Supporting Information For:
 C-Glycosides to Fused Polycyclic Ethers. An Efficient Entry into the A-D Ring System of Gambierol

Jason M. Cox and Jon D. Rainier*
Department of Chemistry, The University of Arizona, Tucson, AZ 85721

Experimental protocols and spectroscopic data for all new compounds.

General Information

Ether and THF were distilled from sodium/benzophenone. Benzene, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CH}_{3} \mathrm{OH}$, and $i-\mathrm{Pr}_{2} \mathrm{NEt}$ were distilled from CaH_{2}. All other reagents were used without purification. Unless otherwise stated, all reactions were run under an atmosphere of argon in flame-dried glassware. NMR spectra were recorded on a Bruker EM-500 or EM-600 spectrophotometer. Chemical shifts were reported in δ, parts per million (ppm), relative to chloroform ($\delta=7.24 \mathrm{ppm}$) or benzene ($\delta=7.15 \mathrm{ppm}$) as an internal standard. Coupling constants, J, were reported in Hertz (Hz) and refer to apparent peak multiplicities and not true coupling constants. Mass spectra were recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Arizona on a Jeol HX-110A and are reported as \% relative intensity to the molecular base peak. IR spectra were recorded on a Nicolet Impact 410.

Preparation of (+)-pyrone 4. To a solution of aldehyde $2(4.81 \mathrm{~g}, 27 \mathrm{mmol}), \mathrm{Cr}$ (III) catalyst $5(0.399 \mathrm{~g}, 0.81 \mathrm{mmol}), 4 \AA \mathrm{MS}(5.4 \mathrm{~g})$ and acetone $(5.4 \mathrm{~mL})$ at rt was added
diene 3 ($7.55 \mathrm{~g}, 40.5 \mathrm{mmol}$). After 52 hours the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) and cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid ($3.12 \mathrm{~mL}, 40.5 \mathrm{mmol}$) was added and the reaction mixture was stirred for 1 h and filtered. The mother liquor was neutralized with NaHCO_{3} (sat., 100 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 50 \mathrm{ml})$. The extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography ($10: 1$ hexanes/ethyl acetate) afforded 6.34 g (90% yield, $94 \% \mathrm{ee}$) of pyrone 4 as a colorless oil. The enantiomeric excess was determined by HPLC (chiracel OD). Conditions: 10% 2-propanol in hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$; the t_{R} major isomer $=24.0 \mathrm{~min} ; t_{\mathrm{R}}$ minor isomer $=34.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{27}=+90.16^{\circ}(\mathrm{c}=0.70, \mathrm{THF}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.37$ (dddd, J $=16.9,12.1,7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=15.1,9.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=14.8$, $9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd} J=16.7,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=16.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-$ 1.71 (m, 4 H), $1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.0, 159.6, 138.3, 128.4, 127.6, 113.6, 79.1, 72.9, 69.5, 41.6, 31.3, 25.1, 10.4; IR (neat) $1679,1107 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$261.1491, found 261.1494.

Preparation of (+)-PMB ether 6. $\mathrm{CeCl}_{3} 7 \mathrm{H}_{2} \mathrm{O}(0.880 \mathrm{~g}, 2.69 \mathrm{mmol})$ was added to a solution of $4(0.50 \mathrm{~g}, 1.92 \mathrm{mmol})$ and ethanol $(43 \mathrm{~mL})$ at rt . After 0.33 h , the reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and a solution of $\mathrm{NaBH}_{4}(0.172 \mathrm{~g}, 4.61 \mathrm{mmol})$ and ethanol (9.5 ml) was added drop wise. The reaction mixture was allowed to warm to rt over 2 h and concentrated. The resulting residue was taken up in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$. After separation the aqueous phase was extracted with ether (5 X 20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a yellow oil.

The oil from the reduction was taken up in DMF (9.6 mL) and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(0.92 \mathrm{~g}, 3.84 \mathrm{mmol})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . 4-Methoxy benzyl chloride ($0.52 \mathrm{~mL}, 3.84 \mathrm{mmol}$) was added dropwise and the resulting mixture was warmed to rt and stirred for 4 hrs . After cooling to $0^{\circ} \mathrm{C}$, the reaction
mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 20 \mathrm{~mL}$). The extracts were washed with water $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography ($20: 1$ hexanes/ethyl acetate) afforded 730 mg (97%) of $\mathbf{6}$ as a colorless oil. $[\alpha]^{25}{ }_{\mathrm{D}}=+31.70^{\circ}\left(\mathrm{c}=2.41\right.$, THF); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 4 \mathrm{H})$, 7.33-7.30 (m, 3H), 6.94-6.90 (m, 2H), 6.23 (br s, 1H), 4.58 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (s, $2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.54(\mathrm{ddd}, J=15.0,9.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=15.2,9.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (ddd, $J=13.1,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 159.1,140.9,138.6,130.9,129.4,129.1,128.3,127.6,127.5,113.7,110.3$, $74.3,72.8,72.0,70.0,69.8,55.2,34.0,31.6,25.6,14.3$; IR (neat) $1678,1103 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$383.2229, found 383.2222.

Preparation of (-)-alcohol. To a solution of $\mathbf{6}(0.541 \mathrm{~g}, 1.79 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(28 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added dimethyl dioxirane $(26.8 \mathrm{~mL}$ of a 0.1 M solution in acetone, 2.68 mmol) dropwise. The reaction was warmed slowly to rt and then concentrated. The resulting residue was taken up in THF (28 mL) and cooled to $0^{\circ} \mathrm{C}$. Propenylmagnesium chloride (4.5 mL of a 2.0 M solution in THF, 8.94 mmol) was added and the reaction mixture was allowed to warm to rt at which point it was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 15 mL). The aqueous phase was extracted with ether (3 X 20 mL), the extracts were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (10:1 hexanes/ethyl acetate) afforded 419 mg (65%) of the alcohol as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}=-$ $6.54^{\circ}\left(\mathrm{c}=0.33\right.$, THF); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}$, $4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dd, $J=10.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}) 4.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1$ H), 3.83 (s, 3 H), 3.52 (ddd, $J=15.4,9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, $J=15.8,9.2,6.5 \mathrm{~Hz}, 1$ H), $3.38(\mathrm{dd}, J=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) 3.38-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=10.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.44(\mathrm{dd}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{ddd}, J=14.6,10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H})$, 1.99 (ddd, $J=12.8,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.56$ $(\mathrm{m}, 2 \mathrm{H}), 1.31(\mathrm{dd}, J=24.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.2,138.6,136.3,130.6,129.1,128.3,127.6,127.5,115.9,113.9,82.9,81.9,75.8$, $73.4,72.8,70.8,70.1,55.2,35.2,32.7,32.4,26.0,15.0$; IR (neat) $3479,1623,1098 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 441.2641$, found 441.2621.

Preparation of (+)-acetate 7. To a solution of the alcohol from above $(0.419 \mathrm{~g}$, $1.16 \mathrm{mmol})$, acetic anhydride ($0.868 \mathrm{~mL}, 9.3 \mathrm{mmol}$), $i-\operatorname{Pr}_{2} \mathrm{EtN}(2.55 \mathrm{~mL}, 14.6 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added DMAP $(0.284 \mathrm{~g}, 2.32 \mathrm{mmol})$ at rt . After 50 hrs the reaction was quenched with NaHCO_{3} (sat., 20 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography ($10: 1$ hexanes/ethyl acetate) afforded $352 \mathrm{mg}(78 \%)$ of acetate 7 as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+20.75^{\circ}\left(\mathrm{c}=0.08\right.$, THF); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.88-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$, $(\mathrm{dd}, J=$ $11.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.25 (dd, $J=8.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{ddd}, J=15.6,9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (ddd, $J=15.2,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47-3.41 (partially obscured m, 1 H), 2.25-2.21 (m, 2 H), $1.99(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.54$ (m, 2 H), $1.41(\mathrm{dd}, J=24.1,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.4,159.1,138.6,135.3,130.8,129.1,128.3,127.6,127.5,116.3,113.7,86.3,75.9$, $75.7,72.8,71.2,70.1,55.2,36.9,32.8,32.2,26.0,22.5,13.6$; IR (neat) $1738,1103,1043$ cm^{-1}; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right)$483.2747, found 483.2752.

Preparation of (-)-bicycle 8. $\mathrm{TiCl}_{4}\left(14.0 \mathrm{~mL}\right.$ of a 1.0 M solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 14.0 \mathrm{mmol}\right)$ and TMEDA ($12.64 \mathrm{~mL}, 83.92 \mathrm{mmol}$) were added sequentially to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(99 \mathrm{~mL})$ and THF (7.4 mL) at $0^{\circ} \mathrm{C}$. The resulting brown mixture was warmed to rt and stirred for 10 min. Zn dust $(2.05 \mathrm{~g}, 31.5 \mathrm{mmol})$, and $\mathrm{PbCl}_{2}(0.463 \mathrm{~g}, 1.66 \mathrm{mmol})$ were then added. The resulting slurry was stirred for 16 min to reach a blue/green color. To this was added a solution of acetate $7(0.352 \mathrm{~g}, 0.874 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Br}_{2}(0.982 \mathrm{~mL}, 14.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(19 \mathrm{~mL})$. The reaction mixture was heated to reflux for 2 hrs , cooled to $0^{\circ} \mathrm{C}$, and quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (sat., 3.2 mL). After stirring for 30 min ., the mixture was filtered. Concentration of the mother liquor and filtration of the residue through a plug of SiO_{2} (5:1 hexanes/ethyl acetate) gave a mixture of cyclic and acyclic enol ether as a yellow oil.

To a solution of the mixture of enol ethers and $\mathrm{C}_{6} \mathrm{H}_{6}(87 \mathrm{~mL})$ was added ruthenium catalyst $10(0.148 \mathrm{~g}, 174 \mathrm{mmol})$. After stirring for 16 hrs at rt , the reaction mixture was concentrated. Flash chromatography ($20: 1$ hexanes/ethyl acetate) afforded 214 mg (65%) of bicycle 8 as a yellow oil. $[\alpha]^{25}{ }_{\mathrm{D}}=-5.40^{\circ}\left(\mathrm{c}=0.235\right.$, THF); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J$ $=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.42 ($\mathrm{s}, 2 \mathrm{H}$), 4.41 (dd, $J=15.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (dd, $J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.46(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 1 \mathrm{H})$, 2.28-2.16 (m, 2 H), 1.89-1.81 (m, 2 H), 1.81 ($\mathrm{s}, 3 \mathrm{H}$), 1.75-1.62 (m, 2 H), 1.57-1.44 (m, 2 H), $1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.3,148.2,139.2,131.7,129.2,128.3$, $127.4,127.3,113.7,92.8,80.1,78.6,75.9,74.7,72.6,72.0,70.1,54.6,36.7,32.5,26.1$, 24.3, 20.0, 9.8; IR (neat) $1115 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 453.6406$, found 453.6410 .

Preparation of (-)-Ketone 13.

Preparation of mixed ketal. m - $\mathrm{CPBA}(0.230 \mathrm{~g}, 1.44 \mathrm{mmol})$ was added to a solution of bicycle $8(0.217 \mathrm{~g}, 0.48 \mathrm{mmol})$ and $\mathrm{MeOH}(16 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$. After warming to rt , the reaction was quenched with NaHCO_{3} (sat., 10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{X} 15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (3:1 hexanes/ethyl acetate) afforded $220 \mathrm{mg}(92 \%)$ of ketal as a colorless oil.

A solution of the mixture of ketals $(0.190 \mathrm{~g}, 0.379 \mathrm{mmol})$ from above, $\mathrm{NaH}(45.5 \mathrm{mg}$, 1.897 mmol), allyl bromide ($0.318 \mathrm{~mL}, 3.79 \mathrm{mmol}$), tetrabutyl ammonium iodide (ca. 8 mg) and THF (5.4 mL) was heated to reflux for 2 hrs . After cooling to $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 15 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (10:1 hexanes/ethyl acetate) afforded 160 mg (78%) of allyl ether 11 as a colorless oil.

Preparation of (-)-ketone 13. A solution of $11(160 \mathrm{mg}, 0.296 \mathrm{mmol})$, PPTS $(453 \mathrm{mg}$, $1.81 \mathrm{mmol})$, pyridine $(0.062 \mathrm{~mL}, 0.77 \mathrm{mmol})$ and toluene was heated, first to $100^{\circ} \mathrm{C}$ for 2 hrs and then to reflux for 1 h . After cooling to rt , the reaction mixture was quenched with $\mathrm{NaOH}(2 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 20 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (3:1 hexanes/ethyl acetate) afforded $146 \mathrm{mg}(97 \%)$ of ketone 13 as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=-3.70^{\circ}\left(\mathrm{c}=0.12\right.$, THF); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.80-5.72(\mathrm{~m}, 1 \mathrm{H})$, $5.08(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=27.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.39$ (m, 4 H), 2.68 (dd, $J=19.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=19.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=$ $13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dd, $J=13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (ddd, $J=13.5,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{dd}, J=25.1,11.7 \mathrm{~Hz}, 1$ H), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.7$, 159.1, 138.5, $132.8,131.1,129.3,128.3,127.6,127.5,119.0,113.7,82.9,80.4,77.3,76.3,74.1,72.8$,
$72.5,70.0,55.3,46.6,39.4,36.3,32.2,26.6,25.7,12.1$; IR (neat) $1724,1103 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right)$509.2903, found 509.2886.

Preparation of C-6 alcohol. DDQ ($0.0984 \mathrm{~g}, 0.434 \mathrm{mmol})$ was added to a solution of ketone $15(0.147 \mathrm{~g}, 0.289 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(13.9 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.77 \mathrm{~mL})$ at rt. After stirring for 0.5 h , the reaction mixture was quenched with NaHCO_{3} (sat., 5 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography ($10: 1$ hexanes/ethyl acetate) afforded 103 mg (92%) of the alcohol as a colorless oil. $[\alpha]^{25}=+10.80^{\circ}$ ($\mathrm{c}=0.25$, THF); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.84(\mathrm{~m}, 1$ H), 5.13-5.09 (m, 2 H), $4.44(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=11.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 3 \mathrm{H})$, 3.32-3.27 (m, 1 H$), 2.70(\mathrm{dd}, J=18.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=18.9,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{dd}, J=13.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=13.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.87-1.78$ (m, 1 H), 1.75 (ddd, $J=13.5,5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H})$, 1.45 (partially obscured dd, $J=24.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) δ 209.6, 139.4, 133.2, 128.5, 127.6, 118.9, 83.2, 76.5, 76.3, 75.3, 74.1, 73.0, 70.2, 46.8, 39.6, 36.9, 32.6, 26.7, 26.3, 11.4; IR (neat) 3475, 1725, 1101, 1037 cm^{-1}; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$389.2328, found 389.2327.

Summary of The Assignment of the Absolute Stereochemistry on the C-6 Mosher's Ester of (13):

Cox, Rainier cmpd. $600 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\Delta \delta(\mathrm{PPM})=\delta \mathrm{S}-\delta \mathrm{R}$

Yasumoto Gambierol C-3 Epimer $600 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}: \mathrm{CD}_{3} \mathrm{OD}\right)$

Morohashi, A.; Satake, M.; Yasumoto, T. Tetrahedron Lett. 1999, 40, 97.

Inversion of the C-6 alcohol. To a solution of the alcohol from $\mathbf{1 5}(0.053 \mathrm{~g}, 0.137$ $\mathrm{mmol}), \mathrm{PPh}_{3}(0.180 \mathrm{~g}, 0.684 \mathrm{mmol})$, 4-nitro-benzoic acid ($0.103 \mathrm{~g}, 0.615 \mathrm{mmol}$) and toluene (4 mL) at rt was added DEAD ($0.108 \mathrm{~mL}, 0.684 \mathrm{mmol})$. After stirring for 0.33 h , the reaction was heated to reflux for 30 min and then concentrated. The residue was taken up in $\mathrm{MeOH}(2 \mathrm{~mL})$, THF (2 mL) and $\mathrm{NaOH}(0.5 \mathrm{~mL}$ of a 5% solution in water) and stirred for 2 hours. The mixture was extracted with ether (5 X 10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (10:1 hexanes/ethyl acetate) afforded $36.6 \mathrm{mg}(70 \%)$ of the alcohol as a colorless oil. $[\alpha]^{25}{ }_{\mathrm{D}}=+1.43^{\circ}\left(\mathrm{c}=1.83\right.$, THF); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H})$, 5.75-5.67 (m, 1 H$), 5.06-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=12.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08-4.03 (m, 1 H), 3.80 (dd, $J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, $J=15.4,9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (ddd, $J=15.5,9.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, $J=18.7,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=18.7,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=$ $13.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96-1.88 (m, 1 H), 1.86 (ddd, $J=14.4,2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.80-1.71 $(\mathrm{m}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.99$
(s, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 208.8,139.2,132.9,128.3,128.0,127.5,118.9$, $82.7,74.0,72.7,72.3,71.4,70.1,68.8,46.3,39.3,35.5,32.4,26.2,26.2,16.6$; IR (neat) $3539,1718,1105 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 389.2328$, found 389.2335 .

Preparation of ketone 15. To a solution of the alcohol from the Mitsunobu protocol $(0.036 \mathrm{~g}, 0.093 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{EtN}(0.065 \mathrm{~mL}, 0.37 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added TMSOTf ($0.034 \mathrm{~mL}, 0.19 \mathrm{mmol}$) dropwise. After stirring for 1 h , the reaction was quenched with NaHCO_{3} (sat., 2 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (10:1 hexanes/ethyl acetate) afforded $37 \mathrm{mg}(87 \%)$ of ketone $\mathbf{1 5}$ as a colorless oil. $[\alpha]^{25}{ }_{\mathrm{D}}=+9.92^{\circ}(\mathrm{c}=1.83$, THF); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.21 (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.21-6.13 (m, 1 H), $5.10-5.07$ (m, 2 H), 4.46-4.43 (m, 1 H), $4.43(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=18.9$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=19.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=$ $13.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50$ $(\mathrm{m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 209.8$, $139.2,133.5,128.3,127.5,127.3,118.1,83.1,73.3,72.7,71.9,71.6,70.2,68.5,47.0$, $39.8,38.3,32.5,26.8,26.2,17.5,0.1$; IR (neat) $1731,1148,1113 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 461.2723$, found 461.2743.

Preparation of (-)-ester 16. To a solution of ketone $15(0.0367 \mathrm{~g}, 0.0798 \mathrm{mmol})$ and $\mathrm{EtOH}(6 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added a solution of $\mathrm{NaBH}_{4}(8 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{EtOH}(2$ $\mathrm{ml})$. The resulting mixture was allowed to warm to rt over 2 hours. The reaction was
quenched with acetone (1 ml) and the mixture was then concentrated. The resulting residue was taken up in a $1: 1$ mixture of water and ether $(5 \mathrm{~mL})$. The aqueous phase was extracted with ether (3 X 5 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated.

Acid 17 ($0.124 \mathrm{~g}, 0.836 \mathrm{mmol})$, DMAP ($0.0045 \mathrm{mg}, 0.037 \mathrm{mmol}$), and DCC $(0.181 \mathrm{~g}, 0.878 \mathrm{mmol})$ were added to a solution of the residue from the reduction and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.8 \mathrm{~mL})$. After 1 h , the reaction mixture was filtered and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} \mathrm{2} \mathrm{ml})$. The extracts were combined and washed with $\mathrm{HCl}(0.5$ M, 2 mL) and NaHCO_{3} (sat., 2 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography ($10: 1$ hexanes/ethyl acetate) afforded 43 mg (91%) of ester $\mathbf{1 6}$ as a colorless oil. $[\alpha]^{25}=-14.98^{\circ}(\mathrm{c}=0.185, \mathrm{THF}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32-7.27 (m, 2 H), 7.23-7.20 (m, 1 H), 6.38-6.30 (m, 1 H), 5.30-5.22 (m, 2 H), $4.44(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=12.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-$ 3.91 (m, 1 H), 3.78 (br s, 1 H), 3.45 (ddd, $J=15.1,9.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (ddd, $J=15.1$, 9.1, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 ($\mathrm{s}, 3 \mathrm{H}$), 3.18 (s, 3 H), 2.51 (dd, $J=14.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46-2.38 (m, 2 H), 2.37 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{dd}, J=7.1,21.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 4 \mathrm{H})$, $1.83-1.75$ (m, 1 H), 1.73-1.64 (m, 2 H), 1.62-1.55 (m, 1 H), 1.50 (dd, $J=2.9,2.9 \mathrm{~Hz}, 1$ H), $1.47(\mathrm{dd}, J=2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 171.3,139.3,134.7,128.2,127.3,117.3,103.5,76.0,74.6,73.2,73.0$, $72.7,72.1,71.1,70.2,52.5,52.5,47.1,38.8,32.6,29.4,27.9,27.7,26.3,23.3,19.2,0.2$; IR (neat) $1743,1136,1089 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{O}_{8} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 593.3510$, found 593.3502.

Preparation of (+)-tricycle 18. The acyclic enol ether from 16 was prepared according to the procedure used for the formation of bicycle $\mathbf{8}$ using $16(0.037 \mathrm{~g}, 0.062$ mmol), TiCl_{4} (1.16 mL of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.16 \mathrm{mmol}$), TMEDA (1.05 mL , $6.96 \mathrm{mmol}), \mathrm{Zn}(0.170 \mathrm{~g}, 2.61 \mathrm{mmol}), \mathrm{PbCl}_{2}(0.038 \mathrm{~g}, 0.138 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Br}_{2}(0.081 \mathrm{~mL}$, $1.16 \mathrm{mmol})$, THF ($0.612 \mathrm{~mL}, 6.96 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.8 \mathrm{~mL})$.

To a solution of acyclic enol ether from above and hexanes (6 ml) in a dry box was added molybdenum catalyst $9(0.0106 \mathrm{~g}, 0.0138 \mathrm{mmol})$. After the reaction mixture was sealed, it was removed from the box and placed in a $60^{\circ} \mathrm{C}$ bath for 16 hours. After exposure to air and concentration, flash chromatography ($20: 1$ hexanes/ethyl acetate) afforded $27.2 \mathrm{mg}(77 \%, 2$ steps $)$ of tricycle 18 as a colorless oil. $[\alpha]^{25}=+9.09^{\circ}(\mathrm{c}=$ 0.15 , THF); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.20 (m, 1 H$), 4.49(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2$ H), 4.02-3.99 (m, 1 H), $4.01(\mathrm{dd}, J=12.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=$ $12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48-3.41$ (m, 2 H), 3.25 (s, 3 H), 3.24 ($\mathrm{s}, 3 \mathrm{H}$), 2.38 (d, $J=15.6 \mathrm{~Hz}, 1$ H), 2.29 (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=11.3,3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=$ $23.9,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3$ H), $1.36(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 154.2,139.3,128.2,127.4$, $127.3,103.8,95.2,78.5,75.6,73.6,72.7,72.5,72.1,71.8,70.3,52.0,52.0,39.1,39.0$, $32.6,30.3,28.9,27.3,26.3,20.5,19.8,0.41$; IR (neat) $1678,1142,1095,1060 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 563.3404$, found 563.3380 .

Preparation of (-)-alcohol 20. To a solution of $18(0.009 \mathrm{~g}, 0.16 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added dimethyl dioxirane $(0.24 \mathrm{~mL}$ of a 0.1 M solution in acetone, 0.24 mmol) dropwise. The reaction was warmed to $0^{\circ} \mathrm{C}$ and concentrated. After taking the residue up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and cooling to $-60^{\circ} \mathrm{C}$, DIBAL $(0.032 \mathrm{~mL}$ of a 1.0 M solution in hexane, 0.032 mmol) was added. After stirring for 10 min , the reaction was quenched with $\mathrm{HCl}(0.5 \mathrm{M})$ and the resulting mixture was allowed to warm to rt . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{X} 5 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography ($3: 1$ hexanes/ethyl acetate) afforded 6.4 mg (69%) of alcohol 20 as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}=-23.09^{\circ}\left(\mathrm{c}=0.210\right.$, THF); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31-7.27(m, 2 H), 7.23-7.20 (partially obscured m, 1 H), 4.49 (dd, $J=5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-$ $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47(\mathrm{ddd}, J=17.0,9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{ddd}, J=16.9$,
9.1, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (br s, 1 H), 3.29 (s, 3 H), 3.28 ($\mathrm{s}, 3 \mathrm{H}$), 3.15 (dd, $J=12.1,3.1 \mathrm{~Hz}$, 1 H), 3.15-3.11 (partially obscured m, 1 H), 2.22-1.93 (m, 6 H), 1.87-1.78 (m, 2 H), 1.72$1.57(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{ddd}, J=11.4,2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.47$ (partially obscured m, 2 H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 139.3,128.1$, $127.9,127.7,104.6,83.8,81.5,75.4,73.8,73.8,73.5,72.7,72.1,70.3,69.6,52.2,51.9$, $48.1,39.1,32.7,28.7,27.5,27.5,26.3,21.5,20.9,0.5$; IR (neat) $3445,1136,1101,1072$ $\mathrm{cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O}_{8} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$581.3510, found 581.3509.

Preparation of (+)-tetracycle 21. A solution of $20(0.0044 \mathrm{~g}, 0.0076 \mathrm{mmol})$, PPTS ($0.0116 \mathrm{~g}, 0.0462 \mathrm{mmol})$, pyridine ($1.6 \mathrm{~mL}, 0.0197 \mathrm{mmol}$) and chlorobenzene were heated to reflux for 16 hrs . The reaction was then cooled to rt and quenched with $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{X} 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (10:1 hexanes/ethyl acetate) afforded $3.2 \mathrm{mg}(95 \%)$ of tetracycle 21 as a colorless oil. $[\alpha]^{23}=+29.94^{\circ}\left(\mathrm{c}=0.155\right.$, THF); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.15 (m, 2 H), 7.10-7.08 (m, 1 H), $6.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=5.7,5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.90$ (ddd, J = 11.6, 7.7, 4.0 Hz, 1 H), $3.78(\mathrm{dd}, J=12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.48$ (ddd, $J=10.6,10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=11.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.99$ ($\mathrm{m}, 2 \mathrm{H}$), $1.85(\mathrm{dd}, J=23.8,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{ddd}, J=14.6,2.7$, $2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.69-1.62 (m, 1 H$), 1.58-1.40(\mathrm{~m}, 4 \mathrm{H}), 139.5$, 1.13 (s, 3 H), 1.10 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 143.9,128.3,128.1,127.5,127.3,98.6,82.0,77.2,76.1$, $74.7,74.6,73.7,72.7,71.1,70.2,43.4,35.8,32.6,27.6,27.4,26.2,21.1,20.2$; IR (neat) 1650, 1187, 1107, $1062 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right) 445.2590$, found 445.2589.

Summary of COSY spectrum for 21.

1. Protons at $3.30 \mathrm{ppm}(\mathrm{C}-1)$ show cross peaks with protons at $1.80,1.66 \mathrm{ppm}(\mathrm{C}-2)$.
2. Protons at $1.80,1.66 \mathrm{ppm}(\mathrm{C}-2)$ show cross peaks with protons at $1.55 \mathrm{ppm}(\mathrm{C}-3)$
3. Protons at $1.55 \mathrm{ppm}(\mathrm{C}-3)$ show cross peaks with protons at $3.89 \mathrm{ppm}(\mathrm{C}-4)$.
4. Protons at $3.89 \mathrm{ppm}(\mathrm{C}-4)$ show cross peaks with protons at $1.72,1.48 \mathrm{ppm}(\mathrm{C}-5)$.
5. Protons at $1.72,1.48 \mathrm{ppm}(\mathrm{C}-5)$ show cross peaks with protons at $3.66 \mathrm{ppm}(\mathrm{C}-6)$.
6. Protons at $3.78 \mathrm{ppm}(\mathrm{C}-8)$ show cross peaks with protons at $2.11,1.87 \mathrm{ppm}(\mathrm{C}-9)$.
7. Protons at $2.11,1.87 \mathrm{ppm}(\mathrm{C}-1)$ show cross peaks with protons at $2.95 \mathrm{ppm}(\mathrm{C}-$ 10).
8. Protons at $1.43,2.17 \mathrm{ppm}(\mathrm{C}-12)$ show cross peaks with protons at $3.48 \mathrm{ppm}(\mathrm{C}-$ 13).
9. Protons at $3.48 \mathrm{ppm}(\mathrm{C}-13)$ show cross peaks with protons at $3.32 \mathrm{ppm}(\mathrm{C}-14)$.
10. Protons at $3.32 \mathrm{ppm}(\mathrm{C}-14)$ show cross peaks with protons at $2.13,1.99 \mathrm{ppm}(\mathrm{C}-$ 15).
11. Protons at $2.13,1.99 \mathrm{ppm}(\mathrm{C}-15)$ show cross peaks with protons at $4.42 \mathrm{ppm}(\mathrm{C}-$ 16).
12. Protons at $4.42 \mathrm{ppm}(\mathrm{C}-16)$ show cross peaks with protons at $6.25 \mathrm{ppm}(\mathrm{C}-17)$.

Summary of 1D nOe difference experiments for 21.

1. Irradiation at $3.89 \mathrm{ppm}(\mathrm{C}-4)$ resulted in enhancement at 3.78 (C-8).
2. Irradiation at $3.78 \mathrm{ppm}(\mathrm{C}-8)$ resulted in enhancement at $3.89 \mathrm{ppm}(\mathrm{C}-4), 2.95$ ppm (C-10), $2.55 \mathrm{ppm}(\mathrm{OH})$.
3. Irradiation at $3.66 \mathrm{ppm}(\mathrm{C}-6)$ resulted in enhancement at $1.13 \mathrm{ppm}(\mathrm{C}-19)$.
4. Irradiation at $3.48 \mathrm{ppm}(\mathrm{C}-13)$ resulted in enhancement at $1.09 \mathrm{ppm}(\mathrm{C}-18)$.
5. Irradiation at $2.95 \mathrm{ppm}(\mathrm{C}-10)$ resulted in enhancement at $3.78 \mathrm{ppm}(\mathrm{C}-8), 3.32$ ppm (C-14).

