion of AB system), 3.00-2.70 (2H, m), 2.32-2.15 (1H, m), 2.10-1.15 (18H, m). ¹³C NMR (75.4 MHz, CDCl₃) δ 139.7, 138.4, 128.7 (2C), 128.2 (2C), 126.6, 122.4, 65.9, 64.8, 58.2, 56.4, 56.3, 53.4, 35.6, 34.4, 32.8, 31.1, 30.5, 25.9, 25.6, 25.0. Anal. Calcd. for C₂₂H₃₀N₂. Found: C, 81.94. H, 9.39. N, 8.71.

(±)-Aloperine (1)

1,3,4,6,6a,7,8,9,10,12,13,13a-dodecahydro-2H-6,13-methano-dipyrido[1,2-a,3',2'-e]azocine (24)

To a solution of **22** or **23** (50 mg, 0.15 mmol) in THF (600 μ l) maintained at room temperature, Et₃N (1.20 ml), lithium (53 mg, 7.57 mmol) and ethylendiamine (redistilled from Na, 123 μ l, 1.82 mmol) were added. After 2 h, THF (600 μ l), Et₃N (1.20 ml) and ethylendiamine (123 μ l) were added. After 3 h, NH₄Cl 5% (5 ml) and water (5 ml) were added and the reaction mixture was stirred for 10 min. The aqueous layer was basified with Na₂CO₃ and extracted with CHCl₃. After evaporation of organic layer, a yellow oil was obtained. Chromatography purification (AcOEt: MeOH: Et₃N 15 :5 :2) gave respectively **1** (28 mg, 80%) or **24** (29 mg, 83%). **1**: R_f (AcOEt: MeOH: Et₃N 15 :5 :2) 0.15; ¹H NMR (300 MHz, CD₃COCD₃) δ 5.50 (1H, d, J=6.5 Hz), 3.22 (1H, d, J=5.8

Hz), 3.15-3.05 (1H, m), 2.90 (1H, dd, J=11.4, 6 Hz), 2.87-2.75 (1H, m), 2.68 (1H, td, J=12.1, 2.8 Hz), 2.65-2.45 (2H, m), 2.40-1.15 (16H, m). 13 C NMR (300 MHz, CDCl₃) δ 136.1, 126.9, 60.1, 58.1, 55.1, 47.6, 46.0, 34.9, 32.5, 31.6, 29.6, 27.1, 25.4 (2C), 20.2. Anal. Calcd. for $C_{15}H_{24}N_2$: C, 77.53; H, 10.42; N, 12.05. Found: C, 77.58. H, 10.42. N, 12.02. **24**: R_f (AcOEt: MeOH: Et₃N 15:5:2) 0.21; 1 H NMR (300 MHz, CD₃COCD₃) δ 5.45 (1H, d, J=6.6 Hz), 3.18 (1H, d, J=6 Hz), 3.15-3.04 (1H, m), 2.98-2.86 (1H, m), 2.75-2.60 (2H, m), 2.38-2.25 (1H, m), 2.20-1.10 (17H, m). 13 C NMR (100.6 MHz, CDCl₃) δ 140.7, 121.5, 66.6, 58.4, 57.6, 56.3, 47.2, 35.6, 33.8, 33.4, 32.7, 30.8, 30.4, 26.0, 24.9. Anal. Calcd. for $C_{15}H_{24}N_2$: C, 77.53; H, 10.42; N, 12.05. Found: C, 77.57. H, 10.38. N, 12.03.