Asymmetric Epoxidation of Olefins Catalyzed by Chiral Iminium Salts Generated in situ from Amines and Aldehydes

Man-Kin Wong,* Lai-Mei Ho, Yan-Song Zheng, Chun-Yu Ho, and Dan Yang*
Department of Chemistry, The University of Hong Kong,
Pokfulam Road, Hong Kong

SUPPORTING INFORMATION

Preparation of amine 4^{a}

${ }^{\text {a }}$ Reagents and conditions:
a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}$;
b) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt;
c) 1-adamantanamine hydrochloride, $\mathrm{DCC}, \mathrm{HOBt}, \mathrm{Et}_{3}{\mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, rt; }}$,
d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

To a solution of triethylamine (4 mL) and methanol (36 mL) was added trans-4-hydroxy-L-proline ($\mathbf{4 d}$) $(5.0 \mathrm{~g}, 38 \mathrm{mmol})$ and di-tert-butyl dicarbonate $(16.6 \mathrm{~g}, 79.3 \mathrm{mmol})$. After heating to $40-50^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was cooled to room temperature. The solvent was removed under reduced pressure, and the residue was cooled to $0{ }^{\circ} \mathrm{C}$ followed by acidification with diluted hydrochloric acid to pH 2 . The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then it was extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous MgSO_{4}, and filtered. Evaporating off the solvent under reduced pressure afforded trans-N-(tert-butoxycarbonyl)-4-hydroxy-L-proline ($\mathbf{4 c}$) $\left(9.17 \mathrm{~g}, 35.7 \mathrm{mmol}, 94 \%\right.$ yield) as colourless liquid and used directly for next step. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.37-4.49(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.58(\mathrm{~m}, 2 \mathrm{H})$, $2.28-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75.8 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$
$177.51,174.97,156.13,154.31,81.54,81.00,69.65,69.27,57.85,57.73,54.62,54.45$, 38.89, 37.60, 28.34, 28.22.

To a solution of $\mathbf{4 c}(8.26 \mathrm{~g}, 35.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added acetic anhydride ($19.9 \mathrm{~mL}, 179 \mathrm{mmol}$) and pyridine $(20 \mathrm{~mL})$ under nitrogen at room temperature. The reaction mixture was stirred at room temperature overnight. Then the reaction mixture was washed with 1 M hydrochloric acid $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 4)$. The combined organic layers were dried over anhydrous MgSO_{4}. The organic layer was filtered and removed under reduced pressure to provide $\mathbf{4 b}(14.28 \mathrm{~g}, 26.2 \mathrm{mmol}, 73 \%$ yield) as a white solid (m.p. $95-97{ }^{\circ} \mathrm{C}$) which was directly used for next step without purification. $[\alpha]_{\mathrm{D}}{ }^{20}=-70.53^{\circ}\left(c 1.02 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.31(\mathrm{~m}$, $1 \mathrm{H}), 4.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.55-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.48(\mathrm{~m}$, $2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.48 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 177.74, 174.67, 170.42, $155.89,153.59,81.90,81.03,72.18,71.83,57.69,52.37,51.95,36.49,34.63,28.31,28.21$, 20.99; IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3498,1741,1699,1624 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV$) \mathrm{m} / \mathrm{z} 228$ (2), 213 (11), 172 (29); HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4}\left(\mathrm{M}^{+}-\mathrm{COOH}\right)$, calcd 228.1236, found 228.1233.

To a solution of $\mathbf{4 b}(0.82 \mathrm{~g}, 1.83 \mathrm{mmol})$ and 1-adamantanamine hydrochloride ($0.52 \mathrm{~g}, 2.75 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added triethylamine ($0.75 \mathrm{~mL}, 5.49 \mathrm{mmol}$) and 1-hydroxybenzotriazole hydrate $(0.32 \mathrm{~g}, 2.38 \mathrm{mmol})$ under nitrogen at room temperature. After 1-hydroxybenzotriazole hydrate was dissolved, N, N^{\prime} dicyclohexylcarbodiimide ($0.49 \mathrm{~g}, 2.38 \mathrm{mmol}$) was added. After stirring at room temperature overnight, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with 1 M hydrochloric acid (25 mL), water (25 mL), saturated NaHCO_{3} solution (30 mL), and brine (30 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (40% ethyl acetate in n-hexane) to afford ($2 S, 4 R$)-4-acetoxy-2-
(adamantan-1-ylcarbamoyl)-pyrrolidine-1-carboxylic acid tert-butyl ester (4a) (0.58 g, $1.42 \mathrm{mmol}, 78 \%$) as a white solid: M.p. $124-125^{\circ} \mathrm{C}$; analytical TLC (silica gel 60), 50% ethyl acetate in n-hexane, $\mathrm{R}_{f}=0.37 ;[\alpha]_{\mathrm{D}}{ }^{25}=-42.14^{\circ}\left(c \quad 1.38 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{br} \mathrm{s}, 1 / 2 \mathrm{H}), 5.58(\mathrm{br} \mathrm{s}, 1 / 2 \mathrm{H}), 5.21-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.23(\mathrm{~m}, 1 \mathrm{H})$, 3.48-3.75 (m, 2H), 2.07-2.60 (m, 5H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.25,169.95,155.26,80.72,72.49,60.23,59.01$, 53.32, 52.27, 51.64, 41.47, 36.23, 33.25, 29.32, 28.23, 20.85; IR (KBr) 3679, 1738, 1690, $1603 \mathrm{~cm}^{-1}$; LRMS (ESI) $m / z 407\left(\mathrm{M}^{+}+1,100\right)$; HRMS (EI) for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$, calcd 406.2468, found 406.2478.

To a solution $4 \mathbf{a}(0.27 \mathrm{~g}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid (3 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 35 min and warmed up to room temperature for 1 h . The solvent was removed under reduced pressure, and the residue was azeotroped with toluene twice. The residue was basified with 2 M NaOH followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure to afford (2S,4R)-4-acetic acid 5-(adamantan-1-ylcarbamoyl)-pyrrolidin-3-yl ester (4) (0.21 $\mathrm{g}, 0.66 \mathrm{mmol}, 100 \%$ yield) as a white solid: M.p. $114-116{ }^{\circ} \mathrm{C}$; analytical TLC (silica gel 60), 80% ethyl acetate in n-hexane, $\mathrm{R}_{f}=0.66 ;[\alpha]_{\mathrm{D}}{ }^{25}=-12.33^{\circ}\left(c 0.94 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.30(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=13.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.10$ (m, 4H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.68(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.73,170.40,76.39,60.31,52.83,50.76,41.43,36.68,36.25,29.29,21.13$; IR (KBr) $3328,1734,1666 \mathrm{~cm}^{-1}$; LRMS (ESI) $m / z 307\left(\mathrm{M}^{+}+1,100\right)$; HRMS (EI) for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}\right)$, calcd 306.1943, found 306.1948.

Preparation of amine 5^{a}

${ }^{a}$ Reagents and conditions:
a) $\mathrm{NaOH}, \mathrm{MeOH}$, reflux;
b) cyclohexylamine, EDCI, HOBt, DMF, rt;
c) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, rt;

Diester 5c was prepared according to a literature procedure. (Yamamoto, Y.; Hoshino, J.; Fujimoto, Y.; Ohmoto, J.; Sawada, S. Synthesis 1993, 298.)

To a solution of $\mathrm{NaOH}(96 \mathrm{mg}, 2.4 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added $\mathbf{5 c}(150$ $\mathrm{mg}, 0.52 \mathrm{mmol}$). After refluxing for 10 h , the reaction mixture was cooled to room temperature, and acidified with dilute hydrochloric acid to pH 4 . The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (50% methanol in ethyl acetate) to afford $\mathbf{5 b}$ ($130 \mathrm{mg}, 0.49 \mathrm{mmol}, 96 \%$ yield) as a white solid: M.p. $220^{\circ} \mathrm{C}$ (dec); analytical TLC (silica gel 60), 50% methanol in ethyl acetate, R_{f} $=0.45 ;[\alpha]_{\mathrm{D}}{ }^{25}=-56.1^{\circ}\left(c 1.6 \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.65(\mathrm{~m}, 5 \mathrm{H})$, $5.28(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.59$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.67,142.04,128.30,127.49$, 127.29, 65.47, 59.21, 29.17, 21.44; IR (KBr) 3397, 1657, 1620, 1456, $1385 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 218 (52), 173 (29), HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}\left(\mathrm{M}^{+}-\mathrm{COOH}\right)$, calcd 218.1181, found 218.1166.

To a solution of $\mathbf{5 b}(130 \mathrm{mg}, 0.5 \mathrm{mmol})$ in DMF (15 mL) were added cyclohexylamine ($298 \mathrm{mg}, 3 \mathrm{mmol}$) and HOBt ($175 \mathrm{mg}, 1.3 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 10 min , and 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride ($249 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added. After stirring at room temperature overnight, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The organic phase was washed with water, dried over anhydrous magnesium sulfate, and concentrated
under reduced pressure. The residue was purified by flash column chromatography (50% ethyl acetate in n -hexane) to afford (2S,5S)-1-[(S)-1-phenylethyl]-pyrrolidine-2,5dicarboxylic acid bis-cyclohexylamide (5a) ($130 \mathrm{mg}, 61 \%$ yield) as a white solid: M.p. $202-203{ }^{\circ} \mathrm{C}$; analytical TLC (silica gel 60), 30% ethyl acetate in n-hexane, $\mathrm{R}_{f}=0.4 ;[\alpha]_{\mathrm{D}}{ }^{25}$ $=-85.9^{\circ}\left(c 1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.00(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.39(\mathrm{~m}$, $2 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.04-1.19 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (75.47 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 173.92, 145.03, 128.54, 127.29, $65.36,60.24,47.50,33.23,33.10,30.20,25.52,24.86,23.97$; IR $\left(\mathrm{CHCl}_{3}\right) 3430,3354$, 1655, $1513 \mathrm{~cm}^{-1}$; FABMS m/z $426\left(\mathrm{M}^{+}+1,80\right), 299$ (100), 195 (60); HRMS (EI) for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$, calcd 425.3042, found 425.3044 .

To a solution of $5 \mathbf{5}(150 \mathrm{mg}, 0.35 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was added 10% palladium on activated carbon $(30 \mathrm{mg})$. The mixture was stirred at room temperature under hydrogen atmosphere for 15 h . The catalyst was removed by filtering through a short pad of celite. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography (50% methanol in ethyl acetate) to afford (2S,5S)-pyrrolidine-2,5-dicarboxylic acid bis-cyclohexylamide (5) (94 $\mathrm{mg}, 83 \%$ yield) as a white solid: M.p. $159-160{ }^{\circ} \mathrm{C}$; analytical TLC (silica gel 60), 50% methanol in ethyl acetate, $\mathrm{R}_{f}=0.7 ;[\alpha]_{\mathrm{D}}{ }^{25}=-90.2^{\circ}\left(c 0.6 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.91(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.89(\mathrm{~m}, 12 \mathrm{H})$, $1.30-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.10-1.21(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.97, 61.18, $47.81,32.95,32.85,31.27,25.33,24.69,24.67$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3428,3329,1656,1519 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $321\left(\mathrm{M}^{+}, 5\right), 195$ (100); HRMS (EI) for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$, calcd 321.2416, found 321.2418 .

References for the determination of enantiomeric excesses of epoxides:

(S,S)-trans-Stilbene oxide

Wang, Z. W.; Tu, Y.; Frohn, M.; Shi, Y. J. Org. Chem. 1997, 62, 2328.
(S,S)-trans- β-Methylstilbene oxide

Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.
(S)-2,2,3-Triphenyloxirane

Wang, Z. X.; Shi, Y. J. Org. Chem. 1997, 62, 8622.
(S,S)-1-Phenylcyclohexene oxide

Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M. K.; Zheng, J. H. J. Am. Chem. Soc. 1996, 118, 491.
(S,S)-trans- β-Methylstyrene oxide

Wang, Z. W.; Tu, Y.; Frohn, M.; Shi, Y. J. Org. Chem. 1997, 62, 2328.

3,4-Dihydronaphthalene oxide

Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M. K.; Zheng, J. H. J. Am. Chem. Soc. 1996, 118, 491.
(R, R)-trans-3-Phenyloxiranemethanol

Wang, Z. W.; Shi, Y. J. Org. Chem. 1998, 63, 3099.

