A Short Stereoselective Synthesis of (土) Epiasarinin
David J. Aldous ${ }^{\mathrm{b}}$, Anne J. Dalençon ${ }^{\text {a }}$, Patrick G. Steel ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Department of Chemistry, University of Durham, South Road, Durham, DH1 3TQ, UK
${ }^{\mathrm{b}}$ Aventis Pharma Inc, Route 202-206, Bridgewater, P.O. box 6800, New Jersey 08807, USA.
p.g.steel@durham.ac.uk

Experimental Data

Methyl 4,5-epoxy-5-[3',4'-methylenedioxyphenyl]pent-2-enoate 13

LDA (34 mmol) \{generated by the addition of nBuLi $1.6 \mathrm{M}(23.4 \mathrm{ml}, 37.4 \mathrm{mmol})$ to a solution of diisopropylamine ($4.75 \mathrm{ml}, 34 \mathrm{mmol}$) in THF $(40 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ under $\left.\mathrm{N}_{2}\right\}$ was added dropwise to stirred solution of piperonal $(10.2 \mathrm{~g}, 68 \mathrm{mmol})$ and methyl 4-bromocrotonate ($2 \mathrm{ml}, 17 \mathrm{mmol}$) in THF (60 ml) under N_{2} at $-20^{\circ} \mathrm{C}$. Typically, the transfer lasted 1 hr for 20 mmol of crotonate. The reaction was stirred for 2 h at $-20^{\circ} \mathrm{C}$ and then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{ml})$. The layers were separated and the aqueous layer extracted with ether ($3 \times 20 \mathrm{ml}$). The combined organic layers were then washed with sat. aq. $\mathrm{NaHSO}_{3}\left(40 \mathrm{~g}\right.$ of NaHSO_{3} solid $)$, sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ and brine $(3 \times 30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by flash chromatography (ether : petrol (1:3)) afforded the title ester $\mathbf{1 3}$ as (43:57) mixture of syn and anti epoxides ($2.95 \mathrm{~g}, 70 \%$). $v_{\max } 2992$ (epoxide), $2781\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; 1719\left(\alpha, \beta\right.$ unsaturated COOR); $1179\left(\mathrm{COOCH}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 6.82-$ $6.77(3.43 \mathrm{H} ; \mathrm{m} ; \mathrm{Ar}-H+3-H$ isomer B); $6.46(0.57 \mathrm{H} ; \mathrm{dd} ; \mathrm{J}=15.6,8.1 ; 3-H \mathrm{~A}) ; 6.18(0.57 \mathrm{H} ; \mathrm{d}$; $\mathrm{J}=15.6 ; 2-H \mathrm{~A}) ; 6.16(0.43 \mathrm{H} ; \mathrm{d} ; \mathrm{J}=15.6 ; 2-H \mathrm{~B}) ; 5.95\left(2 \mathrm{H} ; \mathrm{s} ; \mathrm{OCH}_{2} \mathrm{O}\right) ; 4.25(0.57 \mathrm{H} ; \mathrm{d} ; \mathrm{J}=4.2 ; 5-H$ А); 3.76-3.67 (4H; m; $\left.\mathrm{COOCH}_{3}+4-H \mathrm{~A}+5-H \mathrm{~B}\right) ; 3.41(0.43 \mathrm{H} ; \mathrm{dd} ; \mathrm{J}=6.9,1.8 ; 4-H \mathrm{~B}) ; \delta_{\mathrm{C}}$ (100MHz) isomer A: 165.6 (C-1); 148.1, 147.7, 141.4, 127.6, 126.2, 119.9 (aromatics); 108.2 (C 2); $106.7(C-3) ; 101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; 59.3\left(\mathrm{COOCH}_{3}\right) ; 57.9(C-5) ; 51.6(C-4)$; Isomer B: $166.0(C-1)$; 147.9, 147.5, 143.8, 129.8, 123.4, 119.9 (aromatics); $108.3(C-2) ; 105.3(C-3) ; 101.2\left(\mathrm{OCH}_{2} \mathrm{O}\right)$; $61.1\left(\mathrm{COOCH}_{3}\right) ; 60.3(C-5) ; 51.7(C-4) ; m / z(\mathrm{EI}) 248(12 \%)\left(\mathrm{M}^{+}\right) ; 135(100 \%) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 266$ (20\%) ($\mathrm{MNH}_{4}{ }^{+}$); 252 (80\%); 233 (100\%)

A sample of the vinylepoxide $13(\sim 500 \mathrm{mg})$ was placed in a 25 ml rb flask and attached to the fvp apparatus as indicated in the schematic above. The apparatus was then evacuated to $\leq 0.04 \mathrm{mbar}$ and the oven heated to $500^{\circ} \mathrm{C}$. When the apparatus had stabilised at these conditions the sample was heated directly with a heat gun. The crude material collected in the cold trap was then purified by flash chromatography (ether : petrol (3:7)) to afford the desired pure cis dihydrofuran 16c (66\%) and a small amount of the trans isomer 16t ($\sim 8 \%$). For 16c: Found: C 62.80, H 4.85. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{5}$ requires C 62.90, H 4.87\%. $v_{\max } 1733$ (COOR); $1250 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}): 6.82-6.76(3 \mathrm{H} ; \mathrm{m}$; aromatics); $6.68(1 \mathrm{H} ; \mathrm{t}=2.25 ; 2-H) ; 5.94\left(2 \mathrm{H} ; \mathrm{s} ; \mathrm{OCH}_{2} \mathrm{O}\right) ; 5.67(1 \mathrm{H} ; \mathrm{d} \mathrm{J}=11.1 ; 5-H) ; 5.04(1 \mathrm{H} ; \mathrm{t}$ $\mathrm{J}=2.25 ; 3-H) ; 4.06(1 \mathrm{H} ; \mathrm{dt} \mathrm{J}=2.25,11.1 ; 4-H) ; 3.30\left(3 \mathrm{H} ; \mathrm{s} ; \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}): 171.5$ (COOMe); 148.8 (C-2); 147.4, 147.3, 131.0, 120.0, 107.8, 106.95 (aromatics); $101.0\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; 99.3(C-3)$; 84.3 (C-5); $53.4(C-4) ; 51.6\left(\mathrm{OCH}_{3}\right) ; \mathrm{R}_{\mathrm{t}} \mathrm{GC}-\mathrm{MS}=1130 \mathrm{~s} ; m / z(\mathrm{EI}) 248$ (28.6\%) (M+); 159 (100\%); $m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 266(40 \%)\left(\mathrm{MNH}_{4}{ }^{+}\right) ; 249(100 \%)\left(\mathrm{MH}^{+}\right)$.

4-Hydroxymethyl-5-[3',4'-methylenedioxyphenyl]-2,3-dihydrofuran 17

A solution of ester $\mathbf{1 6 c}(400 \mathrm{mg}, 1.61 \mathrm{mmol})$ in ether $(10 \mathrm{ml})$ was introduced slowly to a suspension of $\mathrm{LiAlH}_{4}(150 \mathrm{mg}, 3.95 \mathrm{mmol}, 2.45 \mathrm{eq})$ in ether $(10 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred 3 h at $-40^{\circ} \mathrm{C}$ under argon and quenched with distilled water ($150 \mu \mathrm{l}$), NaOH 3N $(150 \mu \mathrm{l})$ and finally water $(450 \mu \mathrm{l})$ before being filtered through a celite bed and concentrated $(347 \mathrm{mg}, \mathrm{y}=98 \%)$. The title alcohol was unstable and was used without further purification (storage at $-20^{\circ} \mathrm{C}$ under argon for a couple of hours only). Cis alcohol: $\delta_{\mathrm{H}}(300 \mathrm{MHz}): 6.9-6.8(3 \mathrm{H} ; \mathrm{m}$; aromatics); $6.57(1 \mathrm{H} ; \mathrm{dd} \mathrm{J}=1.5,2.7 ; 2-H) ; 5.97\left(2 \mathrm{H} ; \mathrm{s} ; \mathrm{OCH}_{2} \mathrm{O}\right) ; 5.54(1 \mathrm{H} ; \mathrm{d} \mathrm{J}=9.45 ; 5-H) ; 4.99$ ($1 \mathrm{H} ; \mathrm{t} \mathrm{J}=2.7 ; 3-H) ; 3.40-3.18\left(3 \mathrm{H} ; \mathrm{m} ; 4-\mathrm{H}^{2} \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}): 147.9(\mathrm{C}-2) ; 147.2,147.0$, 131.1, 119.6, 108.2, 106.9 (aromatics); 101.5(C-3); $101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; 84.6(\mathrm{C}-5) ; 62.6(\mathrm{C}-4), 48.7$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right)$.

3,7-dioxa-4-methoxy-2,6-bis[3',4'-methylenedioxyphenyl]bicyclo[3.3.0]octane 21a

A solution of alcohol $17(347 \mathrm{mg}, 1.58 \mathrm{mmol})$ in DCM $(10 \mathrm{ml})$ was slowly added in a solution of acetal 18a ($800 \mathrm{mg}, 4.08 \mathrm{mmol}, 2.6 \mathrm{eq}$) and $\operatorname{TMSOTf}(42.5 \mu \mathrm{l}, 2.38 \mathrm{mmol}, 1.5 \mathrm{eq})$ in DCM (20 ml) at $-40^{\circ} \mathrm{C}$ under argon. The resulting solution (dark purple) was stirred for 17 hours at $-40^{\circ} \mathrm{C}$, under argon, before being quenched with methanol (2 ml) and then sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{ml})$. The aqueous layer was extracted with ether ($3 \times 15 \mathrm{ml}$). The combined organic layers were washed with aq. sat. $\mathrm{NaHSO}_{3}(5 \times 15 \mathrm{ml})$, to scavenge any piperonal, and with brine ($3 \times 15 \mathrm{ml}$), dried over MgSO_{4} and concentrated. The pure endo methyl furofuran $\mathbf{2 1 a}(333.7 \mathrm{mg}, 55 \%)$ was obtained after flash chromatography (petrol:ether (7:3)). Found $\mathrm{MNa}^{+}, 407.1139 . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na}$ requires $M, 407.1107$). $v_{\max } 2894,1503,1489,1444,1239,1098,1063,1037 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}(300 \mathrm{MHz}): 6.91-6.82(6 \mathrm{H}, \mathrm{m}$, aromatics); $5.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; 5.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; 5.25(1 \mathrm{H}, \mathrm{d} \mathrm{J}=6,2-\mathrm{H}) ; 4.82(1 \mathrm{H}, \mathrm{d} \mathrm{J}=5.7$, $\left.6-H) ; 4.53(1 \mathrm{H}, \mathrm{s}, 4-H) ; 3.71\left(1 \mathrm{H}, \mathrm{d} \mathrm{J}=8.4,8-H_{\text {endo }}\right) ; 3.50-3.44\left(1 \mathrm{H}, \mathrm{m}, 8-H_{\text {exo }}\right) ; 3.17(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH})_{3}\right)$, 3.15-3.09 (2H, m, 1-H, 5-H). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 147.7,147.6,146.8,146.7,132.7,132.4,120.0,119.5$, 108.5, 108.4, 107.6, 107.1 (aromatics); $105.5(C-4) ; 101.2\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; 82.9(C-\sigma) ; 81.7(C-2) ; 68.9$ (C-8); 56.3 (C-3); $54.6\left(\mathrm{OCH}_{3}\right) ; 48.3$ (C-1). m/z (EI) 384 (32\%) (M ${ }^{+}$); 203 (42\%); 178 (99\%); 84 (100\%); m/z (CI, CH4) $385\left(\mathrm{MH}^{+}\right) ; 353 ; 307 ; 135 ; 57$ (100\%)

3,7-dioxa-2,6-bis[3',4'-methylenedioxyphenyl]bicyclo[3.3.0]octane(Epiasarinin) 1
Triethylsilane ($220 \mu \mathrm{l}, 2.6 \mathrm{mmol}, 10 \mathrm{eq}$) was slowly added to a solution of acetal $\mathbf{2 1 a}$ ($100 \mathrm{mg}, 0.26$ $\mathrm{mmol}, 1 \mathrm{eq})$, in $\mathrm{DCM}(6 \mathrm{ml})$ at $-40{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu 1,0.275 \mathrm{mmol}, 1.06 \mathrm{eq})$, was then added under the same conditions and the colour of the solution turned to dark red. The resulting solution was stirred for 15 hours at $-40^{\circ} \mathrm{C}$ under argon before being poured into a saturated solution of sodium bicarbonate. The aqueous layer was extracted with ether ($3 \times 5 \mathrm{ml}$ and the combined organic layers were washed with brine ($3 \times 5 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography (ether:petrol:triethylamine 1:3:0.1) to afford Epiasarinin ($25 \mathrm{mg}, 27 \%$) and Asarinin ($3 \mathrm{mg}, 3.3 \%$) and a mixture of the two diastereoisomers and starting material ($37 \mathrm{mg}, 40 \%$) which could be recycled. Epiasarinin $1 \mathrm{mp}=140-142{ }^{\circ} \mathrm{C}$; Found: C 67.60, H 5.13. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C 67.79, H 5.12\% $v_{\max } 2922,1460,1376,1253 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(500$ MHz): 6.89 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H$); $6.82(4 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H) ; 5.97$ (4H, s, $\mathrm{OCH}_{2} \mathrm{O}$); 4.87 (2H, d, J=5.04, 2-H, 6$H) ; 3.72\left(2 \mathrm{H}, \mathrm{d} \mathrm{J}=9.7,4-H_{\text {endo }}, 8-H_{\text {endo }}\right) ; 3.52\left(2 \mathrm{H}\right.$, pseudo d J=9.45, 6.85, 4- $\left.H_{\text {exo }}, 8-H_{\text {exo }}\right) ; 3.13(2 \mathrm{H}$, $\mathrm{m}, 1-H, 5-H) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}): 147.6,146.7,132.1,119.5,108.1,107.1$ (aromatics); $100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right)$; 84.1 (C-2,C-6); 68.7 (C-4,C-8); 49.5 (C-1,C-5); m/z (ES ${ }^{+}$): $377.1\left(\mathrm{MNa}^{+}\right) ; 731\left(\mathrm{M}_{2} \mathrm{Na}^{+}\right)$. Asarinin 2 $v_{\max } 2922,1460,1376,1253 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}): 6.86-6.78(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; 5.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; 5.95$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; 4.83(1 \mathrm{H}, \mathrm{d} \mathrm{J}=5.15,2-H) ; 4.39(1 \mathrm{H}, \mathrm{d} \mathrm{J}=6.86,6-H) ; 4.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}, 4-$
$\left.H_{\text {endo }}\right)$; 3.83-3.80 (2H, m, 4- $\left.H_{\text {exo }}, 8-H_{\text {endo }}\right)$; 3.31-3.29 ($2 \mathrm{H}, \mathrm{m}, 1-H, 8-H_{\text {exo }}$); 2.88-2.83 (1H, m, 5-H); $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 147.9,147.6,147.2,146.5,135.0,132.2,119.6,118.7,108.5,106.5,106.4$ (aromatics); 101.0, $100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; 87.6$ (C-ஏ); $82.0(C-2) ; 70.9(C-4) ; 69.7(C-8) ; 54.6$ (C-5); 50.1 (C-1).

