1. Synthesis of the ABC Ring System of Azaspiracid: Effect of D Ring Truncation on Bisspirocyclization.

Rich G. Carter,*a T. Campbell Bourland ${ }^{\text {b }}$ and David E. Graves ${ }^{\text {b }}$
a. Department of Chemistry, Oregon State University, Corvallis, OR 97331.
b. Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677.

Electronic Supplementary Information

Alcohol 14: ${ }^{1}$ To a stirred solution of $\mathbf{1 8}(800 \mathrm{mg}, 2.93 \mathrm{mmol})$ in THF at $0^{\circ} \mathrm{C}$ was added dithexylborane ($3.67 \mathrm{~mL}, 4.4 \mathrm{mmol}, 1.2 \mathrm{M}$ in THF) dropwise via syringe. After 1 h, the reaction was quenched with aq. phosphate buffer ($6 \mathrm{~mL}, \mathrm{pH} 7$) and $\mathrm{H}_{2} \mathrm{O}_{2}(6 \mathrm{~mL}$, 30% aqueous). After 1.5 h , the solution was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{X} 75 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was filtered through a small plug of Florisil, ${ }^{\circledR}$ rinsed with $\mathrm{Et}_{2} \mathrm{O}$ and concentrated in vacuo to give 14 as a crude oil.

14
19
TES Alcohol 19: To a stirred solution of crude 14 (2.93 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14.7 mL) at $-78^{\circ} \mathrm{C}$ was added sequentially 2,6 -lutidine ($628 \mathrm{mg}, 680 \mu \mathrm{~L}, 5.86 \mathrm{mmol}$) and TESOTf ($1.164 \mathrm{~g}, 1.0 \mathrm{~mL}, 4.4 \mathrm{mmol}$). An additional portion of 2,6-lutidine (943 mg , $1.02 \mathrm{~mL}, 8.8 \mathrm{mmol}$) and TESOTf ($2.325 \mathrm{~g}, 2.0 \mathrm{~mL}, 8.8 \mathrm{mmol}$) was added during the course of the reaction. After 3 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{X} 75 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 2-20\% EtOAc / hexanes, to give 19 ($878 \mathrm{mg}, 2.17 \mathrm{mmol}, 74 \%$ over 2 steps $)$ as a colorless oil: $\left([\alpha]_{\mathrm{D}}{ }^{23}\right.$ 20.0° (c 1.17, CHCl_{3}); IR (neat) 2954, 1770, 1683, $1457 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.21-7.36 (m, 5H), 4,65-4.72 (m, 1H), 4.14-4.22 (m, 2H), 3.73-3.80 (m, 1H), 3.59-3.67 (m, 2H), 3.32 (dd, J = 3.1, $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (dd, J = 10.0, $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.52$1.82(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,153.3,135.6,129.6,129.2,127.5,66.2,62.9,55.6$, $38.3,37.5,30.6,30.3,17.1,7.0,4.6$; HRMS (FAB+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{NSi}(\mathrm{M}+\mathrm{H})$ 406.2414, found 406.2410.

Alcohol 20: To a stirred solution of 19 ($197 \mathrm{mg}, 0.486 \mathrm{mmol})$ in THF $(4.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sequentially $\mathrm{MeOH}(16.6 \mathrm{mg}, 21 \mu \mathrm{~L}, 0.518 \mathrm{mmol})$ and $\mathrm{LiBH}_{4}(0.29 \mathrm{~mL}$, $0.58 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF). After 45 min , the reaction was warmed to r.t. After 3.5 h , the reaction was quenched with aq. sodium tartrate ($25 \mathrm{~mL}, 10 \%$) and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{X} 30 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10-40 \% \mathrm{EtOAc} /$ hexanes, to give $\mathbf{2 0}$ (93 $\mathrm{mg}, 0.423 \mathrm{mmol}, 87 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-6.2^{\circ}$ (c 2.05, CHCl_{3}); IR (neat) 3366, 2952, 2875, 1458, 1238, 1095, 1007, $742 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.60(\mathrm{t}, \mathrm{J}$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=6.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=6.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{bs}$, $\mathrm{OH}), 1.42-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.09-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.86-1.03(\mathrm{~m}, 12 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 68.4,63.4,35.7,30.3,29.4,16.8,7.0,4.6$; HRMS ($\mathrm{FAB}+$) calcd. for $\mathrm{C}_{12} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 233.1937, found 233.1939.

Aldehyde 7: To a stirred solution of $\mathbf{2 0}(90 \mathrm{mg}, 0.410 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ with powdered $4 \AA$ mol. sieves (100 mg) was added sequentially NMO ($76 \mathrm{mg}, 0.65$ $\mathrm{mmol})$ and TPAP ($7.6 \mathrm{mg}, 0.022 \mathrm{mmol}$). After 35 min , the reaction was diluted with $10 \% \mathrm{EtOAc} /$ hexanes $(10 \mathrm{~mL})$, filtered through a small plug of silica gel ($10 \% \mathrm{EtOAc}$ / hexanes rinse), and concentrated in vacuo to give $7(86 \mathrm{mg}, 0.394 \mathrm{mmol}, 96 \%)$ as a colorless oil: IR (neat) 2955, 1729, $1095 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62$ (d, J $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.62$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,62.7,46.3,30.3,27.1,13.6,7.0,4.6$; HRMS (FAB+) calcd. for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}-\mathrm{H})$ 229.1624, found 229.1623.

Hydroxy Sulfone 21: To a stirred solution of A ($166 \mathrm{mg}, 0.275 \mathrm{mmol}$) in THF $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{LDA}^{2}(310 \mu \mathrm{~L}, 0.31 \mathrm{mmol}, 1 \mathrm{M}$ in THF / hexanes) dropwise via a syringe. After 20 min , a precooled solution of the aldehyde $\mathbf{1 6}(75 \mathrm{mg}, 0.344$ mmol) in THF (0.3 mL) was added rapidly via cannula to the yellow sulfone solution. After 25 min , the reaction was removed from the cooling bath. After an additional 2 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and extracted with EtOAc (4 X $25 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10-28 \%$ EtOAc / hexanes, to give 21 (182 $\mathrm{mg}, 0.0 .22 \mathrm{mmol}, 81 \%$) as a colorless oil.

Keto sulfone 15: To a stirred solution of $21(40.0 \mathrm{mg}, 0.0487 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.8 \mathrm{~mL})$ with powdered $4 \AA$ mol. sieves $(\approx 200 \mathrm{mg})$ was sequentially added NMO (13 $\mathrm{mg}, 0.11 \mathrm{mmol})$ and TPAP $(6.8 \mathrm{mg}, 0.019 \mathrm{mmol})$ at r.t. An additional portion of TPAP $(6 \mathrm{mg}, 0.017 \mathrm{mmol})$ was added during the course of the reaction. After 1.5 h , the reaction was diluted with 30% EtOAc / hexanes (10 mL), filtered through a small plug of silica gel (30% EtOAc / hexanes rinse), and concentrated in vacuo. The resultant oil was purified by chromatography over silica gel, eluting with 5-20\% EtOAc / hexanes, to give 15 ($29 \mathrm{mg}, 0.035 \mathrm{mmol}, 73 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}+17.3^{\circ}$ (c $3.45, \mathrm{CHCl}_{3}$); IR (neat) 3070, 2952, 17.16, 1310, $1111 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.76(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 6 \mathrm{H}), 6.01-6.08(\mathrm{~m}, 1 \mathrm{H}$ of a diastereomer), 5.01-5.96 (m, 1H of a diastereomer), 5.31-5.64 (m, 3H), 4.61 (dd, J - 3.4, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$ of a diastereomer), $4.47(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ of a diastereomer), 4.12-4.22 (m, $1 \mathrm{H})$ 3.57-3.68 (m, 4H), $3.11(\mathrm{~s}, 3 \mathrm{H}$ of a diastereomer), $3.06(\mathrm{~s}, 3 \mathrm{H}$ of a diastereomer), 2.92-3.03 (m, 1H), 2.60 (dd, J = 10.0, $13.8 \mathrm{~Hz}, 1 \mathrm{H}$ of a diastereomer), 2.27-2.38 (m, 1H of a diastereomer), $2.25(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-2.20(\mathrm{~m}, 7 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.17$ ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$ of a diastereomer), $1.11(\mathrm{~d} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ of a diastereomer), 1.06 (s, 9 H of a diastereomer), $1.05(\mathrm{~s}, 9 \mathrm{H}$ of a diastereomer), 0.93-0.98 (m, 9H), 0.55-0.65 (m, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8,204.6,136.7,135.8,134.4,134.3,132.8,132.3$, $130.3,129.8,139.6,129.2,129.1,127.9,127.8,127.7,97.4,96.5,69.8,69.3,69.1,68.8$,
$63.4,63.0,62.8,49.4,48.0,47.6,34.7,34.2,32.2,32.1,30.8,30.5,30.3,29.9,28.9,28.8$, 28.7, 27.1, 19.4, 16.4, 14.9, 7.1, 4.6.

Ketone 11: To a stirred solution of $15(86 \mathrm{mg}, 0.103 \mathrm{mmol})$ in THF $(0.6 \mathrm{~mL})$ and $\mathrm{MeOH}(1.8 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ was added $\mathrm{Na}_{2} \mathrm{HPO}_{4}(70.6 \mathrm{mg}, 0.493 \mathrm{mmol})$ followed by $\mathrm{Na} /$ $\mathrm{Hg}(330 \mathrm{mg}, 0.712 \mathrm{mmol}, 5 \% \mathrm{Na})$. After 75 min , the reaction was diluted with 35% EtOAc / hexanes (10 mL), filtered through a small plug of silica gel ($35 \% \mathrm{EtOAc} /$ hexanes rinse), and concentrated in vacuo to give crude $\mathbf{1 1}(0.103 \mathrm{mmol})$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (dd, J $=0.9,6.2 \mathrm{~Hz}, 4 \mathrm{H}$), $7.36-7.45(\mathrm{~m}, 6 \mathrm{H})$, 5.96-6.02 (m, 1H), $5.69(\mathrm{dt}, \mathrm{J}=6.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, \mathrm{J}=$ $6.6,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.40-2.60 (m, 2H), 1.80-2.15 (m, 6H), 1.52-1.70 (m, 5H), 1.30-1.50 (m, 2H), 1.05-1.08 $(\mathrm{m}, 12 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H})$; HRMS (FAB+) calcd. for $\mathrm{C}_{40} \mathrm{H}_{61} \mathrm{O}_{4} \mathrm{Si}_{2}(\mathrm{M}+-\mathrm{MeOH}) 661.4108$, found 661.4124 .

Spirocycles 12 and 13: To a stirred solution of crude 11 (0.103 mmol) in PhMe (7 mL) and t - $\mathrm{BuOH}(7 \mathrm{~mL}$) was added CSA ($123 \mathrm{mg}, 0.529 \mathrm{mmol}$). After 19 h , the reaction was quenched with solid $\mathrm{NaHCO}_{3}(500 \mathrm{mg})$. After 10 min , the solution was diluted with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{X} 100 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $3-12 \% \mathrm{EtOAc} /$ hexanes, to give more polar 12 and less polar 13 (38 mg , $0.070 \mathrm{mmol}, 68 \%$ over the 2 steps) as colorless oils.

12: $[\alpha]_{D^{23}}-13.0^{\circ}$ (c $0.185, \mathrm{CHCl}_{3}$); IR (neat) 2931, 2858, 1428, 1111, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.65-7.68 (m, 4H), 7.34-7.43 (m, 6H), 5.94-6.0 (m, 1H), 5.62-5.72 (m, 2H), 5.50 (dd, J = 6.0, $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{ddd}, \mathrm{J}=3.0$, $11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{dt}, \mathrm{J}=4.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-2.20(\mathrm{~m}$, $10 \mathrm{H}), 1.56-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,134.2,132.3,130.7,129.7,128.2,127.8,110.0,104.4,69.0,63.4,62.8$, $37.1,36.5,32.6,32.1,30.3,28.9,27.5,27.0,21.5,19.4,15.6$; HRMS (FAB+) calcd. for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 547.3244$, found 547.3228.

13: $[\alpha]_{\mathrm{D}}{ }^{23}-65.3^{\circ}\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right)$; IR (neat) 2960, 2930, 2855, 1467, $1110 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.64-7.68 (m, 4H), 7.34-7.45 (m, 6H), 5.94-6.00 (m, 1H), $5.53-5.75(\mathrm{~m}, 3 \mathrm{H}), 4.42-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, \mathrm{J}=2.2,11.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-2.26(\mathrm{~m}, 10 \mathrm{H}), 1.47-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$, $0.87(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,134.2,132.4,130.6,129.7$, $128.8,128.0,127.8,109.6,105.3,70.1,63.5,62.0,37.8,37.5,35.5,32.1,30.2,28.9,28.6$, 27.0, 19.4, 16.8; HRMS (FAB+) calcd. for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 547.3244, found 547.3252.

12
transoidal

13
cisoidal

16 transoidal

17 cisoidal

Spirocycles 16 and 17: To a stirred solution of 12 and 13 ($38 \mathrm{mg}, 0.070 \mathrm{mmol}$) in THF (0.5 mL) was added TBAF ($2 \mathrm{~mL}, 2.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). After 90 min , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with EtOAc (4 X 75 $\mathrm{mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $5-40 \% \mathrm{EtOAc} /$ hexanes, to give sequentially $16(9.0 \mathrm{mg}, 0.032 \mathrm{mmol}, 46 \%)$ followed by $17(9.0 \mathrm{mg}, 0.032 \mathrm{mmol}, 46 \%)$ as colorless oils.

16: $[\alpha]_{\mathrm{D}}{ }^{23}-34.4^{\circ}$ (c $0.39, \mathrm{CHCl}_{3}$); IR (neat) $3419,2927,2855,1455,978 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dd}, \mathrm{J}=6.1,15.7$
$\mathrm{Hz}, 1 \mathrm{H}), 4.37-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, \mathrm{J}=3.0,11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57$ (ddd, $\mathrm{J}=4.4,4.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-2.18(\mathrm{~m}, 10 \mathrm{H}), 1.62-1.80(\mathrm{~m}, 5 \mathrm{H}), 1.38$ (bs, OH), $1.01(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.9,131.1,129.7$, 128.2, 110.0, 104.4, 68.9, 62.8, 62.6, 37.2, 36.5, 32.4, 32.1, 30.4, 28.9, 27.5, 21.5, 15.6; HRMS (FAB+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}-\mathrm{H})$ 291.1960, found 291.1959.

17: $[\alpha]_{D}^{23}-118.0^{\circ}$ (c 0.405, CHCl_{3}); IR (neat) $3440,2964,2927,1226,990 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95-6.00(\mathrm{~m} \mathrm{1H}), 5.75(\mathrm{dt}, \mathrm{J}=6.6,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-$ $5.65(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=11.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.62-3.67(\mathrm{~m}, 1 \mathrm{H}), 1.82-2.27(\mathrm{~m}, 10 \mathrm{H}), 1.49-1.71(\mathrm{~m}, 5 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; 13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 132.1,131.0,128.8,128.0,109.7,105.3,70.0,62.6,62.1$, $37.8,37.5,35.5,32.1,30.2,29.0,28.6,26.3,16.9$; HRMS (FAB+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}$ (MH) 291.1960, found 291.1964.

Equilibration of Cisoidal 17: To a stirred solution of $17(3.9 \mathrm{mg}, 0.0127 \mathrm{mmol})$ in $\mathrm{PhMe}(0.85 \mathrm{~mL})$ and $t-\mathrm{BuOH}(0.85 \mathrm{~mL})$ was added CSA $(15.5 \mathrm{mg}, 0.0667 \mathrm{mmol})$. After 16 h , the reaction was quenched with solid $\mathrm{NaHCO}_{3}(100 \mathrm{mg})$. After 5 min , the reaction was diluted with $35 \% \mathrm{EtOAc} /$ hexanes $(10 \mathrm{~mL})$, filtered through a small plug of silica gel (35% EtOAc / hexanes rinse), concentrated in vacuo and purified by chromatography over silica gel, eluting with $5-40 \% \mathrm{EtOAc} /$ hexanes, to give sequentially $16(1.8 \mathrm{mg}, 0.0058 \mathrm{mmol}, 44 \%)$ followed by $17(2.0 \mathrm{mg}, 0.032 \mathrm{mmol}, 50 \%)$ as a colorless oils.
(1) This protocol is an adaptation of a literature protocol. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737.
(2) The 1.0 M LDA solution was prepared fresh immediately prior to use: To a stirred solution of N, N-diispropyl amine ($404 \mathrm{mg}, 560 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) in THF $(1.84 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added n-BuLi $(1.6 \mathrm{~mL}$, $4.0 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) dropwise. After 5 min , the white suspension was warmed to $-10^{\circ} \mathrm{C}$. After 30 min , the solution was employed in the relevant reaction.

