Supporting Information

Experimental Procedure for Compounds 7b, 8b, 9b, 10b, 13b, 18, 20, and 1.
Unless otherwise noted, all reactions were carried out in dry solvents under argon.
(2R,4R)-1-Benzyloxycarbonyl-2-(2-bromo-4-methoxyphenylmethyl)-2-methoxycarbonyl-4-(tert-butyldimethylsilyloxy)pyrrolidine (7b). To a stirred solution of $\mathbf{6}(5.75 \mathrm{~g}, 14.6 \mathrm{mmol})$ in THF (60 mL) was added dropwise a 1.0 M solution of LHMDS in THF ($17.5 \mathrm{~mL}, 17.5 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. After 2 h , a solution of 2-bromo-4-methoxybenzyl bromide ($4.91 \mathrm{~g}, 17.5 \mathrm{mmol}$) in THF (15 mL) was added to the mixture at $-20^{\circ} \mathrm{C}$, and then the mixture was stirred at room temperature for 2 h . The mixture was diluted with water and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with AcOEt. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with hexane-AcOEt (4:1) to give a $4: 1$ mixture of $\mathbf{7 b}$ and its diastereomer (7.86 g , $91 \%)$. IR (CHCl_{3}): 1740, $1698 \mathrm{~cm}^{-1}$; Rotamers of 7b and its diastereomer were observed by the ${ }^{1} \mathrm{H}$ NMR due to the benzyloxycarbonyl group; ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-0.13-0.12(6 \mathrm{H}, \mathrm{m}), 0.75(\mathrm{~s}), 0.76(\mathrm{~s}), 0.79(\mathrm{~s}$, total 9 H$), 1.96-2.23(1 \mathrm{H}, \mathrm{m})$, 2.42-2.67 ($1 \mathrm{H}, \mathrm{m}$), 3.16-3.26 ($1 \mathrm{H} \mathrm{x} \mathrm{4/5}, \mathrm{m)}, \mathrm{3.36-3.63} \mathrm{(4H}, \mathrm{m)}, \mathrm{3.50} \mathrm{(s)} ,3.74(\mathrm{~s}), 3.76$ (s), 3.77 (s, total 6 H$), 4.41-4.51(1 \mathrm{H} x \mathrm{1} / 5, \mathrm{~m}), 4.94-5.33(2 \mathrm{H}, \mathrm{m}), 6.57-7.44(8 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{BrNO}_{6} \mathrm{Si}$: C, 56.75; H, 6.46; N, 2.36. Found: C, 56.95; H, 6.59; N, 2.33.
(2R,4R)-1-Benzyloxycarbonyl-2-(2-bromo-4-methoxyphenylmethyl)-4-hydroxy-2-methoxycarbonylpyrrolidine (8b). To a stirred solution of $\mathbf{7 b}$ (579 mg , 0.98 mmol) in THF (5 mL) was added dropwise a 1.0 M solution of tetrabutylammonium fluoride in THF ($1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$) at room temperature. After 2 h , the mixture was diluted with water and extracted with AcOEt. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with hexane-AcOEt (4:1)
to give a $4: 1$ mixture of $\mathbf{8 b}$ and its diastereomers ($451 \mathrm{mg}, 97 \%$). The mixture was further purified by recrystallization from hexane- $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{8 b}$ ($318 \mathrm{mg}, 68 \%$ from 7b) in diastereomerically pure form. mp $53-55{ }^{\circ} \mathrm{C}$; $[\alpha]^{23} \mathrm{D}-154.6\left(c 0.50, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3021,1744,1698 \mathrm{~cm}^{-1}$; Two rotamers (3:2) of $\mathbf{8 b}$ were observed by the ${ }^{1} \mathrm{H}$ NMR due to the benzyloxycarbonyl group; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.10(1 \mathrm{H}, \mathrm{br}$ d, $J=14.5 \mathrm{~Hz}), 2.22(1 \mathrm{H} \times 3 / 5, \mathrm{dd}, J=14.5,4.6 \mathrm{~Hz}), 2.27(1 \mathrm{H} \mathrm{x} 2 / 5, \mathrm{dd}, J=14.5,5.3$ $\mathrm{Hz}), 2.83(1 \mathrm{H} \times 3 / 5, \mathrm{dd}, J=11.9,4.3 \mathrm{~Hz}), 2.92(1 \times 2 / 5, \mathrm{dd}, J=11.9,4.3 \mathrm{~Hz}), 3.44-3.81$ $(6 \mathrm{H}, \mathrm{m}), 3.54(3 \mathrm{H} \times 2 / 5, \mathrm{~s}), 3.76(3 \mathrm{H} \times 3 / 5, \mathrm{~s}), 3.77(3 \mathrm{H} \times 2 / 5, \mathrm{~s}), 3.87(3 \mathrm{H} \times 3 / 5, \mathrm{~s})$, $5.11(1 \mathrm{Hx} \mathrm{3} / 5, \mathrm{~d}, J=12.5 \mathrm{~Hz}), 5.17(1 \mathrm{H} \mathrm{x} 2 / 5, \mathrm{~d}, J=11.9 \mathrm{~Hz}), 5.26(1 \mathrm{H} \times 2 / 5, \mathrm{~d}, J=$ $11.9 \mathrm{~Hz}), 5.34(1 \mathrm{H} x 3 / 5, \mathrm{~d}, J=12.2 \mathrm{~Hz}), 6.58(1 \mathrm{Hx} \mathrm{3/5}, \mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}), 6.72-6.87$ $(1 \mathrm{H}+1 \mathrm{H} \times 2 / 5, \mathrm{~m}), 7.07(1 \mathrm{H} \times 3 / 5, \mathrm{~d}, J=2.6 \mathrm{~Hz}), 7.09(1 \mathrm{H} \mathrm{x} 2 / 5, \mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 7.20-$ $7.50(4 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}_{6}: \mathrm{C}, 55.24 ; \mathrm{H}, 5.06 ; \mathrm{N}, 2.93$. Found: C, 55.09; H, 5.17; N, 2.93.
(R)-1-Benzyloxycarbonyl-2-(2-bromo-4-methoxyphenylmethyl)-2-methoxycarbonyl-4-oxopyrrolidine (9b). To a stirred solution of $\mathbf{8 b}(82.0 \mathrm{mg}, 0.172$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added PCC ($100 \mathrm{mg}, 0.344 \mathrm{mmol}$) and Florisil (200 mg) at room temperature. After 10 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a pad of silica gel, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane-AcOEt (4:1) to give $9 \mathbf{b}(97.4 \mathrm{mg}, 97 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}-85.2$ (c 1.12, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 1767,1748,1707 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.74(1 \mathrm{H}, \mathrm{d}, J=18.5$ $\mathrm{Hz}), 2.95(1 \mathrm{H}, \mathrm{d}, J=18.5 \mathrm{~Hz}), 3.29-3.94(4 \mathrm{H}, \mathrm{m}), 3.57(3 \mathrm{H} \mathrm{x} \mathrm{1/2}, \mathrm{s)} ,3.80(3 \mathrm{H} \mathrm{x} \mathrm{1/2}, \mathrm{s)}$, $3.76(3 \mathrm{H}, \mathrm{s}), 5.16(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.6$ $\mathrm{Hz}), 6.82(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz})$, $7.05(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 7.37-7.40 $(5 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrNO}_{6}$: C, 55.48; H, 4.66; N, 2.94. Found: C, 55.23; H, 4.67; N, 2.89.
(S)-1-Benzyloxycarbonyl-2-(2-bromo-4-methoxyphenylmethyl)-2-methoxycarbonyl-4-(phenythiomethylene)pyrrolidine (10b). A suspension of anhydrous $\mathrm{CeCl}_{3}(2.35 \mathrm{~g}, 9.55 \mathrm{mmol})$ in THF (27 mL) was stirred vigorously for 2 h at
room temperature, and then cooled to $-78^{\circ} \mathrm{C}$. To the suspension was added a solution of $\mathrm{PhSCHLiP}(\mathrm{O}) \mathrm{Ph}_{2}$ [prepared by treatment of a solution of $\mathrm{PhSCH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}(2.66 \mathrm{mg}$, $8.19 \mathrm{mmol})$ in THF (15 mL) with a 1.6 M solution of BuLi in hexane $(5.15 \mathrm{~mL}, 8.19$ $\mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$] at $-78{ }^{\circ} \mathrm{C}$ for 20 min . After 30 min , a solution of $\mathbf{9 b}(1.30 \mathrm{~g}, 2.73$ $\mathrm{mmol})$ in THF (15 mL) was added to the mixture at $-78{ }^{\circ} \mathrm{C}$, and then the mixture was allowed to warm to room temperature. After stirring at room temperature for 3 h , TMEDA ($1.11 \mathrm{~g}, 9.55 \mathrm{mmol}$) was added to the mixture, and the mixture was stirred for 30 min . The mixture was diluted with a saturated solution of $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$, and the whole was extracted with CHCl_{3}. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a crude adduct of $\mathbf{9 b}$ with $\mathrm{PhSCH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$ as a pale yellow oil. The oil was dissolved in THF (50 mL). To the stirred solution was added $\mathrm{NaH}(60 \%$ dispersion, $800 \mathrm{mg}, 20 \mathrm{mmol})$ at room temperature. After 3 h , the mixture was diluted with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, and the whole was extracted with AcOEt. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford $\mathbf{1 0 b}(1.27 \mathrm{~g}, 80 \%)$ as a mixture of geometrical isomers. IR $\left(\mathrm{CHCl}_{3}\right) 1738,1701,1605 \mathrm{~cm}^{-1}$; Two rotamers (1:1) of $\mathbf{1 0 b}$ were observed by the ${ }^{1} \mathrm{H}$ NMR due to the benzyloxycarbonyl group; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.79(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=16.8,5.6 \mathrm{~Hz}), 3.44-4.29(4 \mathrm{H}, \mathrm{m}), 3.47(3 \mathrm{H}$ x $1 / 2, \mathrm{~s}), 3.65(3 \times 1 / 2, \mathrm{~s}), 3.68(3 \mathrm{H} \times 1 / 2, \mathrm{~s}), 3.78(3 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{~s}), 5.11(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=$ $12.2 \mathrm{~Hz}), 5.14(1 \mathrm{H} x 1 / 2, \mathrm{~d}, J=12.5 \mathrm{~Hz}), 5.28(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=12.2 \mathrm{~Hz}), 5.11(1 \mathrm{H} \mathrm{x}$ $1 / 2, \mathrm{~d}, J=12.5 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.60(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{dd}, J=8.6,2.6 \mathrm{~Hz})$, $6.70(1 \mathrm{H} \mathrm{x} \mathrm{1/2} \mathrm{dd},, J=8.6,2.6 \mathrm{~Hz}), 6.76(1 \mathrm{H} \mathrm{x} \mathrm{1/2}, \mathrm{d} J=,8.6 \mathrm{~Hz}), 6.94(1 \mathrm{H} \mathrm{x} \mathrm{1/2}, \mathrm{d} J$, $=8.6 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $6.97-7.42(10 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{BrNO}_{5} \mathrm{~S}: \mathrm{C}, 59.80 ; \mathrm{H}, 4.84 ; \mathrm{N}, 2.40$. Found: C, 60.10; H, 4.83; N, 2.20.
(1S,4R)-3-Benzyloxycalbonyl-8-methoxy-4-methoxycarbonyl-1-phenylthiomethyl-2,3,4,5-tetrahydro-1,4-methano-3-benzazepine (13b). To a solution of $\mathbf{1 0 b}(1.30 \mathrm{~g}, 2.23 \mathrm{mmol})$ in boiling benzene $(210 \mathrm{~mL})$ was added dropwise a
mixture of $\mathrm{Bu}_{3} \mathrm{SnH}(974 \mathrm{mg}, 3.35 \mathrm{mmol})$ and AIBN ($80 \mathrm{mg}, 0.45 \mathrm{mmol}$) in benzene (40 mL) over 40 min , and the mixture was further heated at reflux for 3 h . After cooling, the mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, and the solution was vigorously stirred with an 8% solution of KF overnight. The organic phase was separated, and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phases were combined, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane-AcOEt (4:1) to give 13b (855 mg, $76 \%)$ as a colorless oil. $[\alpha]^{25} \mathrm{D}-77.6\left(c 0.60, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1741,1698 \mathrm{~cm}^{-1}$; Two rotamers (1:1) of $\mathbf{1 3 b}$ were observed by the ${ }^{1} \mathrm{H}$ NMR due to the benzyloxycarbonyl group; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.26(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.9 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{m}), 3.36-$ $3.79(6 \mathrm{H}, \mathrm{m}), 3.44(3 \mathrm{H} \times 1 / 2, \mathrm{~s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H} \times 1 / 2, \mathrm{~s}), 4.94(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=$ $12.5 \mathrm{~Hz}), 4.96(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{~d}, J=12.5 \mathrm{~Hz}), 5.10(1 \mathrm{H} \mathrm{x} \mathrm{1/2} \mathrm{~d},, J=12.5 \mathrm{~Hz}), 5.20(1 \mathrm{H} \mathrm{x}$ $1 / 2, \mathrm{~d}, J=12.5 \mathrm{~Hz}), 6.77(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}), 6.79(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{dd}, J=8.3,2.6$ $\mathrm{Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.05(1 \mathrm{Hx} \mathrm{1/2} \mathrm{~d},, J=8.3 \mathrm{~Hz}), 7.11(1 \mathrm{H} x 1 / 2, \mathrm{~d}, J=8.6$ $\mathrm{Hz})$, 7.18-7.38 (10H, m). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 69.16 ; \mathrm{H}, 5.80 ; \mathrm{N}, 2.78$. Found: C, 68.89; H, 5.93; N, 2.60.
(1S,4R)-3-Benzyloxycalbonyl-8-methoxy-1-phenylthiomethyl-2,3,4,5-tetrahydro-1,4-methano-3-benzazepine (18). A solution of $\mathbf{1 3 b}(1.23 \mathrm{~g}, 2.44 \mathrm{mmol})$ in 5 N aqueous $\mathrm{NaOH}-\mathrm{MeOH}(2: 1,15 \mathrm{~mL})$ was heated at reflux for 2 h . The mixture was diluted with water (40 mL) and washed with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous phase was acidified to $\mathrm{pH} 1-2$ and extracted with CHCl_{3}. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give crude carboxylic acid $16\left(1.20 \mathrm{~g}\right.$, quant.) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34(1 \mathrm{H}$, $\mathrm{d}, J=11.2 \mathrm{~Hz}), 2.52(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 3.34-3.80(6 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{br}$ d, $J=12.5 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{dd}, J=12.2,8.9 \mathrm{~Hz}), 6.76-6.88(2 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{~d}, J$ $=8.3 \mathrm{~Hz}), 7.11(1 \mathrm{Hx} \mathrm{1/2} \mathrm{~d},, J=8.6 \mathrm{~Hz}), 7.20-7.39(10 \mathrm{H}, \mathrm{m})$. This compound was used immediately for the next step without further purification. To a stirred solution of the
crude acid $16(1.13 \mathrm{~g}, 2.30 \mathrm{mmol})$ in benzene $(30 \mathrm{~mL})$ was added to a solution of 2mercaptopyridine N-oxide ($350 \mathrm{mg}, 2.76 \mathrm{mmol}$), DMAP ($421 \mathrm{mg}, 3.45 \mathrm{mmol}$), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, $660 \mathrm{mg}, 3.45$ $\mathrm{mmol})$ in benzene (10 mL) at room temperature. After 30 min , to the mixture was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(2.00 \mathrm{~g}, 6.87 \mathrm{mmol})$ and AIBN $(110 \mathrm{mg}, 0.67 \mathrm{mmol})$ in benzene (150 mL), and then the mixture was heated at reflux for 3 h . After cooling, the mixture was concentrated under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$, and then the solution was vigorously stirred with an 8% solution of KF (30 mL) overnight. The organic phase was separated, and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phases were combined, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduce pressure. The residue was purified by column chromatography on silica gel with hexane-AcOEt (4:1) to afford 18 (530 mg, 52\%) as a colorless oil. $[\alpha]^{25} \mathrm{D}-95.6\left(c 0.76, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1693 \mathrm{~cm}^{-1}$; Two rotamers (1:1) of $\mathbf{1 8}$ were observed by the ${ }^{1} \mathrm{H}$ NMR due to the benzyloxycarbonyl group; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.00-2.06(2 \mathrm{H}, \mathrm{m}), 2.89-2.96(1 \mathrm{H}, \mathrm{m}), 3.06(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{~d}, J=7.2$ $\mathrm{Hz}), 3.20(1 \mathrm{Hx} \mathrm{1/2}, \mathrm{~d}, J=6.8 \mathrm{~Hz}), 3.38-3.79(4 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.44(1 \mathrm{H} \mathrm{x} \mathrm{1/2}, \mathrm{dt}, J$ $=5.9,2.9 \mathrm{~Hz}), 4.51(1 \mathrm{H} \mathrm{x} \mathrm{1/2}, \mathrm{dt} J=5.9,,2.9 \mathrm{~Hz}), 4.95(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{~d}, J=12.2 \mathrm{~Hz}), 5.10$ $(1 \mathrm{Hx} 1 / 2, \mathrm{~d}, J=12.5 \mathrm{~Hz}), 5.12(1 \mathrm{H} \mathrm{x} 1 / 2, \mathrm{~d}, J=12.2 \mathrm{~Hz}), 5.16(1 \mathrm{H} \times 1 / 2, \mathrm{~d}, J=12.5$ $\mathrm{Hz})$, 6.73-6.78 $(1 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.00(1 \mathrm{x} \mathrm{1/2} \mathrm{~d},, J=8.6 \mathrm{~Hz}), 7.06(1 \mathrm{H} \times 1 / 2, \mathrm{~d}$, $J=8.3 \mathrm{~Hz})$, 7.17-7.39 (10H, m). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 72.78 ; \mathrm{H}, 6.11 ; \mathrm{N}$, 3.14. Found: C, 72.53 ; H, 6.28; N, 3.49.
\boldsymbol{O}-Methyl-(-)-aphanorphine (20). To a solution of $\mathbf{1 8}(32.0 \mathrm{mg}, 0.072 \mathrm{mg})$ in $\mathrm{MeOH}(3 \mathrm{~mL}$) was added W-2 Raney nickel (ca 50 mg), and then the mixture was heated at reflux for 6 h . After cooling, the mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on alumina with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (50:1) to give 20 (10.0 mg , $65 \%)$ as a colorless oil. $[\alpha]^{23} \mathrm{D}+9.39\left(c \quad 0.30, \mathrm{CHCl}_{3}\right),\left\{\mathrm{lit}^{1 \mathrm{c}}[\alpha]^{29} \mathrm{D}+8.46(c 0.35\right.$, $\left.\left.\mathrm{CHCl}_{3}\right), \operatorname{lit}^{1 \mathrm{j}}[\alpha]^{21} \mathrm{D}+10.4\left(c 1.24, \mathrm{CHCl}_{3}\right)\right\} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47(3 \mathrm{H}$,
s), $1.84(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{dd}, J=9.6,5.9 \mathrm{~Hz}), 2.46(3 \mathrm{H}, \mathrm{s}), 2.71(1 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}), 2.78-2.91(3 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.6 \mathrm{~Hz})$, $6.78(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3$, 34.9, 41.2, 41.6, 43.1, 55.3, 61.3, 70.8, 109.1, 111.2, 125.5, 130.2, 147.8, 157.9. These ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are identical with those reported. ${ }^{1 \mathrm{j}}$
(-)-Aphanorphine (1). According to the reported method, $1 \mathrm{c}, \mathrm{j} 20$ was converted to 1, mp 200-210 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{1 \mathrm{c}} \mathrm{mp} 215-222{ }^{\circ} \mathrm{C}\right) .[\alpha]^{21} \mathrm{D}-23.6(c 0.20, \mathrm{MeOH})\left\{\operatorname{lit}^{1 \mathrm{j}}[\alpha]^{23} \mathrm{D}-\right.$ 24.0 (c 0.33, MeOH) \}; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.44(3 \mathrm{H}, \mathrm{s}), 1.86(1 \mathrm{H}, \mathrm{d}, J=$ $10.9 \mathrm{~Hz}), 2.02(1 \mathrm{H}, \mathrm{dd}, J=10.9,5.6 \mathrm{~Hz}), 2.48(3 \mathrm{H}, \mathrm{s}), 2.73(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 2.83$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 3.42(1 \mathrm{H}$, quin, $J=2.6 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J$ $=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 21.6,36.5,42.1,42.7,44.2,63.5,72.6$, $110.9,114.5,125.2,131.2,148.5,156.5$. These ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are identical with those kindly provided by Professor K. Ogasawara.

