Regiochemical Control in Intramolecular Cyclization of Methyleneinterrupted Epoxydiols

Radha S. Narayan ${ }^{\dagger}$, Meenakshi Sivakumar ${ }^{\dagger}$, Ezzeddine Bouhlel ${ }^{\ddagger}$, Babak Borhan ${ }^{\dagger}{ }^{*}$
${ }^{\dagger}$ Department of Chemistry, Michigan State University, East Lansing, MI-48824
${ }^{\dagger}$ Departement de Chimie, Faculte des Sciences de Monastir, Universite du Centre, Monastir 5000, Tunisia

borhan@cem.msu.edu

SUPPORTING INFORMATION

Experimental details and tabulated spectroscopic data for all new compounds $\mathbf{5 a - h}, \mathbf{6 a}, \mathbf{6 d - g}, 7 \mathbf{c}$, $\mathbf{7 f - g}, \mathbf{8 c}, 9$, and 13-15 (17 pages). This material is available free of charge via the Internet at http://pubs.acs.org. See any current masthead page for ordering information.

A brief discussion on Baldwin's and Warren's terminology of endo and exo (hybrid terminology):

It is prudent to briefly discuss the nomenclature of epoxide opening in the context of Baldwin rules terminology with regards to the intramolecular ring opening of epoxides. Path a in Scheme 2 is clearly a 5exo process, and is therefore considered favorable. Path b and c are somewhat more ambiguous, and are labeled 5-exo/6-endo and 6-exo/7-endo, respectively. This seemingly dual and yet opposing classification stems from viewing the ring formation from two different perspectives.
 This is illustrated in Figure 1 with the 5-exo/6-endo process, which follows Path b (Scheme 2). If one ignores the C4-O epoxide bond (Figure 1a), the attack of the hydroxyl onto C5, and the subsequent rupturing of the $\mathrm{C} 5-\mathrm{O}$ bond can be classified as 5 -exo. However, disregarding the C4-C6 bond (Figure 1b), then the approach of the hydroxyl and breaking of the C6-O bond resembles a 6 -endo process . Although this might seem to be a matter of semantics, it is important to realize that it could have profound consequences on the regiochemical choices available along the reaction pathway, i.e., since both Path a and Path b (Scheme 2) can be considered as 5 -exo processes, is it possible to obtain regiochemical control? On the other hand, is the 5 -exo/6-endo process less likely to occur from a Baldwin rules point of view since it has some elements of the unfavorable 6-endo attack?

Figure 1. a) Attack of OH resembles a 5-exo system, disregarding the $\mathrm{C} 4-\mathrm{O}$ bond. b) On the other hand disregarding the C 4 - C 6 bond suggests a 6 -endo process.

Synthetic Schemes for Preparation of 5a-e

2-Deoxy-D-ribose was utilized as the entry point to obtain the common structural motif represented in 1. Synthesis of $\mathbf{5 a}$ with the hydroxyl pendant group was initiated by the Wittig olefination of 2-deoxy-D-ribose followed by selective silyl protection of the primary hydroxyl group to deliver 13 (Scheme 3). Both secondary hydroxyl groups in $\mathbf{1 3}$ were then protected as their corresponding trimethylsilyl ethers, and subsequent reduction of the ethyl ester group in $\mathbf{1 4}$ with DIBAL afforded the allylic alcohol $\mathbf{1 5}$ poised for Sharpless asymmetric epoxidation. Epoxides 5a and $\mathbf{5 h}$ were obtained in good yields with 99% and 92% de, respectively (GC analysis). Compound 5a and its structural analogs serve as the epoxydiol precursor in which the diol

Scheme 3. Synthesis of epoxydiol

(a) $(\mathrm{Ph})_{3} \mathrm{PCHCO}_{2} \mathrm{Et}, \mathrm{THF}, 9{ }^{\circ} \mathrm{C}(92 \% 5 / 1: \mathrm{E} / \mathrm{Z})$; (b) TBDPSCl, DMF, rt (72% E only); (c) TMSCl, Im, DMAP, THF, $45{ }^{\circ} \mathrm{C}$, (75\%); (d) DIBAL, $\mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$, (90\%); (e) D (-) DET, Ti(OiPr) ${ }_{4}$, tBuOOH, $-20^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}, 4 \AA$ mol. sieves, $73 \%, 99 \%$ de; (f) L (+) DET, $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{tBuOOH},-20^{\circ} \mathrm{C}$ to $-30{ }^{\circ} \mathrm{C}, 4 \AA$ mol. sieves, $55 \%, 92 \%$ de. functionality is liberated during ring closure. This strategy was adopted early on since the unprotected epoxydiols were found to be too reactive and were not stable to storage.

Other control elements in structure $\mathbf{1}$ were installed by routine modifications of 5a (Scheme 4). Oxidation of 5a with Dess-Martin Periodinane reagent yielded the desired epoxy aldehyde $\mathbf{5 b}$. Olefination of $\mathbf{5 b}$ with methyl triphenylphosphonium bromide and $n \mathrm{BuLi}$ secured 5c, which upon hydrogenation with H_{2} Pd / C furnished the saturated alkyl substituent in 5d. Attempted synthesis of $\mathbf{5 e}$ with NaH and methyl iodide led to the deprotection of the TMS ether groups. However, treatment of 5a with dimethylsulfate and LiHMDS led to the formation of $\mathbf{5 e}$ in 75% isolated yield.

(a) DMP, $\mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; (b) $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}, \mathrm{nBuLi}, \mathrm{Et}_{2} \mathrm{O}, 55 \%$;
(c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}, 60 \%$; (d) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}, \mathrm{LiHMDS}$, THF, 75%.

Synthetic Schemes for Preparation of 5f-g

The epoxysulfide $\mathbf{5 f}$ was synthesized as shown in Scheme 5. Epxoyalcohol 5a was secured as previously above. The conversion of the epoxyalcohol 5a to $\mathbf{5 f}$ was best achieved using Hata's Reagent. An alternative method comprising of the conversion of epoxyalcohol to the tosylate followed by treatment with sodium thiophenoxide resulted in decomposition of the epoxyalcohol. Epoxysulfide $\mathbf{5 g}$ was synthesized in an analogous fashion in 85% yield.

Scheme 5

General Procedures:

Diethyl ether and THF were dried over sodium/benzophenone under nitrogen. Dichloromethane was dried over calcium hydride. TMSCl was dried and distilled over sodium hydride. All the other commercially available reagents were used without further purification. All the air and water sensitive reaction were done in flame dried apparatus under nitrogen atmosphere. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, 2D-COSY and NOE spectra were recorded on 500 MHz NMR spectrometer (VARIAN 500 MHz) in CDCl_{3}. IR spectra were recorded on Nicolet IR/42 spectrometer using NaCl cells. Optical rotations were measured using Perkin-Elmer (model 341) polarimeter. Column chromatography was performed using Silicycle ($40-60 \mu \mathrm{~m}$) silica gel. Analytical TLC was done using pre-coated silica gel $60 \mathrm{~F}_{254}$ plates. GC analysis was performed using HP (6890 series) GC system (Column AltechSE-54, $30 \mathrm{mx} 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$).

13:

To a solution of $12(8.2 \mathrm{~g}, 0.04 \mathrm{~mol})$ in DMF (30 mL), imidazole ($3.0 \mathrm{~g}, 0.044 \mathrm{~mol}$) and tbutylchlorodiphenylsilane ($12 \mathrm{~g}, 0.044 \mathrm{~mol}$) were added at room temperature. The mixture was stirred at room temperature for 3 h , after which time the reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}$ and diluted with ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The E and Z isomers were separated by flash column chromatography (ethyl acetate $/$ hexanes $=20 / 80$). The purified E isomer $\mathbf{1 3}$ was obtained as a yellow oil (72% yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 6 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 5.87$ (dt, J = 15.7, 1.4 Hz, 1 H), $4.17(\mathrm{q}, \mathrm{J}=7.07 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 1 \mathrm{H})$, 2.60 (br-s, 1 H), 2.47-2.43 (m, 1 H), 2.37-2.32 (m, 1 H), 2.15 (br-s, 1 H), 1.27 (t, J = 7.07, 3 H), 1.06 (s, 9 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,145.1,135.7,132.9,130.3,128.1,124.2$, 73.5, 71.6, 64.8, 60.5, 36.1, 27.1, 19.4, 14.5; IR (neat, thin film), 3461, 3973, 2932, 2859, 1968, $1899,1830,1719,1655,1472,1428,1393,1370,1267,1167,1113,1044,824,741,702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}, 460.2519 \mathrm{~m} / \mathrm{z}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; observed, $460.2550 \mathrm{~m} / \mathrm{z}$.

14:

To a solution of $\mathbf{1 3}(0.5 \mathrm{~g}, 1.13 \mathrm{mmol})$ in THF (5 mL), imidazole ($308 \mathrm{mg}, 4.52 \mathrm{mmol}$), chlorotrimethylsilane ($0.57 \mathrm{~mL}, 4.52 \mathrm{mmol}$) and cat. dimethylaminopyridine were added and the mixture was refluxed for 4 h . The reaction was cooled to room temperature, diluted with ethyl acetate and filtered. The precipitate was washed with ethyl acetate (200 mL). The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Th crude product was purified by flash column chromatography (ethyl acetate $/$ hexane $=5 / 95$) to isolate $\mathbf{1 4}$ as a colorless oil (75% yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.81$ (d, J = 14.2, 1 H), $4.18(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 2$ H), 2.41-2.26(m, 2 H$), 1.28(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,147.3,135.9,133.6,130.0,128.0,123.3,72.7,65.7,60.2,35.1,27.1$, $19.4,14.5,0.6,0.5$; IR (neat, thin film) 3086, 2957, 2896, 2859, 1982, 1893, 1824, 1722, 1657, $1474,1429,1368,1318,1252,1113,982,841,745,702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Si}_{3}$, $587.3044 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $587.3030 \mathrm{~m} / \mathrm{z}$.

15:

A solution of $\mathbf{1 4}(2 \mathrm{~g}, 3.4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. To this, a solution of DIBAL-H (1.0 M in hexane, 13.6 mL) was added. The reaction was continued at $0^{\circ} \mathrm{C}$ and it was complete after 30 min . The reaction was quenched by adding saturated aqueous solution of $\mathrm{Na}-$ K tartrate $(25 \mathrm{~mL})$ and diluted with ether $(50 \mathrm{~mL})$. To this biphasic mixture, glycerol $(0.7 \mathrm{~mL})$ was added and the mixture was stirred vigorously for 8 h . The layers were separated and the aqueous layer was extracted with ether $(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Purification after flash column chromatography lead to 15 (90% yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.66-5.64(\mathrm{~m}, 2 \mathrm{H}), 4.07$ (d, J = $4.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.76-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, \mathrm{J}=10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=10.4,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.01$ (s, 9 H$) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.9,133.7,131.3,130.6,129.8,127.9,73.8,65.9,64.1,35.3,27.1,19.4,0.7,0.6$; IR (neat, thin film) 3349, 3073, 2957, 2859, 1962, 1900, 1824, 1474, 1429, 1250, 1113, 972, 841, $702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{3}, 545.2939 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $545.2927 \mathrm{~m} / \mathrm{z}$.

5a:

To a round bottom flask charged with powdered, preactivated mol. sieves (50 mg), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added and cooled to $-30^{\circ} \mathrm{C}$. To this, $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}(0.4 \mathrm{~mL}, 0.132 \mathrm{mmol})$ was added followed by addition of $\mathrm{D}(-)$ DET ($0.32 \mathrm{~mL}, 0.184 \mathrm{mmol}$ in $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$). This mixture was stirred at $-30^{\circ} \mathrm{C}$, under N_{2} for 30 min after which time a solution of the allylic alcohol $\mathbf{1 5}(0.2 \mathrm{~g}$, 0.368 mmol in $2 \mathrm{mLCH} \mathrm{Cl}_{2}$) was added dropwise (over 30 min) to the reaction. This mixture was held for 45 min . at $-20^{\circ} \mathrm{C}$ and $\mathrm{t}-\mathrm{BuOOH}(0.50 \mathrm{~mL}, 0.184 \mathrm{mmol})$ was added to the reaction. Stirring was continued at $-20^{\circ} \mathrm{C}$ for 2 h and quenched by adding satd. solutions of $\mathrm{Na}_{2} \mathrm{SO}_{4}(0.32$ $\mathrm{mL})$ and $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.6 \mathrm{~mL})$ and diluted with 10 mL ether. The mixture was stirred vigorously at room temperature for 3 h (yellow paste was formed in the reaction) and refrigerated overnight. The paste was diluted with anhydrous $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and celite was added to it. This mixture was filtered on a celite pad using a sintered funnel. The yellow residue was further washed with anhydrous ether (200 mL) when it turned granular. The filtrate was concentrated and the crude product was purified by column chromatography (ethyl acetate $/$ hexanes $=10 / 90$). The epoxide $5 \mathbf{a}$ was obtained as a colorless oil (73% yield).
$[\alpha]_{\mathrm{D}}{ }^{20.2}+35.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6$ H), 3.96-3.93 (m, 1 H), 3.88-3.86 (m, 1 H), 3.78-3.74 (m, 1 H$), 3.60-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}$, $1 \mathrm{H}), 3.05(\mathrm{dt}, \mathrm{J}=5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H})$, 1.04 (s, 9 H), 0.06 (s, 9 H), $0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,133.6,129.9$, 127.9, 71.7, 65.7, 61.9, 58.4, 54.2, 34.6, 27.1, 19.4, 1.2, 0.4 IR (neat, thin film) 3418, 3071, 2957, 2864, 1962, 1893, 1824, 1590, 1472, 1428, 1252, 1111, 841, 747, $702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{3}, 561.2888 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $561.2881 \mathrm{~m} / \mathrm{z}$.

5h:

The same procedure as the one for $\mathbf{5 a}$ was used for $\mathbf{5 h}$ with $\mathrm{L}(+)$ diethyl tartrate.
$[\alpha]_{\mathrm{D}}{ }^{20.2}-21.8\left(\mathrm{c} 0.73 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6$ H), 4.06-4.04 (m, 1 H), 3.90-3.88 (m, 1 H$), 3.78(\mathrm{dt}, \mathrm{J}=6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, \mathrm{~J}=2.7,1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}$, 1 H), 1.67 ($\mathrm{s}(\mathrm{br}), 1 \mathrm{H}), 1.43(\mathrm{ddd}, \mathrm{J}=14.4,7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.1(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,133.5,129.9,127.9,71.1,65.3,62.0,59.4,54.0$, 34.1, 27.1, 19.3, 0.5, 0.4 IR (neat, thin film) 3430, 3073, 2957, 2859, 1967, 1900, 1821, 1590, $1474,1429,1252,1113,841,743, \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{3}, 561.2888 \mathrm{~m} / \mathrm{z}(\mathrm{M}+$ H^{+}; observed, $561.2872 \mathrm{~m} / \mathrm{z}$.

5b:

Pyridine ($50 \mu \mathrm{~L}$) was added to a mixture of Dess-Martin Periodinane ($45 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. To this, a solution of $\mathbf{5 a}(45 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $1.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added and the reaction was stirred at room temperature for 1 h after which time it was diluted with ether (15 $\mathrm{mL})$. The reaction was quenched by adding satd. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2.5 \mathrm{~g})$ and the mixture was stirred for 5 min after which ether (15 mL) was added and the layers were separated. The ether layer was washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product was purified by column chromatography (ethyl acetate $/$ hexanes $=5$ / 95) to furnish the aldehyde $\mathbf{5 b}$ as a colorless oil (90% yield).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.35(\mathrm{~m}, 10 \mathrm{H}), 3.99-3.96(\mathrm{~m}, 1 \mathrm{H})$, 3.75 (dt, J = 6.3, 3.3 Hz, 1 H), 3.56 (dd, J = 10.6, 6.6 Hz, 1 H), 3.51 (dd, J = 10.6, 6.0 Hz, 1 H), 3.32 (dt, J = 5.8, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{dd}, \mathrm{J}=6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 1$ H), $1.04(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,135.8,133.5$, $130.0,127.9,76.7,71.2,65.6,59.2,55.1,34.0,27.1,19.4,0.5,0.4$; IR (neat, thin film) 3073 , 2959, 2932, 2859, 1968, 1893, 1824, 1732, 1474, 1429, 1390, 1252, 1113, 843, 743, $702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{3}, 559.2731 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $559.2721 \mathrm{~m} / \mathrm{z}$.

5c:

A mixture of methyltriphenylphosphonium bromide ($206 \mathrm{mg}, 0.58 \mathrm{mmol}$) in THF (2 mL) was cooled to $0^{\circ} \mathrm{C}$. To this, n-butyllithium ($0.48 \mathrm{mmol}, 0.13 \mathrm{~mL}$ of 0.25 M solution in hexanes) was added and stirred for 30 min . during which time the solution turned yellow and clearer. This ylide solution was added to a precooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{5 b}(90 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{THF}(2 \mathrm{~mL})$. The reaction was warmed to rt and stirred for 6 h and quenched by adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and diluted with ethyl acetate (20 mL). The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by column chromatography (ethyl acetate / hexanes $=1 / 99$) to yield the vinyl epoxide $\mathbf{5 c}(55 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.58-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.42$ (dd, J = 17.4, 1.5, 1 H), 5.28-5.22 (m, 1 H), 3.97-3.94 (m, 1 H$), 3.75(\mathrm{dt}, \mathrm{J}=6.3,3.4,1 \mathrm{H}), 3.58$ (dd, J = 10.5, 6.3 Hz, 1 H), 3.52 (dd, J = 10.6, 6.2 Hz, 1 H), 3.03 (dd, J = 7.6, 2.1 Hz, 1 H), 2.952.92 (m, 1 H$), 1.99-1.93$ (m, 1 H$), 1.50-1.45$ (m, 1 H$), 1.04$ (s, 9 H), 0.06 (s, 9 H$), 0.05$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,135.8,133.6,129.8,127.8,119.1,71.8,65.7,58.8,35.0$, 27.1, 19.4, 1.2, 0.5; IR (neat, thin film) 3073, 2959, 2859, 1962, 1887, 1818, 1591, 1429, 1252, 1113, 841, 741, $702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{3}, 557.2939 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $557.2934 \mathrm{~m} / \mathrm{z}$.

5d:

$10 \% \mathrm{Pd}-\mathrm{C}(4 \mathrm{mg})$ was added to a solution of $\mathbf{5 c}(40 \mathrm{mg}, 0.072 \mathrm{mmol})$ in ethyl acetate (2 mL) and the mixture was stirred under H_{2} atmosphere at room temperature for 1.5 h . The reaction was filtered through a celite pad and the residue was washed with ethyl acetate. The filtrate was concentrated and the crude product was purified by flash column chromatography (ethyl acetate / hexanes $=1 / 99$) to furnish alkyl epoxide $\mathbf{5 d}$ (75% yield).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.96-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (dt, J = 5.8, 3.5 Hz, 1 H), 3.63 (dd, J = 6.2, 10.4 Hz, 1 H), 3.53 (dd, J = 6.2, 10.6 Hz, 1 H), 2.83$2.80(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dt}, \mathrm{J}=5.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, \mathrm{J}=14.2,7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.45(\mathrm{~m}$, $3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.6,133.4,129.7,127.7,71.8,65.5,59.9,56.4,35.1,26.9,25.1,19.2,9.9,0.4,0.3$; IR (neat, thin film) $3076,3961,1736,1429,1250,113,841,742,702 \mathrm{~cm}^{-1}$.

5e:

A solution of $\mathbf{5 a}(51 \mathrm{mg}, 0.09 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. To this solution $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}(50 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ and LiHMDS $(140 \mu \mathrm{~L}$ of 1.0 M solution in THF) were added. The reaction was complete in 2 h . The reaction was diluted with ethyl acetate $(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product $\mathbf{5 e}$ was purified by flash column chromatography (ethyl acetate $/$ hexanes $=5 / 95$) as a colorless oil (75\% yield).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6 \mathrm{H}), 3.94-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.77-$ $3.73(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{dt}, \mathrm{J}=5.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.77(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.8,133.6,129.8,127.8,71.9,65.8,63.3,58.6,54.5,34.9,27.1,19.4$, $0.6,0.5$; IR (neat, thin film) $3073,2957,2859,192,1893,1824,1589,1474,1429,1252,1113$, 843, 747, $702 \mathrm{~cm}^{-1}$.

5f:

To a solution of diphenyl disulphide ($60 \mathrm{mg}, 0.275 \mathrm{mmol}$) in triethyl amine (0.2 ml), tributyl phosphine ($63 \mu \mathrm{~L}, 0.275 \mathrm{mmol}$) was added, stirred for 5 min . and cooled to $0^{\circ} \mathrm{C}$. To this, a solution of the epoxyalcohol $\mathbf{5 a}(50 \mathrm{mg}, 0.09 \mathrm{mmol})$ in triethyl amine $(0.2 \mathrm{ml})$ cooled to $0^{\circ} \mathrm{C}$ was added dropwise. The reaction was allowed to warm to room temperature and stirred for 4 h . The reaction was diluted with ether (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The aqueous layer was extracted with ether ($2 \times 20 \mathrm{~mL}$). 5f was purified by flash column chromatography (ethyl acetate $/$ hexanes $=5 / 95$) as a yellow oil (yield $=85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ 7.15 (m, 1H), 3.89-3.86 (dt, J = 7.6, 4.2 Hz, 1 H), 3.75-3.72 (dt, J = 6.0, 3.6 Hz 1 H), 3.57 (dd, J $=10.6,6.0 \mathrm{~Hz},!\mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=10.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, 13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, 13.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}$), $0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.9,133.6,130.3,129.9,129.2,127.9,126.8$, $71.7,65.8,57.5,57.1,36.7,34.9,27.1,19.4,0.6,0$. IR (neat, thin film) 3073 , 2957, 2859, 1856, 1831, 1712, 1574, 1473, 1427, 1391, 1113, 941, 841, 741, cm^{-1}; HRMS (CI) calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{SSi}_{3}, 653.2972 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $653.2969 \mathrm{~m} / \mathrm{z}$.

5g:

$\mathbf{5 g}$ was synthesized in an identical fashion to $\mathbf{5 f}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ 7.17 (m, 1H), 3.98 (dt, J = 5.0, 2.5 Hz, 1 H), 3.73 (dt, J = 6.3, 2.4 Hz, 1 H), 3.47-3.45 (.m, !H), 3.07 (dd, 13.9, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, 13.9, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dt, 2.0, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82-1.77 (m, 1 H), 1.21 (ddd, 18.3, $7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.9,133.6,129.8,129.2,127.9,126.9,71.7,65.3,57.9,57.2,36.9,34.3,27.1$, $19.3,0.6,0.5$. IR (neat, thin film) 3176, 2957, 2859, 1956, 1831, 1587, 1474, 1429, 1250, 1113, 943, 841, 741, cm^{-1}; HRMS (CI) calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{SSi}_{3}, 653.2972 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $653.2965 \mathrm{~m} / \mathrm{z}$.

General Procedure for the $\mathrm{BF}_{3} \bullet \mathbf{E t}_{2} \mathbf{O}$ Mediated Epoxide Opening Reactions:

A solution of the epoxide (0.088 mmol) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$ $(0.616 \mathrm{mmol})$ was added to this solution at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to the room temperature for 1 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}$. The mixture was diluted with ethyl acetate (10 mL) and washed with NaHCO_{3} (satd., 5 mL). The aqueous layer was extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was subjected to acetylation without purification.

General Procedure for the Acetic acid Mediated Epoxide Opening Reactions:

A solution of the epoxide (0.1 mmol) in THF $(0.5 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Aqueous acetic acid ($\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}:$ THF (6:3:1), 3 mL) was added to the THF solution at $0{ }^{\circ} \mathrm{C}$ and the reaction was allowed to warm to room temperature for 3 h , after which time the reaction was diluted with ethyl acetate and neutralized by adding satd. NaHCO_{3} solution. The aqueous layer was extracted with ethyl acetate (2 x15 mL). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was subjected to acetylation without purification.

General Procedure for the Acetylation Reaction:

The crude cyclization product (0.11 mmol) was dissolved in pyridine $(0.5 \mathrm{~mL})$. Acetic anhydride (0.66 mmol) was added to the solution and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled to room temperature, diluted with ethyl acetate (15 mL) and washed

with $10 \% \mathrm{HCl}(2 \times 10 \mathrm{~mL})$. The aqueous layers were combined and extracted with ethyl acetate ($2 \times 15 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na} 2_{\mathrm{s}} \mathrm{O} 4$, filtered and concentrated. The crude product was purified by flash column chromatography (hexanes/ethyl acetate).

6a:
$[\alpha]_{\mathrm{D}}{ }^{20.2}+46.9\left(\mathrm{c} 1.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}$, $6 \mathrm{H}), 5.34(\mathrm{dt}, \mathrm{J}=4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.6(\mathrm{dd}, \mathrm{J}=12.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dt}, \mathrm{J}$ $=7.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=11.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=11.1,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.50-2.44 (m, 1 H), 2.05 (s, 6 H), 2.02 ($\mathrm{s}, 3 \mathrm{H}$), 1.91 (ddd, J = 13.7, 4.4, 2.9 Hz, 1 H), 1.03 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.3,135.8,133.3,130.1,128.0,85.1,76.3$, 72.7, 64.9, 63.2, 34.9, 27.0, 21.3, 21.2, 21.0, 19.4; IR (neat, thin film) 3070, 2932, 2859, 1984, 1903, 1744, 1429, 1370, 1237, 1113, 824, 743, $704 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{Si}$, $543.2415 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $543.2390 \mathrm{~m} / \mathrm{z}$.

6 e :

i (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=75 \%$)
ii (a) $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}$:THF ($6: 3: 1$), $0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60{ }^{\circ} \mathrm{C}$ (yield over two steps $=80 \%$)
$[\alpha]_{\mathrm{D}}{ }^{20.2}+31.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6$ H), 5.31 (dt, J = 6.4, 2.7 Hz, 1 H), $5.09(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{dt}, \mathrm{J}=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H})$, 3.72 (dd, J = 11.0, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=11.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=10.9,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.56 (dd, J = 10.9, 5.6 Hz, 1 H), 3.35 (s, 3 H), 2.45-2.40 (m, 1 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 1.90 (ddd, J = 13.9, 4.7, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.03 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz) CDCl_{3} $\delta 170.9,170.5,135.8,133.4,130.0,128.0,84.8,76.3,73.6,71.8,64.9,59.5,34.6,27.0,21.3,19$. 4; IR (neat, thin film) 3073, 3017, 2932, 2859, 1968, 1900, 1736, 1590, 1471, 1429, 1372, 1235, 1113, 1055, 762, $704 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{Si}, 513.2309 \mathrm{~m} / \mathrm{z}(\mathrm{M}-\mathrm{H})$; observed, $513.2306 \mathrm{~m} / \mathrm{z}$.

6d:

i (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60{ }^{\circ} \mathrm{C}$ (yield over two steps $=80 \%$)
ii (a) $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}$:THF ($6: 3: 1$), $0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=78 \%$)
$[\alpha]_{\mathrm{D}}{ }^{20.2}+21.9\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.677 .62(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6$ H), 5.32-5.30 (m, 1 H), 4.95 (ddd, J = 8.3, 6.6, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18-4.14 (m, 1 H), 3.72 (dd, J = $11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dd, J = 11.0, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45-2.39 (m, 1 H), 2.05 (s, 6 H), 1.86 (ddd, J $=13.7,5.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (ddd, J = 14.3, 7.5, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.58-1.54 (m, 1 H), 1.03 (s, 9 H), $0.89(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,170.7,135.8,133.4,130.0$, 128.0, $84.4,80.0,76.3,76.0,65.0,34.6,30.0,27.0,24.3,21.3,19.4,9.6$; IR (neat, thin film) 3071, 2928, 2857, 1975, 1887, 1740, 1590, 1462, 1429, 1370, 1242, 1113, 1020, 801, 741, $702 \mathrm{~cm}^{-1}$.

7c:

i (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=82 \%$)
$[\alpha]_{\mathrm{D}}{ }^{20.2}-12.0\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.65-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6$ H), 5.82-5.75 (m, 1 H$), 5.27-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 1$ H), 4.34-4.30 (m, 1 H), 3.81 (d J=5.3 Hz, 1 H), 2.07-2.03 (m, 1 H), 2.05, ($\mathrm{s}, 3 \mathrm{H}$), $2.02(\mathrm{~s}, 3 \mathrm{H})$, 1.95-1.91, (m, 1 H$), \quad 1.03(\mathrm{~s}, \quad 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(125 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ $\delta 170.7,170.3,136.0,135.8,133.5,130.0,127.9,116.5,84.8,78.8,74.8,63.3,33.4,27.0,21.3,2$ $1.2,19.4$; IR (neat, thin film) 3072, 2932, 2858, 1746, 1590, 1474, 1429, 1374, 1235, 1113, 860, 823, 734, $704 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}, 535.1918 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{K})^{+}$; observed, $535.1912 \mathrm{~m} / \mathrm{z}$.

8c:

ii (a) $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}:$ THF (6:3:1), $0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over t wo steps $=80 \%$)
$[\alpha]_{D}{ }^{20.2}-12.0\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 6$ H), 5.81-5.75 (m, 1 H), 5.35-5.32 (m, 1 H), 5.23-5.20 (m, 1 H), $4.70(\mathrm{ddd}, \mathrm{J}=11.2,9.5,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.43$ (ddd, J = 9.7, $4.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (dt = 9.7, 4.5, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.8,169.6,135.9,134.9,133.8,129.8,127.8,118.2,80.5,79.9,69.9,66.6,63.4,35.1,26.9$, 21.2, 21.1, 19.5; IR (neat, thin film) 3037, 2959, 2932, 2859, 1744, 1474, 1428, 1374, 1235, 1115, 995, 825, 798, 740, $706 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}, 497.2359 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $497.2377 \mathrm{~m} / \mathrm{z}$.

$9:$

i (a) $\mathrm{BF}_{3}{ }^{\circ} \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=17 \%$)
ii (a) $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}$:THF ($6: 3: 1$), $0{ }^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=20 \%$)
$[\alpha]_{\mathrm{D}}{ }^{20.2}+45.6\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6$ $\mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, \mathrm{J}=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.50(\mathrm{~m}, 1 \mathrm{H})$, $4.34(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H})$, 2.06-2.11 (m, 2 H), 1.02 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 170.3, 169.6, 135.7, 133.1, 130.1, 128.0, $92.2,82.3,76.2,74.2,64.3,33.9,27.0,21.7,19.4$; IR (neat, thin film) 3070, 2932,

2859, 1968, 1896, 1744, 1429, 1370, 1235, 1113, 897, 824, 758, $704 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Si}, 537.1711 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{K})^{+}$; observed, $537.1732 \mathrm{~m} / \mathrm{z}$.

7f:

i (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=65 \%$)
$[\alpha]_{\mathrm{D}}{ }^{20.2}-37.5\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 8$ H), 7.26-7.23 (m, 2 H), 7.19-7.15 (m, 1 H), 5.33-5.31 (m, 1 H$), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{dt}, \mathrm{J}=$ $9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}) .3 .77-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{J}=13.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.1,170.0,135.5,133.1,130.1,129.8,129.0,127.7,126.6,80.3,76.4,74.9,74.4$, $62.7,34.9,32.8,26.7,21.0$; IR (neat, thin film) 3073, 2932, 2859, 1956, 1900, 1744, 1588, 1474, $1429,1373,1230,1113,951,823,741,704 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SSi}, 593.2393$ $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $593.2383 \mathrm{~m} / \mathrm{z}$.

6f:

i (a) $1.5 \mathrm{~N} \mathrm{HCl}:$ THF (9:1), $0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$, overall yield over t wo steps $=74 \%$
$[\alpha]_{\mathrm{D}}{ }^{20.2}-37.5\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.60(\mathrm{~m}, 4 \mathrm{H})$, 7.42-7.33 (m, 8 H), 7.27-7.23 (m, 2 H), 7.18-7.14 (m, 1 H), 5.29 (dt, J = 6.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.12(\mathrm{dt}, \mathrm{J}=7.6,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{dt} \mathrm{J}=7.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=11.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}$, $\mathrm{J}=11.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=14.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=14.3,7.5 \mathrm{~Hz} 1 \mathrm{H}), 2.45-2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,170.3,136.3,135.8,133.3,130.2,130.0,129.1,128.0,126.5,84.9,79.2,73.8$, 64.9, 35.6, 34.7, 27.0, 21.3; IR (neat, thin film) 3073, 2932, 2859, 1962, 1891, 1742, 1588, 1472, $1428,1370,1239,1113,1026,823,740,702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SSi}, 621.2706$ $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{C}_{2} \mathrm{H}_{5}\right)^{+}$; observed, $621.2702 \mathrm{~m} / \mathrm{z}$.

7g :

i (a) $\mathrm{BF}_{3}{ }^{\circ} \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to rt (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 60^{\circ} \mathrm{C}$ (yield over two steps $=70 \%$)
$[\alpha]_{\mathrm{D}}{ }^{20.2}+35.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 8$ H), 7.27-7.16 (m, 3 H), 5.25-5.22 (m, 1 H), 5.07 (dt, J = 7.0, 4.5 Hz, 1 H), $4.13(\mathrm{dt}, \mathrm{J}=7.7,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95$ (ddd, J = 8.0, 5.8, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81(\mathrm{~d}, \mathrm{~J}=4.41 \mathrm{H}), 3.12(\mathrm{dd}, \mathrm{J}=13.7,5.8 \mathrm{~Hz}, 1$ H), 3.02 (dd, J = 13.7, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33-2.27 (m, 1 H), 2.01, ($\mathrm{s}, 3 \mathrm{H}$), 1.96 (s, 3 H), 1.89-1.85 (m, 1 H), $1.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,170.4,136.0,135.8,133.6,130.1$, 129.9, 129.2, 127.9, 126.7; IR (neat, thin film) 3074, 2932, 2859, 1962, 1900, 1742, 1588, 1473, $1428,1373,1242,1113,953,823,741,702 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SSi}, 593.2393$ $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$; observed, $593.2377 \mathrm{~m} / \mathrm{z}$.

