SUPPORTING INFORMATION

Synthesis of Annulated γ Carbolines by Palladium-Catalyzed Intramolecular Iminoannulation

Haiming Zhang and Richard C. Larock*
Department of Chemistry, Iowa State University, Ames, IA 50011
larock@iastate.edu

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz respectively. Thin-layer chromatography was performed using commercially prepared 60-mesh silica gel plates (Whatman K6F), and visualization was effected with short wavelength UV light (254 nm) and basic KMnO_{4} solution $\left[3 \mathrm{~g}\right.$ of $\mathrm{KMnO}_{4}+20 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}+5 \mathrm{~mL}$ of $\mathrm{NaOH}(5 \%)+300 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$. All melting points are uncorrected. High-resolution mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector mass spectrometer using El at 70 eV . All reagents were used directly as obtained commercially unless otherwise noted. 2-Bromo- 1 H-indole-3-carboxaldehyde, ${ }^{1}$ 1-bromoundec-4-yne, ${ }^{2} 6$-phenylhex-5-yn-1-ol, ${ }^{3} 2$-(phenylethynyl)benzyl alcohol, ${ }^{4}$ and 1-(hydroxymethyl)-2-(trifluoromethanesulfonyloxy)cyclopentene ${ }^{5}$ were prepared according to literature procedures. The following starting materials were prepared as described.

5-Chloro-1-phenylpent-1-yne. This compound was prepared by a procedure used to synthesize 6-phenylhex-5-yn-1-ol, ${ }^{3}$ but using iodobenzene and 5 -chloropent-1-yne. The product was purified using 50:1 hexanes/EtOAc to afford 87% of the indicated compound as a colorless oil whose spectral properties are consistent with those in the literature. ${ }^{6}$

6-Chloro-1-(4-methoxyphenyl)hex-2-yn-1-ol. To 5-chloropent-1-yne ($0.513 \mathrm{~g}, 5.0 \mathrm{mmol}$) in dry THF (10 mL) was added n-BuLi ($5.5 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and a solution
of 4-methoxybenzaldehyde ($0.885 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (10 mL) was added slowly. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 30 min and at room temperature for 2 h . The reaction was quenched with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified using 2:1 hexanes/EtOAc to afford $1.08 \mathrm{~g}(91 \%)$ of the indicated compound as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.97$ (quintet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.45(\mathrm{dt}, J=2.1,6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{dd}, J=3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=6.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 16.5$, $31.5,43.9,55.5,64.5,81.6,85.3,114.1,128.2,133.7,159.8$.

Ethyl 3-(5-chloropent-1-ynyl)benzoate. This compound was prepared by a procedure used to synthesize 6-phenylhex-5-yn-1-ol, ${ }^{3}$ but using ethyl 3iodobenzoate and 5-chloropent-1-yne. The product was purified using 10:1 hexanes/EtOAc to afford 99\% of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.06$ (quintet, $\left.J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.62(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.72 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, ~ J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.4,16.9,31.4,43.7,61.2,80.7,89.2,124.0,128.4,128.8,130.7$, 132.7, 135.7, 166.0.

5-(5-Chloropent-1-ynyl)pyrimidine. This compound was prepared by a procedure used to synthesize 6-phenylhex-5-yn-1-ol, ${ }^{3}$ but using 5bromopyrimidine and 5-chloropent-1-yne. The product was purified using 2:1 hexanes/EtOAc to afford a 93% yield of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.09$ (quintet, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.68(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.73(\mathrm{~s}, 2 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 17.0,31.0,43.5$, 74.9, 95.9, 120.1, 156.5, 158.8.

1-(Hydroxymethyl)-2-(phenylethynyl)cyclopentene. This compound was prepared by a procedure used to synthesize 6-phenylhex-5-yn-1-ol, ${ }^{3}$ but using 1-(hydroxymethyl)-2-(trifluoromethanesulfonyloxy)cyclopentene ${ }^{5}$ and phenylacetylene. The product was purified using 2:1 hexanes/EtOAc to afford a
95% yield of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.94$ (quintet, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.6,34.0,37.1,60.9,85.1,94.5,120.0,123.4,128.2,128.4$, 131.4, 150.0.

1-(Bromomethyl)-2-(phenylethynyl)cyclopentene. To a solution of 1-(hydroxymethyl)-2-(phenylethynyl)cyclopentene ($1.0 \mathrm{mmol}, 0.198 \mathrm{~g}$) and CBr_{4} $(1.3 \mathrm{mmol}, 0.431 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{PPh}_{3}(1.5 \mathrm{mmol}, 0.393$ g) portionwise. The mixture was stirred at room temperature for 2 h . The reaction mixture was flushed through a short silica gel column to remove the triphenylphosphine oxide. The solvent was evaporated and the residue was purified using 20:1 hexanes/EtOAc to afford 0.248 g (95\%) of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.97$ (quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.61 $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $22.3,29.7,34.3,37.2,84.6,96.3,123.2,124.0,128.4,128.5,131.6,145.7$.

General Procedure for the Synthesis of N-Substituted 2-Bromo-1 H

 indole-3-carboxaldehydes. Method A: 2-bromo-1/-indole-3-carboxaldehyde (0.5 mmol), the alkynyl halide (0.6 mmol), $\mathrm{NaI}(0.75 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.75$ mmol) were placed in a 4-dram vial and acetone (3 mL) was added. The vial was flushed with Ar and heated in an oil bath at $75^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled and diluted with ether (5 mL). The precipitate was removed by filtration and the solvent was evaporated. The residue was purified by chromatography on a silica gel column. Method B : to a mixture of 2-bromo-1 $/$-indole-3carboxaldehyde (0.5 mmol), the alkynyl alcohol (0.6 mmol), and $\mathrm{PPh}_{3}(0.75$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added diethyl azodicarboxylate $(0.75 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was flushed with Ar and stirred at room temperature for 24 h. The mixture was concentrated and the residue was purified by chromatography on a silica gel column.
N-Substituted 2-Bromo-1 Hindole-3-carboxaldehydes Prepared

2-Bromo-1-(5-phenylpent-4-ynyl)-1 Hindole-3-carboxaldehyde (3a).

This compound was prepared using 5 -chloro-1-phenylpent-1-yne according to method A. The product was purified using 5:1 hexanes/EtOAc to afford 166 mg (91\%) of the indicated compound as a yellow solid: mp $74-76{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.13$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.25-7.38 (m, 5H), 7.38-7.50 (m, 3H), 8.32 (m, 1H), 10.03 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 17.0,28.5,44.3,82.2,88.0,109.9,115.5,121.3,123.3,123.4$, 124.2, 125.4, 125.7, 128.1, 128.4, 131.6, 136.9, 185.5; IR (neat, cm^{-1}) 3055 , 2947, 2806, 2228, 1653; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}$: 365.0415. Found: 365.0420 .

2-Bromo-1-(undec-4-ynyl)-1 H-indole-3-carboxaldehyde (3b). This compound was prepared using 1-bromoundec-4-yne according to method A . The product was purified using 3:1 hexanes/EtOAc to afford $172 \mathrm{mg}(92 \%)$ of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, \mathcal{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.51$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 4.38(2 \mathrm{H}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{~m}, 1 \mathrm{H}), 10.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.1,16.4$, 18.8, 22.7, 28.7, 28.8, 29.1, 31.5, 44.4, 78.1, 82.2, 109.9, 115.4, 121.3, 123.4, 124.1, 125.4, 125.7, 136.9, 185.4; IR (neat, cm^{-1}) 3060, 2960, 2855, 1660; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrNO}$: 373.1041 . Found: 373.1046.

2-Bromo-1-[6-hydroxy-6-(4-methoxyphenyl)hex-4-ynyl]-1 Hindole-3carboxaldehyde (3c). This compound was prepared using 6-chloro-1-(4-methoxyphenyl)hex-2-yn-1-ol according to method A . The product was purified using 4:5 hexanes/EtOAc to afford $180 \mathrm{mg}(85 \%)$ of the indicated compound as a thick yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.04(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 3.80$ (s, 3H), 4.34 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.43 (s, 1H), 6.91 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20-7.33 (m, 3H), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.28 (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 16.4,28.2,44.3,55.4,64.4,82.2,84.9,109.9,114.1,115.4$, 121.2, 123.4, 124.2, 125.3, 125.7, 128.0, 133.5, 136.8, 159.7, 185.5; IR (neat,
cm^{-1}) 3386, 2953, 1655; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{3}$: 425.0627. Found: 425.0633 .

Ethyl 3-[5-(2-bromo-3-formyl-1 Hindol-1-yl)pent-1-ynyl]benzoate (3d).

This compound was prepared using ethyl 3-(5-chloropent-1-ynyl)benzoate according to method A. The product was purified using $2: 1$ hexanes/EtOAc to afford 205 mg (94\%) of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.13$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1 H), $8.08(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 14.4, 17.0, 28.4, 44.3, 61.3, 81.3, 89.0, 109.8, 115.5, 121.4, 123.4, 123.7, 124.2, $125.4,125.6,128.5,129.1,130.8,132.7,135.6,166.0,185.4$; IR (neat, cm^{-1}) 2979, 2232, 1717, 1658; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNO}_{3}: 437.0627$. Found: 437.0633.

2-Bromo-1-[5-(pyrimidin-5-yl)pent-4-ynyl]-1 H-indole-3-

 carboxaldehyde (3e). This compound was prepared using 5-(5-chloropent-1ynyl)pyrimidine according to method A. The product was purified using 1:3 hexanes/EtOAc to afford 152 mg (83%) of the indicated compound as a pale yellow solid: mp 116-118 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.19$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.58 (t, J= $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.45 ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28-7.35 (m, 2H), $7.40(\mathrm{~m}, 1 \mathrm{H})$, $8.31(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 2 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.1$, 28.0, 44.2, 75.3, 95.6, 109.7, 115.6, 119.9, 121.4, 123.5, 124.3, 125.4, 125.5, 136.8, 156.7, 158.8, 185.4; IR (neat, cm^{-1}) 3036, 2950, 2807, 2231, 1657; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}: 367.0320$. Found: 367.0326.2-Bromo-1-(6-phenylhex-5-ynyl)-1 Hindole-3-carboxaldehyde (3f). This compound was prepared using 6-phenylhex-5-yn-1-ol according to method B. The product was purified using 4:1 hexanes/EtOAc to afford 170 mg (89%) of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.70$ (quintet, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.05 (quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 3 \mathrm{H}), 8.32(\mathrm{~m}, 1 \mathrm{H}), 10.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.1,25.7,28.5,45.0,81.7,88.8,109.9,115.3,121.3,123.4$, $123.6,124.1,125.5,125.7,127.9,128.3,131.6,136.8,185.5$; IR (neat, cm^{-1}) 3055, 2942, 2805, 2232, 1653; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}$: 379.0572. Found: 379.0578.

2-Bromo-1-(dec-3-ynyl)-1 Hindole-3-carboxaldehyde (3g). This

 compound was prepared using 3-decyn-1-ol according to method B. The product was purified using 6:1 hexanes/EtOAc to afford 180 mg (99\%) of the indicated compound as a yellow oil which crystallizes upon standing at $0{ }^{\circ} \mathrm{C}$: mp $52-54{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 2.06$ (m, 2H), $2.68(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H})$, $8.31(\mathrm{~m}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1,18.7,19.9,22.6,28.6,31.4$, $44.5,74.9,83.9,110.0,115.5,121.3,123.4,124.1,125.4,125.6,136.8,185.5 ;$ IR (neat, cm^{-1}) 3055, 2929, 2856, 1660; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}$: 359.0890. Found: 359.0890.
2-Bromo-1-[2-(phenylethynyl)benzyl]-1 Hindole-3-carboxaldehyde

(3h). This compound was prepared using 2-(phenylethynyl)benzyl alcohol according to method B. The product was purified using $5: 1$ hexanes/EtOAc to afford 86 mg (42\%) of the indicated compound as a yellow solid: $\mathrm{mp} 151-152^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=1.2,7.5 \mathrm{~Hz}$, 1 H), 7.25-7.34 (m, 4H), 7.36-7.42 (m, 3H), 7.58-7.64 (m, 3H), 8.37 (dt, J=7.2, $1.2 \mathrm{~Hz}), 10.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 47.5,86.4,96.0,110.6,116.0,121.5$, 121.6, 122.9, 123.8, 124.7, 125.6, 125.7, 126.5, 128.1, 128.8, 129.1, 129.3, 131.8, 132.7, 136.8, 137.4, 185.8; IR (neat, cm^{-1}) 3058, 2808, 2249, 1659; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{BrNO}: 413.0415$. Found: 413.0423.

2-Bromo-1-\{[2-(phenylethynyl)cyclopent-1-en-1-yl]methyl\}-1 Hindole-3-carboxaldehyde (3i). This compound was prepared using 1-(bromomethyl)-2(phenylethynyl)cyclopentene according to method A. The product was purified using 5:1 hexanes/EtOAc to afford 110 mg (55\%) of the indicated compound as a pale yellow solid: mp $162-163{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.86$ (quintet, $J=7.2 \mathrm{~Hz}$, 2H), 2.24 (t, J= 7.2 Hz, 2H), $2.63(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $5.20(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.38$ (m,
$5 \mathrm{H}), 7.43-7.55(\mathrm{~m}, 3 \mathrm{H}), 8.31(\mathrm{~m}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.2$, $33.8,36.9,45.0,84.5,96.1,110.4,115.5,121.2,123.0,123.4,123.5,124.3$, 125.4, 126.0, 128.5, 128.6, 131.5, 137.1, 143.4, 185.6; IR (neat, cm^{-1}) 3055, 2955, 2252, 1658; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrNO}: 403.0572$. Found: 403.0577.

General Procedure for the Synthesis of Annulated γ-Carbolines by

Palladium-Catalyzed Intramolecular Iminoannulation. The N-substituted 2-bromo-1 H-indole-3-carboxaldehyde (0.25 mmol) was placed in a 2 -dram vial and tert-butylamine (1 mL) was added. The vial was flushed with Ar and carefully sealed. The mixture was heated at $100^{\circ} \mathrm{C}$ for 8 h and cooled, diluted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated and the residue was dissolved in DMF (5 mL) and transferred to a 4-dram vial containing $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.25 \mathrm{mmol})$. The mixture was flushed with Ar and heated at $100^{\circ} \mathrm{C}$ for the indicated time. The completion of the reaction was established by the observation of palladium black. The mixture (except entries 3 and 5 in Table 1, which produce reasonably water soluble products) was diluted with EtOAc (30 mL), washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}$ (3 $\times 10 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on a silica gel column. The solvent from the reaction mixtures of entries 3 and 5 was directly evaporated and the residue was purified by chromatography on a silica gel column.

Annulated γ-Carbolines Prepared

3-Phenyl-5,6-dihydro-4/-indolo[3,2,1-ij]-1,6-naphthyridine (4a). The mixture was chromatographed using 1:1 hexanes/EtOAc to afford $66 \mathrm{mg}(93 \%)$ of the indicated compound as a white solid: mp 172-173 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 2.24 (quintet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31 (dt, $J=0.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.73(\mathrm{~m}$, $2 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.7,23.9,41.0$, $108.9,113.8,116.9,120.5,121.5,121.6,126.5,127.9,128.4,129.6,140.3$,
140.5, 140.7, 143.2, 150.8; IR (neat, cm^{-1}) 3055, 2943; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2}$: 284.1314. Found: 284.1317.

3-Hexyl-5,6-dihydro-4/Hindolo[3,2,1-ij]-1,6-naphthyridine (4b). The

 mixture was chromatographed using 10:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford $70 \mathrm{mg}(95 \%)$ of the indicated compound as a white solid: $m p 58-59{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88$ $(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (quintet, $J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26 (dt, J= 1.2, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dt, $J=1.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.4,21.8,22.4$, 22.9, 29.7, 30.2, 32.1, 34.8, 40.7, 108.8, 113.3, 116.3, 120.2, 121.3, 121.8, 126.1, 140.0, 140.4, 143.2, 153.5; IR (neat, cm^{-1}) 3053, 2925, 2854; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$: 292.1940. Found: 292.1945.
5,6-Dihydro-4 Hindolo[3,2,1-iر]-1,6-naphthyridin-3-yl(4-

methoxyphenyl)methanol (4c). The mixture was chromatographed using 10:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford 82 mg (95\%) of the indicated compound as a yellow oil, which crystallizes upon standing at $0{ }^{\circ} \mathrm{C}$: mp $131-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.25$ (m, 2H), $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=16.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H})$, $4.23(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.9,21.7,40.4,55.3,71.8,108.8$, $112.4,113.9,117.6,120.4,121.3,121.4,126.6,128.8,136.0,138.2,140.7$, 143.2, 150.9, 159.0; IR (neat, cm $^{-1}$) 3321, 3005, 2930, 1473; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 344.1525. Found: 344.1531.

Ethyl 3-(5,6-dihydro-4H-indolo[3,2,1-ij-1,6-naphthyridin-3-yl)benzoate
(4d). The mixture was chromatographed using $12: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford 83 $\mathrm{mg}(93 \%)$ of the indicated compound as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 2.27 (quintet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.17(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1 H), $7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.4,22.5,23.6$,
40.8, 61.1, 108.8, 113.9, 117.0, 120.4, 121.3, 121.4, 126.5, 128.4, 128.5, 128.8, 130.4, 133.9, 140.4, 140.5, 140.6, 143.0, 149.5, 166.7; IR (neat, cm^{-1}) 3055 , 2952, 1716; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 356.1525. Found: 356.1532.

3-(5-Pyrimidin-5-yl)-5,6-dihydro-4H-indolo[3,2,1-ij]-1,6-naphthyridine
(4e). The mixture was chromatographed using $12: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford 71 $\mathrm{mg}(99 \%)$ of the indicated compound as a yellow solid: mp 217-218 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.33$ (quintet, $\left.J=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.20(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 2 \mathrm{H}), 9.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 22.4, 23.4, 40.8, 109.0, 114.8, 117.6, 120.8, 121.1, 121.6, 127.0, 133.6, 140.6, 141.1, 142.8, 143.8, 157.0, 157.5; IR (neat, cm^{-1}) 3043, 2958, 2866; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4}$: 286.1219. Found: 286.1223.

3-Phenyl-4,5,6,7-tetrahydro-2,7-diazacyclohept[1,2,3-jkfluorene (4f). The mixture was chromatographed using 1:1 hexanes/EtOAc to afford 69 mg (90\%) of the indicated compound as a yellow solid: mp 164-166 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 2.10$ (quintet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.27 (quintet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.18(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.53(\mathrm{~m}, 5 \mathrm{H})$, $7.55-7.59(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 26.9$, 28.2, 29.1, 45.0, 109.5, 118.6, 119.2, 120.5, 120.6, 121.6, 126.5, 127.6, 128.1, 129.7, 140.0, 141.6, 141.9, 146.6, 154.2; IR (neat, cm^{-1}) 3056, 2931, 1585; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2}$: 298.1470. Found: 298.1475.

3 -n-Hexyl-4,5-dihydrobenzo[b]pyrido[3,4,5-gh]pyrrolizine (4g). The mixture was chromatographed using $10: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford 63 mg (91%) of the indicated compound as a yellow solid: $\mathrm{mp} 76-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.88$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.25-1.45 (m, 6H), 1.79 (quintet, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.87(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.35$ (dd, $J=0.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dt, $J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (dd, $J=0.6,8.1 \mathrm{~Hz}$, 1H), 8.93 (s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.3,22.9,29.5,29.7,32.0,32.9,36.1$, 49.0, 110.6, 112.1, 117.2, 120.2, 123.1, 125.9, 126.5, 140.5, 140.7, 151.4, 158.0;

IR (neat, cm^{-1}) 3051, 2953, 2853; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$: 278.1783. Found: 278.1787.

1-Phenyl-9Hbenzo[c]indolo[3,2,1-ij]-1,6-naphthyridine (4h). The mixture was chromatographed using 1:1 hexanes/EtOAc to afford $72 \mathrm{mg}(88 \%)$ of the indicated compound as a white solid: $\mathrm{mp} 234-235{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $5.52(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (t, J= $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.57$ (t, J= $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (dd, J= $1.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 45.7$, 109.3, 112.2, 117.3, 121.2, 121.5, 122.0, 126.6, 127.1, 127.5, 127.7, 128.0, 128.3, 128.8, 129.0, 129.2, 129.4, 130.6, 140.5, 140.8, 142.0, 143.6; IR (neat, cm^{-1}) 3057, 2934, 2841; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2}$: 332.1314. Found: 332.1320.

3-Phenyl-4,5,6,7-tetrahydrocyclopenta[c]indolo[3,2,1-ij]-1,6-

naphthyridine (4i). The mixture was chromatographed using $10: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford 76 mg (94\%) of the indicated compound as a yellow solid: mp 184-185 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.89$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.10(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H})$, 5.02 (s, 2H), 7.30-7.52 (m, 8H), $8.11(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.0,33.4,34.3,45.4,109.0,112.1,115.6,120.9,121.4,122.3,126.1$, $127.5,127.7,129.9,130.8,135.5,140.0,141.2,141.6,142.6,149.0$; IR (neat, cm^{-1}) 3055, 2957, 2841; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2}$: 322.1470. Found: 322.1476.

2-Phenyl-2,4,5,6-tetrahydro-1 H-6-azabenzo[a]cyclopenta[cdazulen-1-

one (5a). To a 4-dram vial were added 2-bromo-1-(6-phenylhex-5-ynyl)-1 H-indole-3-carboxaldehyde (3f, 0.25 mmol$), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), n-\mathrm{Bu}_{4} \mathrm{NCl}(0.25$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$ and DMA (5 mL). The mixture was flushed with Ar and heated at $100^{\circ} \mathrm{C}$ for 8 h . The completion of the reaction was established by the observation of palladium black. The mixture was diluted with EtOAc (30 mL), washed with satd aq $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on a silica gel column. The mixture was chromatographed using 1:1 hexanes/EtOAc to afford $36 \mathrm{mg}(48 \%)$ of the indicated compound as an off-white solid: mp 231$233{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.50(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}\right) \delta 25.8,30.7,46.7,62.6,110.2,119.7,121.7,122.1,122.6$, $124.4,127.0,127.9,128.5,128.6,132.0,138.9,143.8,160.9,192.0$; IR (neat, cm^{-1}) 3055, 2923, 1683; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}: 299.1310$. Found: 299.1314.

References

1. Gilchrist, T. L.; Kemmitt, P. D.; Germain, A. L. Tetrahedron 1997, 53, 4447. We used ethyl acetate instead of diethyl ether as the extraction solvent and were able to isolate 2-bromo-1 H-indole-3-carboxaldehyde in 55% yield.
2. Sudo, T.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2000, 65, 8919.
3. Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412.
4. Padwa, A.; Krumple, K. E.; Weinggarten, M. D. J. Org. Chem. 1995, 60, 5595.
5. Saulnier, M. G.; Kadow, J. F.; Tun, M. M.; Langley, D. R.; Vyas, D. M. J. Am. Chem. Soc. 1989, 111, 8320.
6. Baker, M. V.; Brown, D. H.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 2000, 4607.

16.440

$\begin{array}{r}0 \\ 0 \\ 0 \\ \hline\end{array}$

\qquad

$\begin{array}{r}\square \\ \times \\ \times \\ \times 7.088 \\ \hline\end{array}$

- 61.270
—— 44.279
-28.384
——16.983
$=14.376$

41.012

—— 153.459 $\begin{array}{r}143.167 \\ \square \\ \hline\end{array} 149.411$
 77.705
\sim
\sim
-76.282
\times

