Lipase Mediated Resolution of 4-TMS-3-butyn-2-ol and Use of the Mesylate Derivatives as a Precursor to a Highly Steroselective Chiral Allenylindium Reagent.

James A. Marshall*, Harry R. Chobanian, and Mathew M. Yanik
Department of Chemistry, University of Virginia
PO Box 400319, Charlottesville, VA 22904
jam5x@virginia.edu

Supporting Information

General. Unless otherwise stated all reactions were performed in flame dried glassware under an atmosphere of nitrogen or argon. Anhydrous THF, diethyl ether, and dichloromethane were purified by pressure filtration through activated alumina. The InI (99.999 \% anhydrous beads) was purchased from Aldrich Chemical Company, Inc., 1001 West St. Paul Avenue, Milwaukee, WI 53233.
(3S,4R)-(-)-4-Cyclohexyl-3-methyl-1-trimethylsilyl-but-1-yn-4-ol (10a). The standard procedure with cyclohexanecarboxaldehyde (104 $\mu \mathrm{L}, 0.86 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ $(12.3 \mathrm{mg}, 0.055 \mathrm{mmol}), \mathrm{PPh}_{3}(14.4 \mathrm{mg}, 0.055 \mathrm{mmol})$, TMSmesylate $(R)-9(250 \mathrm{mg}, 1.10$ $\mathrm{mmol})$, InI ($294 \mathrm{mg}, 1.20 \mathrm{mmol}$) in THF (3 mL) and HMPA $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 2 h gave $155 \mathrm{mg}(75 \%)$ of alcohol $\mathbf{1 0 a}$ as a single diastereomer: $[\alpha]_{\mathrm{D}}{ }^{20}-14.0\left(c=2.02, \mathrm{CHCl}_{3}\right)$; IR (film) v 3486, $2168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~m}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.02(\mathrm{~m}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;$
${ }^{13}{ }^{2}$ NMR (125 MHz, CDCl_{3}) $\delta 107.6,87.5,78.5,47.7,31.0,29.7,27.8,26.4,26.3,26.0$, 18.0, 0.14. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}: \mathrm{C}, 70.52 ; \mathrm{H}, 10.99$. Found: $\mathrm{C}, ; \mathrm{H}$, .
(3R,4S)-(-)-2,4-dimethyl-6-trimethylsilyl-5-hexyn-3-ol (10b). The standard procedure with isobutyraldehyde $(103 \mu \mathrm{~L}, 1.13 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(15.2 \mathrm{mg}, 0.068$ $\mathrm{mmol}), \mathrm{PPh}_{3}(17.7 \mathrm{mg}, 0.068 \mathrm{mmol})$, TMSmesylate $(R)-9$ ($300 \mathrm{mg}, 1.35 \mathrm{mmol}$), InI (359 $\mathrm{mg}, 1.49 \mathrm{mmol})$ in THF (3 mL) and HMPA (1 mL) at $0{ }^{\circ} \mathrm{C}$ for 2 h gave $200 \mathrm{mg}(89 \%)$ of alcohol 10b and its syn diastereomer as a 98:2 inseparable mixture: $[\alpha]_{D}{ }^{20}-5.50(c=$ 2.21, CHCl_{3}); IR (film) v $3466,2173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.04(\mathrm{~m}, 1 \mathrm{H})$, $2.71(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 107.5,86.5,79.3,31.8,31.6,19.6,18.1$, 17.4, 0.13. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{OSi}: \mathrm{C}, 66.60 ; \mathrm{H}, 11.18$. Found: $\mathrm{C}, ; \mathrm{H}$, .
(3S,4R)-(-)-3-Methyl-6-phenyl-1-trimethylsilyl-1-hexyn-4-ol (10c). The standard procedure with hydrocinnamaldehyde ($123 \mathrm{mg}, 0.94 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(12.3 \mathrm{mg}, 0.055$ $\mathrm{mmol}), \mathrm{PPh}_{3}(14.4 \mathrm{mg}, 0.055 \mathrm{mmol})$, TMSmesylate $(R)-9(250 \mathrm{mg}, 1.10 \mathrm{mmol})$, InI (294 $\mathrm{mg}, 1.20 \mathrm{mmol})$ in THF (3 mL) and HMPA (1 mL) at $0{ }^{\circ} \mathrm{C}$ for 2 h gave $146 \mathrm{mg}(69 \%)$ of alcohol 10c as a single diastereomer: $[\alpha]_{D}{ }^{20}-7.0\left(c=1.66, \mathrm{CHCl}_{3}\right)$; IR (film) v 3432, 2182, 1597, $1466 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~m}, 5 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 2.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) 0.16(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,128.4,128.3,125.8,108.1,87.1,73.3,36.7,34.3$, 32.0, 17.3, 0.13. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OSi}: \mathrm{C}, 73.79 ; \mathrm{H}, 9.29$. Found: C,; H,
(3S,4R)-(-)-3-Methyl-1-trimethylsilyl-1-decyn-4-ol (10d) Standard Procedure For Silylated Allenyl Indium Additions to Aldehydes. To a solution of THF (3 mL) and HMPA (1 mL) was added heptanal ($105 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) followed by $\mathrm{Pd}(\mathrm{OAc})_{2}(10.1$
$\mathrm{mg}, 0.045 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(11.8 \mathrm{mg}, 0.045 \mathrm{mmol})$. Upon complete dissolution of the PPh_{3} the solution was cooled to $0{ }^{\circ} \mathrm{C}$. InI beads ($283 \mathrm{mg}, 1.17 \mathrm{mmol}$) were pulverized in a mortar and added to the solution followed by TMSmesylate $(R)-\mathbf{9}(200 \mathrm{mg}, 0.90 \mathrm{mmol})$. The solution was then stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min before being warmed to rt . Upon completion of the reaction as judged by TLC analysis, the reaction mixture was quenched with $10 \% \mathrm{HCl}(10 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ solution was separated, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on silica gel (10:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$) to give $145 \mathrm{mg}(80 \%)$ of alcohol 10 d and its syn diastereomer as a 99:1 inseparable mixture: $[\alpha]_{\mathrm{D}}{ }^{20}-10.1\left(c=2.14, \mathrm{CHCl}_{3}\right)$; IR (film) v 3432, 2174, $1946 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.38(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~m}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.64-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.6,87.5,74.2$, 35.0, 34.1, 31.7, 29.2, 25.6, 22.6, 17.4, 14.1, 0.13. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{OSi}: \mathrm{C}, 69.93$; H, 11.74. Found: C,; H,.
(3S,4R)-(-)-3-Methyl-1-trimethylsilyl-1-decyn-5-en-4-ol (10e). The standard procedure for allenyl indium additions was employed with (E)-2-heptenal ($84 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10.1 \mathrm{mg}, 0.045 \mathrm{mmol}), \mathrm{PPh}_{3}(11.8 \mathrm{mg}, 0.045 \mathrm{mmol})$, TMSmesylate $(R)-9(200 \mathrm{mg}, 0.90 \mathrm{mmol})$, $\mathrm{InI}(239 \mathrm{mg}, 0.99 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ and HMPA $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 2 h to give $130 \mathrm{mg}(73 \%)$ of alcohol $\mathbf{1 0 e}$ and its syn diastereomer as a $99: 1$ inseparable mixture: $[\alpha]_{\mathrm{D}}{ }^{20}-0.27\left(c=2.43, \mathrm{CHCl}_{3}\right)$; IR (film) v $3530,2165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{q}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 4 \mathrm{H}), 1.15$ $(\mathrm{dd}, J=6.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 134.2,129.6,107.6,87.5,75.6,34.7,31.9,31.2,22.2,16.9,13.9,0.10$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}: \mathrm{C}, 70.52 ; \mathrm{H}, 10.99$. Found: C ; H, ,
(3S,4R)-(+)-3-Methyl-6-phenyl-1-hexyn-4-ol (11c). The standard procedure with hydrocinnamaldehyde ($74 \mathrm{mg}, 0.68 \mathrm{mmol}$) , $\mathrm{Pd}(\mathrm{OAc})_{2}(7.6 \mathrm{mg}, 0.034 \mathrm{mmol}), \mathrm{PPh}_{3}(8.9$ $\mathrm{mg}, 0.034 \mathrm{mmol})$, mesylate $(R) \mathbf{- 1}(100 \mathrm{mg}, 0.67 \mathrm{mmol}), \mathrm{InI}(177 \mathrm{mg}, 0.73 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ and HMPA $(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 2 h gave $75 \mathrm{mg}(71 \%)$ of alcohol 11c and its syn diastereomer as an inseparable 77:23 mixture: $[\alpha]_{\mathrm{D}}{ }^{20}+5.2\left(c=3.00, \mathrm{CHCl}_{3}\right)$; IR (film) v $3426,2327 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~m}, 5 \mathrm{H}), 3.47(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H})$, $2.71(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 3 \mathrm{H}) 1.23(\mathrm{~d},, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 141.8,128.4,128.3,125.8,87.9,73.4,71.1,36.8$, 33.0, 32.0, 17.3. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 82.94 ; \mathrm{H}, 8.57$. Found: C,; H,.
(2S,3S,4S)-(+)-2-(tert-Butyldimethylsilyloxy)-4-methyl-1-trimethylsilyl-5-hexyn-3-ol (13a). The standard procedure for was employed with aldehyde $(S) \mathbf{- 1 2}(180 \mathrm{mg}$, $0.96 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(12.3 \mathrm{mg}, 0.055 \mathrm{mmol}), \mathrm{PPh}_{3}(14.4 \mathrm{mg}, 0.055 \mathrm{mmol})$, TMSmesylate (R)-9 (250 mg, 1.13 mmol), InI ($294 \mathrm{mg}, 1.20 \mathrm{mmol}$) in THF (3 mL) and HMPA (1 mL) at $0{ }^{\circ} \mathrm{C}$ for 2 h to give $257 \mathrm{mg}(87 \%)$ of an inseparable $90: 10$ mixture of alcohols 13a and 13b: $[\alpha]_{\mathrm{D}}{ }^{20}+10.4\left(c=2.26, \mathrm{CHCl}_{3}\right)$; IR (film) $v 3563,2182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.15$ (s, 6 H), $0.09(\mathrm{~s}, 9 \mathrm{H}) ;$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.7,86.5,77.8,70.0$,29.8, 25.8, 19.9, 18.0, 0.14, -4.1, -4.8. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}_{2}: \mathrm{C}, 61.08 ; \mathrm{H}, 10.89$. Found: C,; H,
(2S,3R,4R)-(+)-2-(tert-Butyldimethylsilyloxy)-4-methyl-1-trimethylsilyl-5-
hexyn-3-ol (14). The standard procedure was employed with aldehyde (S) - $\mathbf{1 2}$ (180 mg , $0.96 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(12.3 \mathrm{mg}, 0.055 \mathrm{mmol}), \mathrm{PPh}_{3}(14.4 \mathrm{mg}, 0.055 \mathrm{mmol})$, TMSmesylate (S) $\mathbf{- 9}(250 \mathrm{mg}, 1.13 \mathrm{mmol})$, $\operatorname{InI}(294 \mathrm{mg}, 1.20 \mathrm{mmol})$ in THF (3 mL) and

HMPA (1 mL) at $0^{\circ} \mathrm{C}$ for 2 h to give $218 \mathrm{mg}(74 \%)$ of a single diastereomer $14:[\alpha]_{\mathrm{D}}{ }^{20}$ $+36.1\left(c=2.66, \mathrm{CHCl}_{3}\right)$; IR (film) v 3353, $2165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.69(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) 0.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 106.9,87.9,78.7,70.2,29.7,25.8,20.3,18.1,0.13,-4.25,-4.92$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}_{2}: \mathrm{C}, 61.08 ; \mathrm{H}, 10.89$. Found:
(2S,3R,4R)-(+)-2-(tert-Butyldimethylsilyloxy)-4-methyl-1- trimethylsilyl-5-hexyn-3-ol (13a and 13b) and ($2 S, 3 R, 4 R$)-(+)-2-(tert-Butyldimethylsilyloxy)-4-methyl-1-trimethylsilyl-5-hexyn-3-ol (14). The standard procedure was employed with aldehyde $(S)-\mathbf{1 2}(300 \mathrm{mg}, 1.60 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(21.3 \mathrm{mg}, 0.095 \mathrm{mmol}), \mathrm{PPh}_{3}(24.9 \mathrm{mg}$, $0.095 \mathrm{mmol})$, TMSmesylate $(R, S)-9(424 \mathrm{mg}, 1.90 \mathrm{mmol})$, $\operatorname{InI}(502 \mathrm{mg}, 2.00 \mathrm{mmol})$ in THF (6 mL) and HMPA (2 mL) $0^{\circ} \mathrm{C}$ for 2 h to give 353 mg (70%) of a separable 50:47:3 mixture of alcohols 13a and 14. Alcohol 13a contained 3\% of the syn,syn diastereomer 13b: 13a: $[\alpha]_{D}^{20}+14.6\left(c=3.57, \mathrm{CHCl}_{3}\right), \mathbf{1 4}:[\alpha]_{\mathrm{D}}{ }^{20}+36.2\left(c=3.71, \mathrm{CHCl}_{3}\right)$.

(2R,3S,4S)-(+)-1-(tert-Butyldimethylsilyloxy)-2,4-dimethyl-6-trimethylsilyl-5-

hexyn-3-ol (16). The standard procedure was employed with aldehyde (R)-15 (190 mg, $0.94 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(12.3 \mathrm{mg}, 0.055 \mathrm{mmol}), \mathrm{PPh}_{3}(14.4 \mathrm{mg}, 0.055 \mathrm{mmol})$, TMSmesylate (R)-9 ($250 \mathrm{mg}, 1.13 \mathrm{mmol}$), InI ($294 \mathrm{mg}, 1.20 \mathrm{mmol}$) in THF (3 mL) and HMPA (1 mL) at $0^{\circ} \mathrm{C}$ for 2 h to give $217 \mathrm{mg}(71 \%)$ of a single diastereomer 16: $[\alpha]_{\mathrm{D}}{ }^{20}$ $+0.56\left(c=1.80, \mathrm{CHCl}_{3}\right)$; IR (film) v $3501,2182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$3.71(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.26$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) 0.15(\mathrm{~s}, 9 \mathrm{H}) .0 .08(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.7,86.1,78.4,67.9,38.9,31.4,25.8,23.3$, 18.2, 17.6, 13.5, 0.21. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}: \mathrm{C}, 62.13 ; \mathrm{H}, 11.04$. Found:
(2R,3R,4R)-(+)-1-(tert-Butyldimethylsilyloxy)-2,4-dimethyl-6-trimethylsilyl-5-hexyn-3-ol (17). The standard procedure was employed with aldehyde $(R) \mathbf{- 1 5}(171 \mathrm{mg}$, $0.85 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.050 \mathrm{mmol}), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 0.050 \mathrm{mmol})$, TMSmesylate (S) -9 ($225 \mathrm{mg}, 1.00 \mathrm{mmol}$), InI ($266 \mathrm{mg}, 1.10 \mathrm{mmol}$) in THF (3 mL) and HMPA (1 mL) at $0{ }^{\circ} \mathrm{C}$ for 2 h to give $200 \mathrm{mg}(72 \%)$ of a single diastereomer 17: $[\alpha]_{\mathrm{D}}{ }^{20}$ $+4.20\left(c=2.46, \mathrm{CHCl}_{3}\right)$; IR (film) v 3536, $2147 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.61(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}$, 9H), $0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 108.5,86.2,75.3,66.7,38.1,31.8$, $25.8,23.3,18.2,17.6,10.4,0.14$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}: \mathrm{C}, 62.13 ; \mathrm{H}, 11.04$. Found:

