A Concise Enantioselective Synthesis of a Key A-Ring Synthon for 1α-Hydroxyvitamin D_{3} Compounds

Hiroko Hiyamizu, Hidenori Ooi, Yoko Inomoto, Tomoyuki Esumi, Yoshiharu Iwabuchi, and Susumi Hatakeyama*
Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

Supporting Information

General Procedure. Where appropriate, reactions were performed in flame-dried glassware under an argon atmosphere. All extracts were dried over MgSO_{4} and concentrated by rotary evaporation below $30^{\circ} \mathrm{C}$ at ca. 25 Torr. Analytical and preparative thin-layer chromatography were performed with Merck F-254 TLC plates. Column chromatography was performed employing silica gel 60 (230-400 mesh ASTM, Merk).
Materials. Commercial reagents and solvents were used as supplied with the following exceptions. Tetrahydrofuran (THF) and ether ($\mathrm{Et}_{2} \mathrm{O}$) were distilled from sodium benzophenone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, and N, N-dimethyformamide (DMF) were distilled from calcium hydride. 2-[N, N-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine was purified by kugelrohr distillation after washing with $10 \% \mathrm{NaOH}$ just prior to use.
Instrumentation. Infrared spectra were measured on a JASCO FT/IR-230 spectrometer. Optical rotations were recorded on a JASCO DIP-370 polarimeter at ambient temperature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Gemini 300 or a Varian Unity plus 500 spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) in δ units and coupling constants are given in hertz. TMS was defined as 0 ppm for ${ }^{1} \mathrm{H}$ NMR spectra and the center line of the triplet of CDCl_{3} was also defined as 77.10 ppm for ${ }^{13} \mathrm{C}$ NMR spectra. High resolution Mass spectra were measured on a JEOL JMS-DX303.
(5S)-N-Methoxy- N-methyl-5-hydroxy-3-oxo-6-heptenamide (10).

9:1
To an ice-cooled solution of N,O-dimethylhydroxylamine hydeochloride ($737 \mathrm{mg}, 7.56 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added $\mathrm{Me}_{2} \mathrm{AlCl}(0.98 \mathrm{M}$ in hexane, $7.7 \mathrm{ml}, 7.56 \mathrm{mmol})$ and the mixture was stirred for 1 h after removal of the cooling bath. To the resulting mixture was added a solution of 9 $(97 \% \text { ee })^{1}(500 \mathrm{mg}, 2.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. After being stirred at room temperature for 18 h , the reaction mixture was quenched with water and extracted with CHCl_{3}. The extract was washed with brine, dried, and concentrated. The residue was purified by silica gel column chromatography (hexane: $\mathrm{EtOAc}=2: 1$) to give $10(390 \mathrm{mg}, 77 \%)$ as a colorless oil: $[\alpha] \mathrm{D}^{24}-18.8^{\circ}\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40(\mathrm{dd}, J=7.8,14.1 \mathrm{~Hz}, 0.1 \mathrm{H}$), 2.49 (dd, $J=4.5,14.1 \mathrm{~Hz}, 0.1 \mathrm{H}$), 2.75 (dd, $J=3.3,12.3 \mathrm{~Hz}, 0.9 \mathrm{H}$), $2.81(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 0.9 \mathrm{H}), 2.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 0.3 \mathrm{H}), 3.22(\mathrm{~s}$,
2.7 H), $3.62(\mathrm{~s}, 1.8 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{brq}, 0.1 \mathrm{H}), 4.62(\mathrm{br} \mathrm{q}, J=5.7 \mathrm{~Hz}, 0.9 \mathrm{H}), 5.15(\mathrm{dt}, J=1.5$, $10.5 \mathrm{~Hz}, 0.9 \mathrm{H}), 5.16(\mathrm{dt}, J=1.5,10.5 \mathrm{~Hz}, 0.1 \mathrm{H}), 5.31(\mathrm{dt}, J=1.5,17.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 5.33(\mathrm{dt}, J=1.5$, $17.1 \mathrm{~Hz}, 0.1 \mathrm{H}$), $5.47(\mathrm{br} \mathrm{s}, 0.1 \mathrm{H}), 5.87$ (ddd, $J=5.4,10.5,17.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 5.91$ (ddd, $J=5.7,10.5$, $17.1 \mathrm{~Hz}, 0.1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.1$ (minor), 43.4 (minor), 48.4, 49.5, 61.5, 68.6, 70.3 (minor), 88.3, 115.1, 139.0, 139.6 (minor), 167.8, 203.8; FT-IR (neat) 3417, 1718, 1641, 1429, $1390 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right):$201.1001, found: 201.0988 .

(3S,5S)- N-Methoxy- N-methyl-3,5-dihydroxy-6-heptenamide (11).

A mixture of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(2.54 \mathrm{~g}, 9.66 \mathrm{mmol})$ in acetone- $\mathrm{AcOH}(1: 1 \mathrm{mixture}, 10 \mathrm{ml})$ was stirred at room temperature for 30 min . The resulting mixture was cooled to $-40^{\circ} \mathrm{C}$ and a solution of $\mathbf{1 0}(160 \mathrm{mg}, 0.80 \mathrm{mmol})$ in acetone (5 ml) was added. After being stirred at $-40{ }^{\circ} \mathrm{C}$ for 34 h , the reaction mixture was quenched by the addition of 20% potassium sodium tartrate and saturated NaHCO_{3} and extracted with CHCl_{3}. The extract was washed with brine, dried, and concentrated. The residue was purified by silica gel column chromatography (hexane: $\mathrm{EtOAc}=1: 1$) to give $\mathbf{1 1}$ ($143 \mathrm{mg}, 88 \%$) as a colorless oil: $[\alpha] \mathrm{D}^{27}+39.2^{\circ}\left(c 1.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left.\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta$ 1.64 (ddd, $J=3.0,7.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=3.3,9.3,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=9.0,17.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.65 (br d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (s, 3H), 3.68 (s, 3H), $4.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.37$ (br t, $J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.13(\mathrm{dt}, J=1.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dt}, J=1.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddd, J $=5.1,10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.9,38.2,42.1,61.3,65.6,70.0,114.2$, 140.8 , (C=O was not detected); FT-IR (neat) $3365,1630,1423,1390,1063 \mathrm{~cm}^{-1}$.

(3S,5S)- N-Methoxy- N-methyl-3,5-di[(tert-butyldimethylsilyl)oxy]-6-heptenamide (12).

A solution of 11 ($63 \mathrm{mg}, 0.30 \mathrm{mmol}$), tert-butyldimethylsilyl chloride ($310 \mathrm{mg}, 2.06 \mathrm{mmol}$), and imidazole ($130 \mathrm{mg}, 1.91 \mathrm{mmol}$) in DMF (5 ml) was stirred at room temperature for 10 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water and brine, dried, and concentrated. The residue was purified by silica gel column chromatography (hexane:EtOAc $=20: 1$) to give 12 (117 $\mathrm{mg}, 87 \%$) as a colorless oil; $[\alpha] \mathrm{D}^{24}+21.1^{\circ}\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.64-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{dt}$, $J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=4.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{br} \mathrm{dd}, J$ $=7.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.05$ (ddd, $J=0.9,1.8,10.2 \mathrm{~Hz}$), 5.25 (dt, $J=1.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.83 (ddd, $J=6.9,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.53,-4.41,-4.36,-3.85,18.1,18.3,25.9,26.0,32.1,40.6,47.0$, 61.3, (66.9), 67.2, 71.9, 114.4, 141.9; FT-IR (neat) 1668, 1466,1254, $1084 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right): 431.2887$, found: 431.2934 .

(5S,7S)-5,7-Di[(tert-butyldimethylsilyl)oxy]nona-1,8-diene-3-one (4).

To an ice-cooled solution of $\mathbf{1 2}(230 \mathrm{mg}, 0.53 \mathrm{mmol})$ in THF (5 ml) was added vinylmagnesium bromide (1.12 M in THF, $1.5 \mathrm{ml}, 1.68 \mathrm{mmol}$). After being stirred at $0^{\circ} \mathrm{C}$ for 7 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with CHCl_{3}. The extract was washed with brine, dried over, and concentrated. The residue was purified by silica gel column chromatography (hexane: $\operatorname{EtOAc}=100: 1$) to give $4(206 \mathrm{mg}, 98 \%)$ as a colorless oil; $[\alpha]{ }^{23}+20.4^{\circ}$ (c 1.19, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{ddd}, J=14.0,6.0,5.5, \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=14.0,6.5, \mathrm{~Hz}, 1 \mathrm{H})$, 2.68 (dd, $J=4.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=7.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{tt}, J$ $=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{ddd}, J=1.0,1.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dt}, J=1.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (ddd, $J=7.0,10.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, \mathrm{J}=1.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=1.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ $(\mathrm{dd}, J=10.5,17.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.6,-4.4,-4.3,-3.9,18.1,18.3,25.9$, $26.0,46.8,48.0,67.0,71.8,114.5,128.3,137.5,141.8,199.4$; FT-IR (neat) $1687,1468,1403,1254$, $1082 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}_{2}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 383.2438$, found 383.2437.
(Z,5S,7S)-[5,7-Di[(tert-butyldimethylsilyl)oxy]-3-[(trifluoromethanesulfonyl)oxy]nona-2,8dienyl]diphenylphosphine Oxide (7).

To an ice-cooled solution of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}(88 \mathrm{mg}, 0.436 \mathrm{mmol})$ in THF (1.3 ml) was added n BuLi (1.59 M in hexane, $0.27 \mathrm{ml}, 0.429 \mathrm{mmol}$) and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $4(144 \mathrm{mg}, 0.362 \mathrm{mmol})$ in THF (2 ml) was added. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and a solution of $2-[N, N-$ bis(trifluoromethylsulfonyl)amino]-5-chloropyridine ${ }^{2}(227 \mathrm{mg}, 0.578 \mathrm{mmol})$ in THF (1.7 ml) was added. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water and brine, dried over, and concentrated. The residue was purified by silica gel column chromatography (hexane:EtOAc $=2: 1$) to give $7(236 \mathrm{mg}, 89 \%)$ and $\mathbf{1 3}(16 \mathrm{mg}, 7 \%)$ each as a colorless oil.

Enol triflate 7: $[\alpha] \mathrm{D}^{24}+13.7^{\circ}\left(c 1.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-0.02(\mathrm{~s}, 3 \mathrm{H})$, $0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{ddd}, J=14.0,6.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ (ddd, $J=14.0,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14(\mathrm{dt}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=5.5,11.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (quint, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.12(\mathrm{dt}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{ddd}, J=11.0,1.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.61-5.68 (m, 2H), 7.46-7.56 (m, 2H), 7.71-7.76 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-4.7,-4.3$, $-4.1,-3.6,18.0,18.2,25.9,28.529 .4,42.4,45.6,66.2,71.4,113.6,113.7,114.7,128.8,129.0$, $130.8,130.9,131.0,132.3,141.7,148.8$; FT-IR (neat) $1410,1252,1211,1134,1090 \mathrm{~cm}-1$; HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{PSSi}_{2}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 675.2009$, found 675.2021.

Ketone 13: $[\alpha] \mathrm{D}^{24}+12.6^{\circ}\left(c 1.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.08(\mathrm{~s}, 3 \mathrm{H}), 0.00$
($\mathrm{s}, 3 \mathrm{H}$), $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.86(\mathrm{~m}, 6 \mathrm{H})$, 4.09 (q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{tt}, J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dt}, J=17.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddd}, J=17.1,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.6,-4.5,-4.3,-3.9,17.9,18.2,22.7,23.7,25.8,25.9,36.1,36.2,46.4,50.7$, $66.8,71.7,114.6,128.8,128.9,130.7,130.9,131.9,132.0,141.5,206.9,207.1$; FT-IR (neat) 1716, $1468,1437,1409,1254,1188,1074 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{PSi}_{2}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 585.2985$, found 585.3044.

Palladium-Catalyzed Cyclization of Enol Triflate 7.

$Z / E=86 / 14$
A solution of 7 ($288 \mathrm{mg}, 0.393 \mathrm{mmol}$) in THF (8 ml) was degassed thoroughly by three times repetition of filling up with argon after suction. To this solution were added $\mathrm{Ph}_{3} \mathrm{P}(10 \mathrm{mg}, 0.038$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(66 \mu \mathrm{l}, 0.474 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.039 \mathrm{mmol})$ and the mixture was stirred at room temperature for 6.5 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through Celite, and concentrated. The residue was purified by silica gel column chromatography (hexane:EtOAc $=2: 1$) to give a $86: 14$ mixture of 2 and its E-isomer ($215 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.05$ (s, 3H), $-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.64-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{br} \mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{br} \mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dt}, J=6.9,15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38(\mathrm{dt}, J=8.7,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 0.14 \mathrm{H}), 5.14$ (s, 0.86 H), $5.33(\mathrm{dt}, J=8.0,6.9 \mathrm{~Hz}, 0.86 \mathrm{H}), 5.54(\mathrm{dt}, J=9.0,6.6 \mathrm{~Hz}, 0.14 \mathrm{H}), 7.38-7.53(\mathrm{~m}, 6 \mathrm{H})$, 7.65-7.76 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,-4.8,-4.7,18.1,18.3,25.8,(30.5), 30.9$, (31.4), 31.8, (37.1), (43.9), 44.8, 45.6, (66.7), 67.5, (70.6), 70.9, (108.6), 110.3, (114.8), (114.9), $115.1,115.2,128.5,128.7,131.0,131.1,131.2,131.8$, (132.1), 132.4, 133.4, (133.7), 141.0, 141.1, 147.8 , peaks in parentheses are attributed to the E-isomer; FT-IR (neat) $1469,1254,1084 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{3} \mathrm{PSi}_{2}\left(\mathrm{M}^{+}\right) 582.3114$, found 582.3083.

(Z,3S,5R)-2-[[3,5-Di(tert-butyldimethylsilyl)oxy-2methylenecyclohexylidene]ethyl]diphenylphosphine oxide (2).

A solution of the above-mentioned Z / E-mixture ($97 \mathrm{mg}, 0.167 \mathrm{mmol}$) and 9-fluorenone (3.1 $\mathrm{mg}, 0.017 \mathrm{~mol})$ in t-BuOMe (6.6 ml) was irradiated with a medium pressure mercury arc lamp for 3 h. The reaction mixture was concentrated and chromatographed (hexane: $\mathrm{EtOAc}=2: 1$) to give 2 (92 $\mathrm{mg}, 95 \%) ;[\alpha] \mathrm{D}^{24}-2.9^{\circ}\left(c 1.43, \mathrm{CHCl}_{3}\right),\left[\alpha \mathrm{D}^{24}-2.6^{\circ}(c 1.21, \mathrm{EtOH})\left[\mathrm{lit} .^{3}[\alpha] \mathrm{D}^{25}-2.3^{\circ}(c 0.5, \mathrm{EtOH})\right] ;\right.$ ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 1.71(\mathrm{ddd}, J=2.5,8.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=5.0,13.3,1 \mathrm{H})$, $2.33(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dt}, J=6.6,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dt}, J=8.7,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$
(quint. $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=1.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=1.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=8.0,6.9, \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.74(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9,-4.8,-4.7,18.2,18.3,25.9,31.0,31.9,44.9,45.6,67.5$, $70.9,110.3,115.1,115.2,128.5,128.7,131.1,131.2,131.8,132.5,133.5,141.0,141.1,147.8$; FTIR (neat) $1467,1253,1201,1083 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{3} \mathrm{PSi}_{2}\left(\mathrm{M}^{+}\right) 582.3114$, found 582.3098.

References
(1) Anné, S.; Yong, W.; Vandewalle, M. Synlett 1999, 1435.
(2) Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299.
(3) Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskokovic, M. R. J. Org. Chem. 1986, 51, 3098.

