Highly Diastereoselective Aldol Additions of a Chiral Ethyl Ketone Enolate Under Lewis Base Catalysis

Scott E. Denmark and Son M. Pham
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

SUPPORTING INFORMATION

General Experimental

All reactions were performed in oven and/or flame dried glassware under an atmosphere of dry nitrogen. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, silicon tetrachloride was distilled immediately before use. Analytical thin-layer chromatography was performed on Merck silica gel plates with QF-254 indicator. Analytical supercritical fluid chromatography (SFC) was performed on a Berger Instruments ${ }^{1}$ packed-column SFC with a built-in photometric detector ($\lambda=220 \mathrm{~nm}$) using a Daicel Chiralpak AD and AS column, as indicated. Kugelrohr (bulb-to-bulb) distillations were performed on a Büchi GKR-50 Kugelrohr; boiling points (bp) correspond to uncorrected air-bath temperatures (ABT). All temperatures correspond to internal reaction temperatures measured by Teflon-coated thermocouples unless otherwise noted.
${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity Inova 500 (500 $\mathrm{MHz})$ spectrometer and a Varian Unity $500(125 \mathrm{MHz})$ spectrometer, respectively. Spectra are referenced to residual chloroform $\left(\delta 7.26,{ }^{1} \mathrm{H} ; \delta 77.0,{ }^{13} \mathrm{C}\right)$. Chemical shifts are reported in ppm (δ); multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz. Mass spectrometry was performed by the University of Illinois Mass Spectrometry Center. Data are reported in the form of m / z (intensity relative to base peak $=100$). Infrared spectra (IR) were recorded on a Mattson Galaxy 5020 spectrophotometer. Peaks are reported in cm^{-1} with the indicated relative intensities: br (broad); s (strong, 67-100\%); m (medium, 34-66\%); w (weak, 0$33 \%$). Optical rotations were obtained on a Jasco DIP-360 digital polarimeter and are reported
as follows: $[\alpha]_{\mathrm{D}}^{\mathrm{T}}$ temperature (T), concentration ($\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$) and solvent. Elemental analyses were performed by the University of Illinois Microanalytical Service Laboratory.

Literature Preparations

(S)-2-Hydroxy- N-methoxy- N-methylpropionamide $(\mathbf{6})^{2}$ was prepared according to a modified procedure of Luke and Morris. ${ }^{3}$ (S)-2-Hydroxy-3-pentanone (7) ${ }^{4}$ was prepared according the method of Paterson. ${ }^{2}$ 3-Phenyl propynal was prepared from DMF according to the method of Journet and Cai. ${ }^{5}$ Achiral phosphoramides 1 and chiral phosphoramides 2 were prepared according to the literature and used as analytically pure samples. ${ }^{6}$

Experimental Procedures

(-)-(S)-(Z)-Trimethyl[(1-((1-((dimethyl)-(1,1-dimethylethyl)silyl)oxy)ethyl)propenyl)oxy]
silane (4)

Trimethylsilyl trifluoromethanesulfonate (TMSOTf) ($240 \mu \mathrm{~L}, 1.32 \mathrm{mmol}, 1.2 .0$ equiv) was dissolved in benzene (2 mL) at room temperature. Triethylamine ($210 \mu \mathrm{~L}, 1.65 \mathrm{mmol}, 1.5$ equiv) was carefully added via syringe and the entire solution was cooled in an ice bath. Silyloxy ketone 3 ($232 \mathrm{mg}, 1.1 \mathrm{mmol}$) was then added dropwise via syringe. The reaction was allowed to warm to room temperature and monitored by TLC. After 3 h , the biphasic mixture was quickly poured in to cold water $\left(10 \mathrm{~mL}, 0^{\circ} \mathrm{C}\right)$ with rapid stirring. The layers were separated and the aqueous phase was extracted with pentane $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were then washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a crude oil. The residue was distilled under reduced pressure to afford $288 \mathrm{mg}(96 \%)$ of $\mathbf{4}$ as a clear, colorless oil, suitable for use in subsequent reactions. To obtain an analytically pure
sample, 4 was sacrificially purified by chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 / 1\right)$. The residue was again distilled under reduced pressure to afford $159 \mathrm{mg}(53 \%)$ of analytically pure 4. Analytical data for 4:
bp: $110^{\circ} \mathrm{C}(0.1 \mathrm{mmHg}, \mathrm{ABT})$
${ }^{1} \underline{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
4.84 (qd, $J=6.6,0.6,1 \mathrm{H}, \mathrm{HC}(2)) ; 4.08$ (q, $\left.J=6.2,1 \mathrm{H}, \mathrm{HC}\left(1^{\prime}\right)\right) ; 1.54$ (dd, $J=$ 6.6, 0.9, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(3)$); 1.25 (d, $J=6.2,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(2^{\prime}\right)$); 0.92 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime}\right)$); 0.23 (s, $\left.9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ; 0.08$, (d, $\left.J=4.1,6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$
${ }^{13} \mathrm{C}$ NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
153.51 ($\mathrm{C}(1)) ; 101.54$ ($\mathrm{C}(2)) ; 70.54\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 25.92$ ($\left.\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 22.15\left(\mathrm{C}\left(2^{\prime}\right)\right) ;$ 18.29 ($\mathrm{C}\left(2^{\prime \prime}\right)$); 10.52 (C(3)); 0.67 (C(1'")); -4.70 (C(1")); -4.98 (C(1"))

MS: (FI)
$289\left(\mathrm{M}^{+}+1,27\right), 288\left(\mathrm{M}^{+}, 100\right), 231(4), 120(2)$
IR: (neat)
2958 (s$), 2931$ (s$), 2858$ (m), 1257 (s$), 1119$ (m), 1078 (m), 1049 (m), 837 (s),
777 (m)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}-4.1^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$
Analysis: $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}_{2}$ (288.58)
Calculated: \quad C, $58.27 ; \quad \mathrm{H}, 11.18 \%$
Found: \quad C, 58.11; $\quad H, 11.31 \%$

(S)-(Z)-Trichloro[(1-((1-((dimethyl)-(1,1-dimethylethyl)silyl)oxy)ethyl)propenyl)oxy]silane

 (5)

Mercuric acetate ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$, 0.01 equiv) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$) at room temperature. Silicon tetrachloride ($2.3 \mathrm{~mL}, 20 \mathrm{mmol}, 2.0$ equiv) was then carefully added via syringe and the cloudy mixture was allowed to stir for several minutes. TMS enol ether 4 $(2.7 \mathrm{~g}, 10 \mathrm{mmol})$ was then added dropwise via syringe. The reaction was allowed to stir at room temperature and could be monitored by careful removal of $10 \mu \mathrm{~L}$ aliquots for ${ }^{1} \mathrm{H}$ NMR analysis. After 18 h , the mercury salts were allowed to settle and the supernatant was carefully transferred to a dry 35 mL round bottom flask via cannula. The volatile components were removed at 100 mmHg and the residual oil was purified by distillation to afford $2.3 \mathrm{~g}(65 \%)$ of $\mathbf{5}$ as a $15 / 1$ mixture of Z / E isomers by ${ }^{1} \mathrm{H}$ NMR.

Analytical data for 5:

bp: $150{ }^{\circ} \mathrm{C}(0.1 \mathrm{mmHg}, \mathrm{ABT})$
${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
$5.04(\mathrm{q}, J=7.01 \mathrm{H}, \mathrm{HC}(2), Z) ; 4.95(\mathrm{q}, J=7.0,1 \mathrm{H}, \mathrm{HC}(2), E) ; 4.21(\mathrm{q}, J=$ $\left.6.8,1 \mathrm{H}, \mathrm{HC}\left(1^{\prime}\right), Z\right) ; 4.18\left(\mathrm{q}, J=6.8,1 \mathrm{H}, \mathrm{HC}\left(1^{\prime}\right), E\right) ; 1.60(\mathrm{~d}, J=7.0,3 \mathrm{H}$, $\mathrm{H}_{3} \mathrm{C}(3)$); 1.31 (d, $J=6.8,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(2^{\prime}\right)$); 0.93 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime}\right)$); 0.07, (d, $J=$ 4.1, $6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)$)
${ }^{13} \mathrm{C}$ NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
150.92 ($\mathrm{C}(1)) ; 108.30(\mathrm{C}(2)) ; 69.50\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 25.75$ ($\left.\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 22.15\left(\mathrm{C}\left(2^{\prime}\right)\right)$; 18.56 (C(2")); 10.45 (C(3)); $0.65\left(\mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ;-4.71$ (C(1")); -5.01 (C(1"))

Catalyzed Aldol Additions: General Procedure I

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3pentanone (8a) ${ }^{7}$ [Table 1, entry 1]

To a solution of 55 mg ($0.15 \mathrm{mmol}, 0.15$ equiv) of (R, R)-2a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added quickly trichlorosilyl enolate $\mathbf{5}(350 \mathrm{mg}, 1.0 \mathrm{mmol})$ and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was then added dropwise via syringe and the reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then poured into a rapidly stirring sat. aq. NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}(30 \mathrm{~mL})$ and was allowed to stir at room temperature for up to 6 h . The heterogeneous mixture was then filtered through Celite, the organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a crude oil. Purification of the residue by silica gel chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}, 6 / 1\right)$ afforded $284 \mathrm{mg}(88 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $16 / 1$ and an internal dr of $>50 / 1$ by SFC analysis.

Analytical data for 8a:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, 5 H, $2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); $5.06(\mathrm{dd}, J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ 8.5, 4.2, $1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); $3.25,(\mathrm{~d}, J=2.8,1 \mathrm{H}, \mathrm{OH}) ; 1.27\left(\mathrm{~d}, J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.05(\mathrm{~d}, J=7.2,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/Et $t_{2} \mathrm{O}, 6 / 1$, anisaldehyde)

SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)$-8a, 5.1 min (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-

 pentanone (8a) ${ }^{7}$ [Table 1, entry 2]

Following General Procedure I: from trichlorosilyl enolate 5 ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$), (S,S)2a ($55 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $258 \mathrm{mg}(80 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $15 / 1$ and an internal dr of $30 / 1$ by SFC analysis.

Analytical data for 8a:
${ }^{1} \underline{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, $5 \mathrm{H}, 2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ 8.5, 4.2, $1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); $1.05(\mathrm{~d}, J=7.2,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)$-8a, 5.1 min (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-

 pentanone (8a) ${ }^{7}$ [Table 1, entry 3]

Following General Procedure I: from trichlorosilyl enolate 5 ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$), (R, R) 2b ($74 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}$) and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $210 \mathrm{mg}(65 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $15 / 1$ and an internal dr of $3 / 1$ by SFC analysis.

Analytical data for 8a:

${ }^{1} \underline{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, $5 \mathrm{H}, 2 \times \mathrm{H}(\mathrm{C} 2 "), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}(4$ ")); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ 8.5, 4.2, $1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.05 (d, $J=7.2,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-

 pentanone (8a) ${ }^{7}$ [Table 1, entry 4]

5

Following General Procedure I: from trichlorosilyl enolate 5 ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$), 1a (27 $\mathrm{mg}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $245 \mathrm{mg}(76 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $15 / 1$ and an internal dr of $34 / 1$ by SFC analysis.

Analytical data for 8a:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, 5 H, $2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ $8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); $1.05(\mathrm{~d}, J=7.2,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/Et ${ }_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-

 pentanone (8a) ${ }^{7}$ [Table 1, entry 5]

5

Following General Procedure I: from trichlorosilyl enolate 5 ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$), 1b (33 $\mathrm{mg}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $245 \mathrm{mg}(76 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $15 / 1$ and an internal dr of $37 / 1$ by SFC analysis.

Analytical data for 8a:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, 5 H, $2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ 8.5, 4.2, $1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); $1.05(\mathrm{~d}, J=7.2,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $\left.9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.08$ (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/Et ${ }_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-

 pentanone (8a) ${ }^{7}$ [Table 1, entry 6]

5

Following General Procedure I: from trichlorosilyl enolate 5 ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$), 1c (51 $\mathrm{mg}, 0.15 \mathrm{mmol}$, 0.15 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $216 \mathrm{mg}(67 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $15 / 1$ and an internal dr of $3 / 1$ by SFC analysis.

Analytical data for 8a:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, $5 \mathrm{H}, 2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ $8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)) ; 3.37$ (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); $1.05(\mathrm{~d}, J=7.2,3$ H, $\mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-

 pentanone (8a) ${ }^{7}$ [Table 1, entry 7]

5

Following General Procedure I: from trichlorosilyl enolate 5 ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$), HMPA ($26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}$) and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $255 \mathrm{mg}(79 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to have a relative dr of $15 / 1$ and an internal dr of $30 / 1$ by SFC analysis.

Analytical data for 8a:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, $5 \mathrm{H}, 2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ 8.5, 4.2, $1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.05 (d, $J=7.2,3$ H, $\mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

Catalyzed Aldol Additions: General Procedure II

(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3-
pentanone (8a) ${ }^{7}$ [Table 3, entry 1]

4

Silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added quickly to a stirred suspension of silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at room temperature. After addition, the mixture was stirred at room temperature for 18 h , then the volatile components were removed under reduced pressure (0.1 mmHg) to give a cloudy oil. A solution of (R, R)-2a(18 mg, $0.05 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ was then added via cannula and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Benzaldehyde (102 $\mu \mathrm{L}, 1.0 \mathrm{mmol}$) was then added dropwise via syringe and the reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was then poured into a rapidly stirring sat. aq. NaHCO_{3} solution (30 mL) submerged in an ice bath and was allowed to stir at room temperature for 6 h . The heterogeneous mixture was then filtered through Celite, the organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a crude oil. Purification by silica gel chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $\left./ \mathrm{Et}_{2} \mathrm{O}, 6 / 1\right)$ afforded $284 \mathrm{mg}(88 \%)$ of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8a/minor isomers, $95 / 5$ by SFC analysis.

Analytical data for 8a:

${ }^{1} \underline{\mathrm{H}} \mathrm{NMR}:\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, $5 \mathrm{H}, 2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, J = 5.0, 2.8, 1 H, HC(5), syn,syn); 5.01 (dd, J = 5.0, 2.8, $1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, J = $8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, J $=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, J = 6.9, $1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, J = 7.2, 5.0, $1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, J = 2.8, $1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, J = 6.9, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.05 (d, J = 7.2, 3 $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$
${ }^{13}$ C NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
218.73 ($\mathrm{C}(3)$); 141.72 ($\left.\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 128.21$ ($\left.\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 127.21$ ($\left.\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 125.95$ (C(2")); 74.61 (C(2)); 72.80 (C(5)); 46.91 (C(4)); 25.70 (C(3"')); 21.05 (C(1)); 18.03 ($\mathrm{C}(8)$); 10.40 ($\left.\mathrm{C}\left(1^{\prime}\right)\right) ;-4.74\left(\mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ;-5.01\left(\mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
TLC: Rf 0.15 (pentane/Et2O, 6/1, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)
(+)-(2S,4R,5S)-5-Hydroxy-4-methyl-5-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-3pentanone (8a) ${ }^{7}$ [Table 3, entry 2]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by HMPA ($26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and benzaldehyde ($102 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $281 \mathrm{mg}(87 \%)$
of $\mathbf{8 a}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8a/minor isomers, 94/2/2/2 by SFC analysis.

Analytical data for $\mathbf{8 b}$:

${ }^{1} \underline{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.38-7.20 (m, 5 H, $2 \times \mathrm{H}\left(\mathrm{C}^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)$); 5.06 (dd, $J=5.0,2.8,1$ H, HC(5), syn,syn); 5.01 (dd, $J=5.0,2.8,1 \mathrm{H}, \mathrm{HC}(5)$, anti,syn); 4.77 (dd, $J=$ $8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, anti-relative); 4.73 (dd, $J=8.5,4.2,1 \mathrm{H}, \mathrm{HC}(5)$, antirelative); 4.19 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.37 (dq, $J=7.2,5.0,1 \mathrm{H}, \mathrm{HC}(4)$); 3.25, (d, $J=2.8,1 \mathrm{H}, \mathrm{OH}$); 1.27 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.05 (d, $J=7.2,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.90 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.06 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.15$ (pentane/Et ${ }_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 a}, 5.1 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(-)-(2S,4R,5S)-(E)-5-Hydroxy-4-methyl-7-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)

 oxy]-6-hepten-3-one (8b) [Table 3, entry 3]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ followed by (R, R)-2a($18 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and (E)-cinnamaldehyde ($130 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 283 mg (81%) of $\mathbf{8 b}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)$\mathbf{8 b}$ /minor isomers, $93 / 5 / 2$ by SFC analysis.
${ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.40-7.22 (m, $5 \mathrm{H}, 2 \times \mathrm{H}(\mathrm{C} 2 "), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}(4$ ")); 6.66 (dd, $J=15.9,1.5,1$ H, HC(7)); 6.14 (dd, $J=16.1,5.9,1 \mathrm{H}, \mathrm{HC}(6)) ; 4.61$ (m, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.25 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)) ; 3.31(\mathrm{dq}, J=7.1,3.4,1 \mathrm{H}, \mathrm{HC}(4)) ; 3.02$, (d, $J=2.8,1 \mathrm{H}$, OH); 1.35 (d, $\left.J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.19$ (d, $J=7.1,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.93 (s, 9 $\left.\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.10\left(\mathrm{~d}, J=1.5,6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
${ }^{13} \mathrm{C}$ NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
218.23 (C(3)); 136.72 (C(1")); 131.01 (C(3")); 129.01 (C(4")); 128.55 (C(6)); 127.61 (C(7)); 126.47 (C(4")); 74.61 (C(2)); 71.90 (C(5)); 45.11 (C(4)); 25.70 ($\mathrm{C}\left(3^{\prime \prime \prime}\right)$); 21.15 (C(1)); 18.03 (C(8)); 10.80 ($\left(1^{\prime}\right)$); -4.64 (C(1'")); -5.01 (C(1"'))
MS: (FI)
348 ($\mathrm{M}^{+}, 100$), 291 (12), 244 (5), 216 (6), 159 (13), 132 (19)
IR: (neat)
3467 (br), 2931 (s), 2858 (m), 1712 (m), 1462 (m), 1365 (m), 1255 (m), 1124 (m), 835 (s), 779 (s)

TLC: $R_{f} 0.13$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}-17.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 b}, 5.7 \mathrm{~min}$ (Daicel Chiralpak AD, $1 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)
Analysis: $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$ (348.56)

Calculated:	C, $68.92 ;$	H, 9.25%
Found:	C, $68.75 ;$	H, 9.20%

(-)-(2S,4R,5S)-(E)-5-Hydroxy-4-methyl-7-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)

 oxy]-6-hepten-3-one (8b) [Table 3, entry 4]

Following General Procedure II: from silyl enol ether $4(273 \mathrm{mg}, 1.0 \mathrm{mmol})$, silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by HMPA ($26 \mu \mathrm{~g}$, 0.15 mmol , 0.15 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 $\mathrm{mL})$ and (E)-cinnamaldehyde ($130 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 279 mg (79%) of $\mathbf{8 b}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)$\mathbf{8 b}$ /minor isomers, $91 / 6 / 3$ by SFC analysis.
${ }^{1} \underline{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.40-7.22 (m, $5 \mathrm{H}, 2 \times \mathrm{H}(\mathrm{C} 2 "), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}(4$ ")); 6.66 (dd, $J=15.9,1.5,1$ H, HC(7)); 6.14 (dd, $J=16.1,5.9,1 \mathrm{H}, \mathrm{HC}(6)) ; 4.61$ (m, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.25 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)) ; 3.31(\mathrm{dq}, J=7.1,3.4,1 \mathrm{H}, \mathrm{HC}(4)) ; 3.02$, (d, $J=2.8,1 \mathrm{H}$, OH); 1.35 (d, $J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.19 (d, $J=7.1,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.93 (s, 9 $\left.\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.10\left(\mathrm{~d}, J=1.5,6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$

TLC: $R_{f} 0.13$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 b}, 5.7 \mathrm{~min}$ (Daicel Chiralpak AD, $1 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)
(-)-(2S,4R,5S)-(E)-5-Hydroxy-4-methyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-6-octen-3-one (8c) [Table 3, entry 5]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate ($3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by $(R, R)-\mathbf{2 a}\left(18 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and (E)-crotanaldehyde ($83 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 244 mg (85%) of $\mathbf{8 c}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)$\mathbf{8 c}$ /minor isomers, $93 / 4 / 3$ by SFC analysis.

Analytical data for 8c:
${ }^{1} \underline{\mathrm{H} \text { NMR: }}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
5.71 (dq, $J=15.2,6.4,1 \mathrm{H}, \mathrm{HC}(7)) ; 5.44$ (ddd, $J=15.4,6.4,1.7,1 \mathrm{H}, \mathrm{HC}(6))$; 4.33 (br s, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.22 (q, $J=7.1,1 \mathrm{H}, \mathrm{HC}(2)$); 3.19 (dq, $J=7.1,3.9,1$ H, HC(4)); 2.73, (d, J=2.8, 1 H, OH); 1.71 (d, J = 6.4, 3 H, H3C(8)); 1.33 (d, $\left.J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.14$ (d, $\left.J=7.1,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right)$; 0.09 (s, $\left.6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
${ }^{13}$ C NMR: ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
218.04 ($\mathrm{C}(3)$); 130.58 ($\mathrm{C}(6)$); 127.78 ($\mathrm{C}(7)$); 74.58 ($\mathrm{C}(2)$); 72.19 (C(5)); 45.11 (C(4)); 25.69 (C(3'")); 21.03 (C(1)); 18.01 (C(8)); 17.75 (C(2'")); 11.01 (C(1')); -4.67 (C(1"')); -5.03 (C(1"'))

MS: (FI)
$286\left(\mathrm{M}^{+}, 11\right), 229$ (100), 159 (4), 110 (2)
IR: (neat)
3460 (br), 2956 (m), 2933 (m), 2858 (m), 1712 (m), 1461 (m), 1255 (m), 1120 (m), 966 (m), 935 (m), 835 (s$), 777$ (m)

TLC: $R_{f} 0.13$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}-3.7^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-8 \mathbf{c}, 2.0 \mathrm{~min}$ (Daicel Chiralpak $\mathrm{AD}, 5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150 \mathrm{bar}$, $\left.40^{\circ} \mathrm{C}, 2.0 \mathrm{~mL} \mathrm{~min}^{-1}\right)$

Analysis: $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}(286.49)$
Calculated:
C, 62.89;
H, 10.56\%
Found:
C, 62.64;
H, 10.71%

(-)-(2S,4R,5S)-(E)-5-Hydroxy-4-methyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-6-octen-

3-one (8c) [Table 3, entry 6]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride $(230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ followed by $\mathrm{HMPA}\left(26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 $\mathrm{mL})$ and (E)-crotanaldehyde ($83 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 238 mg (83%) of $8 \mathbf{c}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)8c/minor isomers, 84/15/1 by SFC analysis.

Analytical data for 8c:
${ }^{1} \underline{\mathrm{H} \mathrm{NMR}}:\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
$5.71(\mathrm{dq}, J=15.2,6.4,1 \mathrm{H}, \mathrm{HC}(7)) ; 5.44(\mathrm{ddd}, J=15.4,6.4,1.7,1 \mathrm{H}, \mathrm{HC}(6))$;
4.33 (br s, $1 \mathrm{H}, \mathrm{HC}(5)) ; 4.22$ (q, $J=7.1,1 \mathrm{H}, \mathrm{HC}(2)$); 3.19 (dq, $J=7.1,3.9,1$
$\mathrm{H}, \mathrm{HC}(4)) ; 2.73,(\mathrm{~d}, J=2.8,1 \mathrm{H}, \mathrm{OH}) ; 1.71\left(\mathrm{~d}, \mathrm{~J}=6.4,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(8)\right) ; 1.33(\mathrm{~d}$, $\left.J=6.9,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.14\left(\mathrm{~d}, J=7.1,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right)$; 0.09 (s, $\left.6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$

TLC: $R_{f} 0.13$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)

SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 c}, 2.0 \mathrm{~min}$ (Daicel Chiralpak AD, $5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 2.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(-)-(2S,4R,5R)-5-Hydroxy-4-methyl-7-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-6-

 heptyn-3-one (8d) [Table 3, entry 7]

4

10 h

8

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ followed by $(R, R)-\mathbf{2 a}\left(18 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 $\mathrm{mL})$ and 3-phenyl propynal ${ }^{5}(122 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was obtained after chromatography, 274 mg (79\%) of 8d as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)$\mathbf{8 d}$ /minor isomers, $95 / 3 / 2$ by SFC analysis.

Analytical data for 8d:
${ }^{1} \underline{\text { H NMR: }}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.46-7.26 (m, $\left.5 \mathrm{H}, 2 \times \mathrm{H}\left(\mathrm{C} 22^{\prime \prime}\right), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)\right) ; 4.92(\mathrm{t}, J=4.5,1 \mathrm{H}$, $\mathrm{HC}(5)) ; 4.31$ (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)) ; 3.41(\mathrm{dq}, J=6.9,4.1,1 \mathrm{H}, \mathrm{HC}(4))$; 3.01, (d, $J=4.7,1 \mathrm{H}, \mathrm{OH}$); 1.41 (d, $J=6.6,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.41 (d, $J=6.9,3$ $\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.96 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.14 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.13 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$
${ }^{13} \mathrm{C}$ NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
216.42 ($\mathrm{C}(3)$); 131.77 (CAr); 128.46 (CAr); 128.24 (CAr); 122.47 ($\mathrm{C}\left(1^{\prime \prime}\right)$); 87.79 (C(6)); 85.27 (C(7)); 74.50 (C(2)); 63.54 (C(5)); 46.80 (С(4)); 25.69 (C(3"')); 21.17 (C(1)); 18.02 (C(8)); 18.02 (C(2"')); 11.60 (C(1')); 4.64 (C(1'")); -5.05 (C(1"'))

MS: (FI)
$346\left(\mathrm{M}^{+}, 1\right), 289(100), 216(1), 187(2), 159$ (7), 145 (5), 130 (2)
IR: (neat)
3440 (br), 2954 (s), 2931 (s), 2858 (m), 1714 (m), 1462 (m), 1365 (m), 1255
(m), 1126 (m), 935 (m), 835 (s$), 779$ (s$), 758$ (s$), 692$ (m)

TLC: $R_{f} 0.24$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 4 / 1$, anisaldehyde)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}-1.2^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)$-8d, 5.7 min (Daicel Chiralpak AD, $2 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)
Analysis: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ (346.54)
Calculated:
C, 69.32;
H, 8.73\%
Found:
C, 69.17;
H, 8.96\%

(-)-(2S,4R,5R)-5-Hydroxy-4-methyl-7-phenyl-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-6-

heptyn-3-one (8d) [Table 3, entry 8]

4

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate ($3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by HMPA ($26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and 3-phenyl propynal ($122 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 284 mg (82%) of $\mathbf{8 d}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)8d/minor isomers, 89/5/4/3 by SFC analysis.

Analytical data for 8d:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.46-7.26 (m, $\left.5 \mathrm{H}, 2 \times \mathrm{H}(\mathrm{C} 2 "), 2 \times \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right)\right) ; 4.92$ (t, $J=4.5,1 \mathrm{H}$, $\mathrm{HC}(5)) ; 4.31$ (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)) ; 3.41(\mathrm{dq}, J=6.9,4.1,1 \mathrm{H}, \mathrm{HC}(4))$; 3.01, (d, $J=4.7,1 \mathrm{H}, \mathrm{OH}$); 1.41 (d, $J=6.6,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)$); 1.41 (d, $J=6.9,3$ $\left.\mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.96$ (s, $\left.9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.14$ (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.13 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime}\right)\right)$

TLC: $R_{f} 0.24$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 4 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 S)-\mathbf{8 d}, 5.7 \mathrm{~min}$ (Daicel Chiralpak AD, $2 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(-)-(2S,4R,5R)-5-Hydroxy-4-methyl-5-(1-furyl)-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-

 3-pentanone (8e) [Table 3, entry 9]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate ($3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by $(R, R)-\mathbf{2 a}\left(18 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and 2-furaldehyde ($83 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $257 \mathrm{mg}(82 \%)$ of 8e as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8e/minor isomers, 94/6 by SFC analysis.

Analytical data for 8e:

${ }^{1} \underline{\mathrm{H} \mathrm{NMR}}:\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.34 (d, $\left.J=1.7,1 \mathrm{H}, \mathrm{HC}\left(4{ }^{\prime \prime}\right)\right) ; 6.33\left(\mathrm{dd}, J=3.2,1.7,1 \mathrm{H}, \mathrm{HC}\left(3^{\prime \prime}\right)\right) ; 6.27(\mathrm{~d}, \mathrm{~J}=$ $3.2,1 \mathrm{H}, \mathrm{HC}\left(2^{\prime \prime}\right) ; 5.03(\mathrm{t}, \mathrm{J}=4.1,1 \mathrm{H}, \mathrm{HC}(5)) ; 4.20(\mathrm{q}, J=7.1,1 \mathrm{H}, \mathrm{HC}(2))$; 3.58 (dq, $J=7.1,4.1,1 \mathrm{H}, \mathrm{HC}(4)) ; 2.95$, $(\mathrm{d}, J=3.6,1 \mathrm{H}, \mathrm{OH}) ; 1.31(\mathrm{~d}, J=$ 6.6, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.18\left(\mathrm{~d}, J=7.2,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.12$ (s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ; 0.11$ (s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
${ }^{13}$ C NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
217.59 ($\mathrm{C}(3)) ; 154.38$ ($\left.\left(1^{\prime \prime}\right)\right) ; 141.65\left(\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 110.25\left(\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 106.62\left(\mathrm{C}\left(2^{\prime \prime}\right)\right) ;$
74.36 ($\mathrm{C}(2)$); 68.27 ($\mathrm{C}(5)) ; 44.74$ (C(4)); 25.66 ($\mathrm{C}\left(3^{\prime \prime \prime}\right)$); 21.02 ($\mathrm{C}(1)$); 18.00
(C(2'")); 11.34 (C(1')); -4.70 (C(1"')); -5.11 (C(1'"))
MS: (FI)
$312.2\left(\mathrm{M}^{+}, 44\right), 255.1$ (100), 208.6 (8), 159.1 (16), 96.0 (6)
IR: (neat)
3467 (br), 2956 (m), 2933 (m), 2858 (m), 1714 (m), 1255 (m), 1126 (m), 1006 (m), 931 (m), 835 (s$), 779$ (m)

TLC: $R_{f} 0.13$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}-1.2^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 R)-\mathbf{8 e}, 4.0 \mathrm{~min}$ (Daicel Chiralpak $\mathrm{AD}, 1.5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $\left.40{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~mL} \mathrm{~min}-1\right)$

Analysis: $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ (312.48)
Calculated: $\quad \mathrm{C}, 61.50 ; \quad \mathrm{H}, 9.03 \%$
Found: \quad C, 61.30; $\quad \mathrm{H}, 9.04 \%$

(-)-(2S,4R,5R)-5-Hydroxy-4-methyl-5-(1-furyl)-2-[((dimethyl)-(1,1-dimethylethyl)silyl)oxy]-

 3-pentanone (8e) [Table 3, entry 10]

Following the General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate ($3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by HMPA ($26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and 2-furaldehyde ($83 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, $225 \mathrm{mg}(72 \%)$ of $\mathbf{8 e}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8e/minor isomers, 93/5/1 by SFC analysis.

Analytical data for 8e:
${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.34 (d, $J=1.7,1 \mathrm{H}, \mathrm{HC}\left(4{ }^{\prime \prime}\right)$); 6.33 (dd, $\left.J=3.2,1.7,1 \mathrm{H}, \mathrm{HC}\left(3^{\prime \prime}\right)\right) ; 6.27$ (d, J = $3.2,1 \mathrm{H}, \mathrm{HC}\left(2^{\prime \prime}\right) ; 5.03$ (t, J = 4.1, $\left.1 \mathrm{H}, \mathrm{HC}(5)\right) ; 4.20$ (q, $\left.J=7.1,1 \mathrm{H}, \mathrm{HC}(2)\right)$; 3.58 (dq, $J=7.1,4.1,1 \mathrm{H}, \mathrm{HC}(4)) ; 2.95$, (d, $J=3.6,1 \mathrm{H}, \mathrm{OH}) ; 1.31(\mathrm{~d}, J=$ 6.6, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.18$ (d, $\left.J=7.2,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.12$ (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)$); 0.11 (s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$

TLC: $R_{f} 0.13$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 R)-\mathbf{8 e}, 4.0 \mathrm{~min}$ (Daicel Chiralpak AD, $1.5 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 2.5 \mathrm{~mL} \mathrm{~min}^{-1}$)

(+)-(2S,4R,5R)-5-Hydroxy-4-methyl-5-(1-naphthyl)-2-[((dimethyl)-(1,1-dimethylethyl)

 silyl)oxy]-3-pentanone (8f) [Table 3, entry 11]

10 h

Following General Procedure II: from silyl enol ether $4(273 \mathrm{mg}, 1.0 \mathrm{mmol})$, silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by $(R, R)-\mathbf{2 a}\left(18 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and 1-naphthaldehyde ($135 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 270 mg (72%) of $\mathbf{8 f}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8f/ minor isomers, $98 / 1 / 1$ by SFC analysis.

Analytical data for $\mathbf{8 f}$:
${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.90-7.44 (m, 7 H, HC(2"), HC(3"), HC(4"), HC(6"), HC(7"), HC(8"), $\mathrm{HC}\left(9^{\prime \prime}\right)$); 5.88 (br s, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.27 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.70 (d, $J=$ $1.9,1 \mathrm{H}, \mathrm{OH}$); 3.59 , (dq, $J=7.3,2.8,1 \mathrm{H}, \mathrm{HC}(4)$); $1.35(\mathrm{~d}, J=6.9,3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{C}(1)\right)$; 1.05 (d, $J=7.3,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)$); 0.86 (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)$); 0.10 (d, $J=$ $\left.1.9,6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
${ }^{13} \mathrm{C}$ NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
219.51 (C(3)); 136.45 (C(1")); 133.72 (C(5")); 129.70 (C(10")); 129.08 (CAr);
127.71 (CAr); 125.96 (CAr); 125.36 (CAr); 125.29 (CAr); 124.43 (CAr);
122.61 (CAr); 74.77 (C(2)); 69.38 (C(5)); 45.16 (C(4)); 25.70 (C(3'")); 21.35
(C(1)); 18.06 (C(2"')); 10.19 (C(1')); -4.75 (C(1"')); -4.97 (C(1'"))
MS: (FI)
$372.3\left(\mathrm{M}^{+}, 100\right), 315.2$ (6), 266.7 (12), 216.2 (5), 156.1 (16)

IR: (neat)
3502 (br), 2931 (m), 2958 (m), 1699 (m), 1255 (m), 1128 (m), 837 (s), 777 (s)
TLC: $R_{f} 0.19$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}+53.1^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 R)-\mathbf{8 f}, 2.8 \mathrm{~min}$ (Daicel Chiralpak $\mathrm{AS}, 4 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $\left.40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}-1\right)$

Analysis: $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}(372.58)$
Calculated:
C, 70.92;
H, 8.66\%
Found:
C, 70.78;
H, 8.42\%

(+)-(2S,4R,5R)-5-Hydroxy-4-methyl-5-(1-naphthyl)-2-[((dimethyl)-(1,1-dimethylethyl)

 silyl)oxy]-3-pentanone (8f) [Table 3, entry 12]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride $(230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate $(3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ followed by $\mathrm{HMPA}\left(26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 $\mathrm{mL})$ and 1-naphthaldehyde $(135 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was obtained after chromatography, 231 mg (62%) of $\mathbf{8 f}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8f/ minor isomers, $83 / 12 / 3 / 1$ by SFC analysis.

Analytical data for $\mathbf{8 f}$:

${ }^{1} \underline{H}$ NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.90-7.44 (m, 7 H, HC(2"), HC(3"), HC(4"), HC(6"), HC(7"), HC(8"), $\mathrm{HC}\left(9^{\prime \prime}\right)$); 5.88 (br s, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.27 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.70 (d, $J=$ $1.9,1 \mathrm{H}, \mathrm{OH}) ; 3.59$, (dq, $J=7.3,2.8,1 \mathrm{H}, \mathrm{HC}(4)) ; 1.35(\mathrm{~d}, J=6.9,3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.05$ (d, $\left.J=7.3,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.10(\mathrm{~d}, J=$ $\left.1.9,6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$

TLC: $R_{f} 0.19$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 6 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 R)-\mathbf{8 f}, 2.8 \mathrm{~min}$ (Daicel Chiralpak AS, $4 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

(-)-(2S,4R,5R)-5-Hydroxy-4-methyl-5-(2-naphthyl)-2-[((dimethyl)-(1,1-dimethylethyl)

 silyl)oxy]-3-pentanone (8g) [Table 3, entry 13]

4

10 h

8

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate ($3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ followed by $(R, R)-\mathbf{2 a}\left(18 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and 2-naphthaldehyde ($156 \mathrm{mg}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 265 mg (71%) of $\mathbf{8 g}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8g/ minor isomers, $94 / 3 / 3$ by SFC analysis.

Analytical data for $\mathbf{8 g}$:

${ }^{1} \underline{\mathrm{H} \mathrm{NMR}}:\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.86-7.36 (m, $7 \mathrm{H}, \mathrm{HC}\left(1^{\prime \prime}\right), \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right), \mathrm{HC}\left(6^{\prime \prime}\right), \mathrm{HC}\left(7^{\prime \prime}\right), \mathrm{HC}\left(8^{\prime \prime}\right)$, $\mathrm{HC}\left(9^{\prime \prime}\right)$); 5.23 (br s, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.21 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)$); 3.51 (dq, $J=$ 7.1, 3.2, $1 \mathrm{H}, \mathrm{HC}(4)) ; 3.46$, (d, $J=1.9,1 \mathrm{H}, \mathrm{OH}) ; 1.32(\mathrm{~d}, J=6.9,3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.09\left(\mathrm{~d}, J=7.1,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime \prime}\right)\right) ; 0.11(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ; 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
${ }^{13}$ C NMR: $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
219.11 (C(3)); 139.04 (C(2")); 133.23 (C(10")); 132.73 (C(5")); 128.05 (CAr); 127.92 (CAr); 127.60 (CAr); 126.08 (CAr); 125.75 (CAr); 124.87 (CAr); 123.91 (CAr); 74.63 (C(2)); 72.77 (C(5)); 46.58 (C(4)); 25.68 (C(3'")); 21.15 ($\mathrm{C}(1)$); $18.01\left(\mathrm{C}\left(2^{\prime \prime \prime}\right)\right) ; 10.21\left(\mathrm{C}\left(1^{\prime}\right)\right) ;-4.70\left(\mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ;-5.01\left(\mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$
MS: (FI)
$372.2\left(\mathrm{M}^{+}, 100\right), 315.2$ (8), 266.9 (15), 216.2 (4), 156.1 (10)
IR: (neat)
3487 (br), 2954 (m), 2931 (m), 2858 (m), 1711 (m), 1462 (m), 1363 (m), 1255
(m), 1124 (m), 935 (m), 835 (s$), 779$ (m), 735 (m)

TLC: $R_{f} 0.26$ (pentane/Et ${ }_{2} \mathrm{O}, 4 / 1$, anisaldehyde)
Optical Rotation: $[\alpha]_{\mathrm{D}}^{23}-1.7^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 R)-\mathbf{8 g}, 2.5 \mathrm{~min}$ (Daicel Chiralpak AS, $4 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)
Analysis: $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$ (372.58)

Calculated:	C, $70.92 ;$	H, 8.66%
Found:	C, $70.62 ;$	H, 8.78%

(-)-(2S,4R,5R)-5-Hydroxy-4-methyl-5-(2-naphthyl)-2-[((dimethyl)-(1,1-dimethylethyl)

 silyl)oxy]-3-pentanone (8g) [Table 3, entry 14]

Following General Procedure II: from silyl enol ether 4 ($273 \mathrm{mg}, 1.0 \mathrm{mmol}$), silicon tetrachloride ($230 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 2.0$ equiv) and mercuric acetate ($3.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~mL}\right.$) followed by HMPA ($26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.15$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL) and 2-naphthaldehyde ($156 \mathrm{mg}, 1.0 \mathrm{mmol}$) was obtained after chromatography, 220 mg (59\%) of $\mathbf{8 g}$ as a clear, colorless oil. The diastereomeric ratio was determined to be (syn,syn)-8g/ minor isomers, 89/6/4/1 by SFC analysis.

Analytical data for $\mathbf{8 g}$:

${ }^{1}$ H NMR: $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
7.86-7.36 (m, $7 \mathrm{H}, \mathrm{HC}\left(1^{\prime \prime}\right), \mathrm{HC}\left(3^{\prime \prime}\right), \mathrm{HC}\left(4^{\prime \prime}\right), \mathrm{HC}\left(6^{\prime \prime}\right), \mathrm{HC}\left(7^{\prime \prime}\right), \mathrm{HC}\left(8^{\prime \prime}\right)$, HC(9")); 5.23 (br s, $1 \mathrm{H}, \mathrm{HC}(5)$); 4.21 (q, $J=6.9,1 \mathrm{H}, \mathrm{HC}(2)) ; 3.51$ (dq, $J=$ 7.1, 3.2, $1 \mathrm{H}, \mathrm{HC}(4)) ; 3.46$, (d, $J=1.9,1 \mathrm{H}, \mathrm{OH}) ; 1.32(\mathrm{~d}, J=6.9,3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{C}(1)\right) ; 1.09\left(\mathrm{~d}, J=7.1,3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime}\right)\right) ; 0.93$ (s, $9 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(3^{\prime \prime}\right)$); 0.11 (s, 3 H , $\left.\mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right) ; 0.09$ (s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}\left(1^{\prime \prime \prime}\right)\right)$

TLC: $R_{f} 0.26$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 4 / 1$, anisaldehyde)
SFC: $t_{\mathrm{R}}(2 S, 4 R, 5 R)-\mathbf{8 g}, 2.5 \mathrm{~min}$ (Daicel Chiralpak AS, $4 \% \mathrm{MeOH}$ in $\mathrm{CO}_{2}, 150$ bar, $40^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} \mathrm{~min}^{-1}$)

References

(1) Berger Instruments, Inc., 123A Sandy Drive, Newark, Delaware 19713, U.S.A.
(2) Paterson, I; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639.
(3) Luke, G. P.; Morris, J. J. Org. Chem. 1995, 60, 3013.
(4) Lohray, B. B.; Enders, D. Helv. Chim. Acta 1989, 72, 980.
(5) Journet, M.; Cai, D.; DiMichele L. M.; Larsen, R. D. Tetrahedron Lett. 1998, 39, 6427.
(6) Denmark, S. E.; Su, X.; Nishigaichi, Y.; Coe, D. M.; Wong, K.-T.; Winter, S. B. D.; Choi, J. Y. J. Org. Chem. 1999, 64, 1958.
(7) Galobardes, M.; Gascón, M.; Mena, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Org. Lett. 2000, 2, 2599.

