Supplemental Materials for

Entropy-Controlled Asymmetric Synthesis. How Differential Activation Entropy is Induced in the Chiral Tethered Reactions

Takashi Sugimura,* Kazutake Hagiya, Yasuhiro Sato, Takahiro Tei, Akira Tai, and Tadashi Okuyama

Faculty of Science, Himeji Institute of Technology, Kohto, Kamigori, Ako-gun, Hyogo 678-1297 Japan

General. All temperatures are uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ were recorded on a JEOL GX-400 spectrometer in CDCl_{3} as a solvent and internal standard (7.24 ppm and 77.1 ppm). IR spectra were obtained on a JASCO FT/IR-410 spectrometer. Mass spectra were obtained on a JEOL JMS-AX-505HA. Optical rotations were measured on a Perkin-Elmer 243B polarimeter. Analytical GLC was conducted with a Shimadzu gas chromatograph GC-17A using capillary columns. MPLC was carried out by using an FMI pump ($10 \mathrm{ml} / \mathrm{min}$) and a Lobar column (MERCK Si-60 type B). All solvents were purified by distillation. All reactions were carried out under dry nitrogen atmosphere.

Preparation of substrates 1-9. The substrates were prepared by the following procedure.

For I-1, I-5, and I-6 to I-9: To a solution of $(2 R, 4 R)$-2,4-pentanediol or 1,3-propanediol (1.2 eq), phenol or cresol ($2 \mathrm{~g}, 1.0 \mathrm{eq}$), and triphenylphosphine (1.2 eq) in THF (100 ml) was added dropwise a THF (50 ml) solution of diethyl azodicarboxylate or diisopropyl azodicarboxylate (1.2 eq). After stirring for $10-15$ hours at room temperature, the solution was concentrated, then purified by column chromatography on silica gel (elution with 25% ethyl acetate in hexane) to give $3.0-3.5 \mathrm{~g}$ of diastereo- and enantiomerically pure phenyl or tolyl mono-ether.

I-1 (99% yield): colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+14.97$ (c 1.00, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 3 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 2.58$ (brs, 1H), 1.93 (ddd, $J=$ $14.2,8.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=14.2,4.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.0, \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}$,
$J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 127.10,129.44,121.09,116.23,73.68,66.84,45.56$, 23.79, 19.97. IR (neat, cm^{-1}) $3400,2940,1600,1500,1380,1250,1120,760,700$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}: 73.30, \mathrm{H}: 8.95$. Found: C: 72.03, $\mathrm{H}: 8.67$.
I- $5\left(95.0 \%\right.$ yield): colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 3 \mathrm{H})$, $4.13(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.05 (quint, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.71 (brs, 1 H). IR (neat, cm^{-1}) 3350, 2950, 2900, 1600, 1500, 1250, 1180, 1060, 760, 700. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}: 71.03, \mathrm{H}: 7.95$. Found: C: 70.35, H: 8.18.
I- $6\left(90.2 \%\right.$ yield): colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+13.46(\mathrm{c} 1.00, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.12$ $(\mathrm{m}, 1 \mathrm{H}), 6.77-6.63(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.93$ (ddd, $J=14.4,8.8$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=14.4,4.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 139.54,129.19,122.02,117.22,113.06,100.53,73.84,67.04$, 45.63, 23.79, 20.57, 20.07. IR (neat, cm^{-1}) 3430, 2940, 1590, 1460, 1260, 1120, 1050, 950, 880, 700. HRMS, $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$, 194.1307; found, 194.1309.
I- $7\left(87.5 \%\right.$ yield): colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{t}$ like, $J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}$ like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}$ like, $J=6.3,5.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (quint like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.58$, $139.32,129.04,121.53,115.25,111.22,65.45,60.26,32.00,21.47$. IR (neat, cm^{-1}) 3365 , 2951, 1712, 1602, 1491, 1263, 1158, 1064, 774, 690. HRMS, $m / z(M+)$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$, 166.0994; found, 166.1019.

I- 8 (79.3% yield): colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+25.13(\mathrm{c} 1.02, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.16-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{brs}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, 1.98 (ddd, $J=14.4,9.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddd, $J=14.4,4.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.07,130.89,127.78,126.61$, 120.76, 113.35, 73.84, 67.04, 45.66, 23.68, 20.05, 16.49. IR (neat, cm^{-1}) 3400, 1500, 1460, 1380, 1290, 1240, 1120, 1050, 960, 750. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}, 194.1307$; found, 194.1275.
I- 9 (95.0% yield): colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H})$, 4.11 (t like, $J=5.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (quint like, $J=$ $5.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.70,130.53,126.69,126.44,120.39,110.82,65.72$, $60.59,32.10,16.26$. IR (neat, cm^{-1}) $3375,2950,1602,1496,1245,1121,1061,750$. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0994$; found, 166.0966.
The Mitsunobu reaction of $\mathbf{I}-\mathbf{1}$ with benzoic acid gave benzoate of $\mathbf{I}-\mathbf{2}$ in 99.5% yield. Solvolysis of this with KOH in ethanol under reflux resulted in $\mathbf{I} \mathbf{- 2}$ in 94.1% yield. $[\alpha]^{\mathrm{D}}{ }_{20}=$
+86.6 (c 1.0, methanol), ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{dd}, J=7.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~m}, 3 \mathrm{H}), 4.67$ $(\mathrm{m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{brs}, 1 \mathrm{H}), 1.82$ (ddd, $J=14.3,8.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (ddd, $J=$ $14.3,9.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H})$. IR (neat, cm^{-1}) $3380,2950,2930,1600,1500,1380,1250,1180,1120,1050,750,700$. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}, 180.1150$; found, 180.1185 .

For I-3 and I-4, (3R)-1-benzolyoxybutane-3-ol and (3R)-3-tetrahydropylanoyl-1-butanol were employed instead of the diol for the Mitsunobu reaction with phenol (80.0% and 89.2% yields). After solvolysis, $\mathbf{I} \mathbf{- 3}$ and $\mathbf{I - 4}$, were obtained (98.6% and 69.1% yields).
I-3: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+61.89(\mathrm{c} 0.98, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(\mathrm{CDCl} 3) \delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H})$, 6.96-6.90 (m, 3H), 4.62 (m, 1H), 3.86-3.79 (m, 2H), 2.04-1.85 (m, 3H), $1.33(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.48,129.24,120.57,115.76,71.43,59.10,39.00,19.62$. IR (neat, cm^{-1}) 3400, 2950, 1600, 1500, 1380, 1300, 1240, 1180, 1140, 1060, 760, 700. MS $(\mathrm{M}+), m / z$ (\%) 166 (17.8), 149 (18.3), 121 (2.9), 94 (100), 77 (5.7), 66 (7.1). HRMS, m / z $(\mathrm{M}+)$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0994$; found, 166.0983.
I-4: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=-40.6(\mathrm{c} 1.2, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H})$, 6.97-6.89 (m, 3H), 4.20-4.07 (m, 3H), 2.07 (brs, 1H), 1.95-1.90 (m, 2H), 1.27 (d, $J=6.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.45,129.23,120.61,114.28,65.66,65.36,38.04,23.51$. IR (neat, cm^{-1}) 3400, 2950, 1600, 1500, 1480, 1240, 750, 700. MS (M+), m/z (\%) 166 (30.4), 150 (10.4), 149 (32.6), 95 (15.8), 94 (100), 77 (20.6), 57 (11.8), 55 (26.7). HRMS, m / z (M+) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0994$; found, 166.1006.

A typical procedure for $\mathbf{I I}$ is as follows: To a solution of $\mathbf{I}(1.5 \mathrm{~g})$, diketene (1.2 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{eq})$ slowly at room temperature. After stirring for 2 hours, the mixture was quenched with water, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml} \times 3)$, and washed with water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentration, and column chromatography on silica gel (elution with 30% ethyl acetate in hexane) afforded 1.72.2 g of II as a light-brownish to colorless oil.

II-1 (99.3\% yield): $[\alpha]^{\mathrm{D}}{ }_{20}=+22.8$ (c 1.04, MeOH). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{dd}, J=8.8,7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{tt}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.46$ (sextet like, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (s, 2H), 2.23 (s, 3 H), 2.15 (ddd, $J=14.2,7.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (ddd, $J=14.2,6.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. IR (neat, cm^{-1}) 1750, 1720, 1600, 1500, 1240, 1160, 1100, 760. MS (M+), m/z (\%) 264 (12.1),

121 (98.2), 85 (89.6), 77 (92.3), 43 (100). HRMS, $m / z\left(M+\right.$) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}, 264.1362$; found, 264.1354.

II-2 (99.2% yield): $[\alpha]^{\mathrm{D}}{ }_{20}=+78.0$ (c 1.0, methanol), IR (neat, cm^{-1}) 2980, 1750, 1720, 1600, $1500,1240,1150,1110,760 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{dd}, J=8.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=$ $7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 2.14$ (s, 3H), 1.94-1.81 (m, 2H), $1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}) . \quad \mathrm{HRMS}, m / z$ $\left(\mathrm{M}+\right.$) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}, 264.1362$; found, 264.1314.
II-3 (80% yield) : $[\alpha]^{\mathrm{D}}{ }_{20}=+49.6(\mathrm{c} 0.87, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.87(m, 3H), $5.20(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=5.9,2 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.76,166.40$, $157.26,128.93,120.29,115.41,69.96,61.48,49.35,35.00,29.52,19.30$. IR (neat, cm^{-1}) 2976, 1717, 1599, 1494, 1241, 755, 694.

II-4 (97.1\% yield): $[\alpha]^{\mathrm{D}}{ }_{20}=-36.5$ (c 1.04, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.24$ (t-like, $J=8.3$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d} J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.23$ $(\mathrm{m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.07,166.24,158.39,129.14,120.62,114.23,69.33,63.74,50.08,35.21$, 29.83, 19.92. IR (neat, cm^{-1}) 2979, 1716, 1600, 1497, 1360, 1245, 1049, 756, 693.

II-5 (78.9% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}$ like, $J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.87 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03$ (t like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (s, 2 H), $2.24\left(\mathrm{~s}, 3 \mathrm{H}\right.$), 2.13 (quintet like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, cm^{-1}) 2968, 1742, 1600, 1497, 1361, 1244, 1152, 1052, 757, 693. HRMS, $m / z\left(\mathrm{M}+\right.$) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}, 236.1049$; found, 236.1043.
II-6 (94.7% yield): $[\alpha]^{\mathrm{D}}{ }_{20}=+24.8$ (c 1.02, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13$ (t like, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}$, 2 H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{dt}$ like, $J=14.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.47,157.46,139.47,129.15$, $121.51,116.66,112.45,70.28,69.80,50.41,42.41,30.20,21.57,20.28,19.84$. IR (neat, cm^{-1}) 2980, 1740, 1710, 1260, 1150, 1100. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}, 278.1518$; found, 278.1521.

II-7 (93.1\% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.70-6.67 (m, 2H), $4.33(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}$ like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.44$ (s, 2H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (quintet like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, $\left.\mathrm{cm}^{-1}\right) 2964,1743$, 1602, 1261, 1157, 1057, 777, 691. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}, 250.1205$; found,
250.1159.

II-8 (93.2\% yield): $[\alpha]^{\mathrm{D}}{ }_{20}=+25.16$ (c $\left.0.95, \mathrm{MeOH}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$, 6.84-6.79 (m, 2H), $5.19(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (m, 1H) , 1.74 (ddd, $J=14.2,5.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.09,166.30,155.43,130.65,127.43,126.46,120.11,112.23$, $70.27,69.52,50.18,42.39,29.97,20.09,19.75,16.34$. IR (neat, cm^{-1}) 2979, 1717, 1601, 1493, 1360, 1239, 1119, 1038, 958, 751. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}, 278.1518$; found, 278.1517.
II-9 (99.6\% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.87$ (t like, $\left.J=7.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.06$ (t like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.47$ (s, 2 H), $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (quintet like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, cm^{-1}) 2963, 1743, 1602, 1496, 1245, 1123, 1051, 754. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}, 250.1205$; found, 250.1188 .

A typical experiment for the preparation of $\mathbf{1 - 9}$ is as follows: To a solution of II (1.5 g, $1.0 \mathrm{eq})$, $\mathrm{TsN}_{3}(1.5 \mathrm{eq})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{ml})$ was added dropwise $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for $2-3$ hours, the mixture was added to $1 \mathrm{~N}-\mathrm{NaOH}(15 \mathrm{ml})$. After $15-20$ hours, the mixture was extracted with ether ($50 \mathrm{ml}, 3$ times) and washed with water (100 ml). Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentration, and column chromatography on silica gel (elution with 20% ethyl acetate in hexane) afforded $0.5-1.7 \mathrm{~g}$ of the substrate as deep yellow oil (37-83 \% yield).
$1(82.5 \%$ yield $):[\alpha]^{\mathrm{D}}{ }_{20}=+10.4$ (c 1.11, MeOH). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{dd}, J=8.8,7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.91 (t like, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86(\mathrm{dd}, J=8.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.70$ (brs, $1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=14.2,8.3 ., 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=14.2,6.3,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. IR (neat, cm^{-1}) 2980, 2120, 1700, $1600,1500,1390,1250,1200,1100,760 . \mathrm{MS}(\mathrm{m} / \mathrm{z}) 148$ (M+, 37%), 220 (100).
$2\left(83.4 \%\right.$ yield): $[\alpha]^{\mathrm{D}}{ }_{20}=+88.4$ (c 1.1, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.24$ (t-like, $J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{brs}, 1 \mathrm{H}), 4.41(\mathrm{~m}$, $1 \mathrm{H}), 1.91$ (ddd, $J=14.2,8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=14.2,8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ (d, $J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 3100,2980,2110,1700,1600,1500$, 1380, 1250, 1190, 1110. MS (m / z) 148 ($\mathrm{M}+, 8.2 \%$), 220 (100).
3 (72.0% yield): $[\alpha]{ }^{\mathrm{D}}{ }_{20}=+45.6$ (c 1.13, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.23$ (t-like, $J=8.3,7.3$

Hz, 2H), $6.90(\mathrm{t}, \mathrm{J}=7.3, \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.71$ (brs, 1H), 4.45 (m, 1H), 4.35$4.22(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $157.39,129.05,120.42,115.51,70.20,61.23,45.75,35.43,19.48$. IR (neat, cm-1) 2975, 2111, 1694, 1599, 1494, 1361, 1241, 754, 693.
4 (90.7% yield): $[\alpha]^{\mathrm{D}}{ }_{20}=-58.5$ (c 1.13, MeOH). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.23$ (dd, $\mathrm{J}=8.3,7.3 \mathrm{~Hz}$, 2H), $6.90(\mathrm{t}, \mathrm{J}=7.3, \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{brs}, 1 \mathrm{H}), 3.97-3.94$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 158.35,129.04$, $120.35,114.14,68.64,63.77,45.87,35.31,20.19$. IR (neat, cm^{-1}) 2979, 2110, 1686, 1599, 1497, 1379, 1245, 756, 692.
5 (58.9% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{brs}, 1 \mathrm{H})$, $4.36(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03$ (t like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.12 (quint-like, $J=6.3,5.9 \mathrm{~Hz}$, $2 H)$. IR (neat, cm^{-1}) 2112, 1695, 1600, 1496, 1398, 1364, 1244, 1054, 755, 692.
$6(72.6 \%$ yield $):[\alpha]^{\mathrm{D}}{ }_{20}=+25.13$ (c 1.02, MeOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.12$ (t like, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.64$ (m, 2H), 5.17 (m, 1H), 4.70 (brs, 1H), 4.40 (m, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.69$ (ddd, $J=14.2,6.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J$ $=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.44,139.40,129.08,121.45$, $116.61,112.36,70.32,69.14,46.33,42.60,21.61,20.72,19.93$. IR (neat, cm^{-1}) 2980, 2120, 1680, 1380, 1260, 1190, 1160, 960.
7 (37.1% yield): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-$ $6.68(\mathrm{~m}, 2 \mathrm{H}), 4.73$ (brs, 1H), $4.35(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}$ like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ (s, 3H), 2.11 (quint-like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, cm^{-1}) 2962, 2111, 1695, 1602, 1491, 1364, 1187, 1058, 741, 691.
$8\left(45.1 \%\right.$ yield) : $[\alpha]^{\mathrm{D}}{ }_{20}=+12.97$ (c 1.02, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$, 6.83-6.78 (m, 2H), $5.20(\mathrm{~m}, 1 \mathrm{H}), 4.71$ (brs, 1H), $4.43(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 1.73 (ddd, $J=14.2,6.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.49,130.69,127.52,126.43,120.10,112.14,70.29,69.01,46.20,42.58$, 20.52, 19.83, 16.38. IR (neat, cm^{-1}) 2979, 2110, 1692, 1492, 1379, 1238, 1191, 742.

9 (37.1% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.85$ (t like, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (brs, 1H), 4.38 (t , $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.03 (t like, $J=6.3,5.9 \mathrm{~Hz}$, 2 H), 2.21 (s, 3H), 2.15 (quint-like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, cm^{-1}) 2962, 2111, 1695, 1602, 1496, 1364, 1244, 1123, 1052, 752.

Rhodium catalyzed cycloaddition of 1-9

Preparative procedure. To a solution of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(\mathrm{ca} .1 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ was added dropwise a solution of $\mathbf{1}(1.2 \mathrm{~g}, 4.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ for 3 hours at room temperature. Immediately after dropping, the mixture was concentrated, and then purified by column chromatography on silica gel (elution with 20% ethyl acetate in hexane) to give a cycloheptatriene. The other substrates $\mathbf{2 - 9}$ were also treated by the same procedure. The structure of the product was determined by the NOE study as well as spin decoupling for the peak assignment on the ${ }^{1} \mathrm{H}$ NMR. A part of the reaction mixture was analyzed by GLC to determine the stereochemical purity.

Cycloheptatriene from 1: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+63.3(\mathrm{c} 1.04, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.55\left(\mathrm{dd}, J_{3,4}=10.7, J_{4,5}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.42\left(\mathrm{dd}, J_{3,4}=10.7, J_{2,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $6.22\left(\mathrm{dd}, J_{5,6}=9.5, J_{4,5}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 6.00\left(\mathrm{dd}, J_{5,6}=9.5, J_{6,7}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.94$ $\left(\mathrm{d}, J_{2,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PD}), 4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PD}), 2.95\left(\mathrm{~d}, J_{6,7}=5.4 \mathrm{~Hz}, 1 \mathrm{H}-7\right)$, 2.04 (s, 3H, H-8), 2.00 (ddd, $J=15.3,11.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PD}$), 1.83 (dd like, $J=15.3,3.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PD}), 1.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.75$, 149.04, 129.10, 127.19, 125.49, 120.47, 111.40, 84.57, 73.34, 47.44, 45.42, 22.67, 22.28. IR (neat, cm^{-1}) 1740, 1390, 1330, 1210, 1190, 1140, 1090, 1050, 720. MS (M+), m/z (\%) 220 (14.9), 176 (16.5), 134 (21.9), 107 (100), 70 (12.2), 44 (19.3). HRMS, m / z (M+) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}, 220.1099$; found, 220.1132. ${ }^{1} \mathrm{H}$ NMR NOE enhancement; $\mathrm{H}-7$ to $\mathrm{H}-2^{\prime}=10.9 \%$.
Cycloheptatriene from 2: colorless oil, ${ }^{1} \mathrm{H}$ NMR $\delta 6.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3,4), 6.36\left(\mathrm{dd}, J_{5,6}=8.8\right.$, $\left.J_{4,5}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.86\left(\mathrm{dd}, J_{5,6}=8.8, J_{6,7}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.80\left(\mathrm{~d}, J_{2,3}=3.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2), 5.16$ (m, 1H, PD), 4.51 (dd, $J=10.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PD}$), 2.29 (d, $J_{6,7}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7), 2.08 (ddd, $J=14.2,10.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PD}$), 1.87 (ddd, $J=14.2,11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PD}$), 1.35 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}$), 1.24 (d, $J=4.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}) .{ }^{13} \mathrm{C} \mathrm{NMR} \delta 171.3,142.5,129.3,128.3$, 126.2, 125.4, 116.7, 104.3, 70.1, 69.1, 46.3, 45.9, 21.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ NOE enhancement; H-7 to $H-4 '=5.5 \%$.

Cycloheptatriene from 3: colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.55(\mathrm{dd}, \mathrm{J} 3,4=11.0$, J 4,5 $=5.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.41$ (dd, $J_{3,4}=11.0, J_{2,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $6.22\left(\mathrm{dd}, J_{5,6}=9.3, J_{4,5}=5.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5), 5.93\left(\mathrm{~d}, J_{2,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.92\left(\mathrm{dd}, J_{5,6}=9.3, J_{6,7}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.42$ $(\mathrm{m}, 1 \mathrm{H}), 4.38-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.00\left(\mathrm{~d}, J_{6,7}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.35$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.71,148.72,129.34,129.12,127.27,125.65$, 115.73, 83.65, 64.65, 47.31, 38.01, 22.76. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ NOE enhancement; $\mathrm{H}-7$ to $\mathrm{H}-3$ ' = ca. 5.0\%.

Cycloheptatriene from 4: colorless oil, $[\alpha]{ }^{\mathrm{D}}{ }_{20}=-1.7(\mathrm{c} 1.03, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.56\left(\mathrm{dd}, J_{3,4}=10.9, J_{4,5}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.50\left(\mathrm{dd}, J_{3,4}=10.9, J_{2,3}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $6.32\left(\mathrm{dd}, J_{5,6}=9.3, J_{4,5}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.90\left(\mathrm{dd}, J_{5,6}=9.3, J_{6,7}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.86$ $\left(\mathrm{d}, J_{2,3}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.01(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.50\left(\mathrm{~d}, J_{6,7}=6.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-7), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.95$, 144.91, 127.85, 127.27, 125.43, 117.95, 106.95, 71.13, 66.92, 46.22, 38.48, 21.53.1H-NMR NOE enhancement; H-7 to $\mathrm{H}-2^{\prime}=6.0 \%$.

Cycloheptatriene from 5: colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.56$ (dd, $J_{3,4}$ $\left.=10.7, J_{4,5}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.46\left(\mathrm{dd}, J_{3,4}=10.7, J_{2,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 6.29\left(\mathrm{dd}, J_{5,6}=\right.$ $\left.9.3, J_{4,5}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.91\left(\mathrm{~d}, J_{2,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 5.86\left(\mathrm{dd}, J_{5,6}=9.3, J_{6,7}=6.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6), 4.54$ (ddd, $J=12.7,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.45-4.36$ (m, 2H), 4.05 (dm, $J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J} 6,7=6.3 \mathrm{~Hz}, 1 \mathrm{H}-7), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H})$.
Cycloheptatriene from 6: colorless solid, $[\alpha]^{\mathrm{D}} 20=+40.18\left(\mathrm{c} 0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{mp} 61.9-68.0{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.34\left(\mathrm{~d}, J_{4,5}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.13\left(\mathrm{dd}, J_{5,6}=9.4, J_{4,5}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 5), $5.91\left(\mathrm{~d}, J_{5,6}=9.4, J_{6,7}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PD}), 4.32(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{PD}), 3.02\left(\mathrm{~d}, J_{6,7}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-8), 1.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PD}), 1.85(\mathrm{~m}, 1 \mathrm{H}$, PD), $1.35(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}), 1.33(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.00$, $148.47,136.20,126.59,125.67,118.76,114.59,84.65,73.31,47.36,45.53,24.61,22.69$, 22.31. IR (neat, cm^{-1}) 1720, 1630, 1240, 1080, 720. HRMS, $m / z(M+)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$, 234.1256; found, 234.1259. ${ }^{1} \mathrm{H}$ NMR NOE enhancement; $\mathrm{H}-7$ to $\mathrm{H}-4{ }^{\prime}=3.7 \%, \mathrm{H}-7$ to $\mathrm{H}-2^{\prime}=$ 9.2\%.

Cycloheptatriene from 7: colorless oil, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.34\left(\mathrm{~d}, J_{4,5}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right)$, $6.17\left(\mathrm{dd}, J_{5,6}=9.3, J_{4,5}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.76\left(\mathrm{dd}, J_{5,6}=9.3, J_{6,7}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.74$ (s, 1H, H-2), 4.54 (ddd, $J=12.2,5.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.02$ (ddd, $J=12.2$, $5.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.78,146.52,136.78,125.96,117.29,117.22,112.75,70.23,63.61,46.93$, 30.88, 24.64. IR (neat, cm^{-1}) 2971, 1732, 1631, 1209, 845, 724. HRMS, m / z (M+) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}, 206.0943$; found, 206.0969.
Cycloheptatriene from 8 with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$: colorless solid, $\mathrm{mp} 62-63{ }^{\circ} \mathrm{C},[\alpha]^{\mathrm{D}}{ }_{20}=-47.1$ (c $\left.1.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.19\left(\mathrm{~d}, J_{4,5}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.06\left(\mathrm{~d}, J_{2,3}=9.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-3$), 5.86 (t-like, $J_{2,3}=9.3, J_{1,2}=8.3, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.69 (t-like, $J_{4,5}=9.3, J_{1,5}=8.8, \mathrm{~Hz}$, 1H, H-5), 4.08-4.03 (m, 2H, PD), 2.05 (ddd, $J=15.6,12.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PD}$), 1.95 ($\mathrm{s}, 3 \mathrm{H}, 1 \mathrm{H}$, $\mathrm{H}-6), 1.47(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}), 1.41(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PD}), 1.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PD}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 173.92,153.37,129.85,128.20,125.34,125.00,122.47,78.60,76.94,45.22$, 42.33, 23.90, 20.93, 15.81. IR (neat, cm^{-1}) 2976, 1722, 1378, 1206, 11896, 1167, 1120, 1042, 756. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, 234.1256$; found, 234.1232.

Stereochemistry of this compound was determined to be $1 S$ by the NOE analysis of the product of the stereospecific Diels-Alder reaction: The obtained cycloheptatriene (9.1 mg) was treated with TCNE ($12 \mathrm{mg}, 2.4 \mathrm{eq}$.) in chloroform at $50^{\circ} \mathrm{C}$ for 1 d . Silica gel purification gave a colorless solid (3.1 mg) in 23.6% yield. $\mathrm{mp} 185-186^{\circ} \mathrm{C}$. $[\alpha]^{\mathrm{D}}{ }_{20}=27.7$ (c 0.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 4.16$ (m, 1H, H-2'), 4.10 (m, 1H, H-4'), $3.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.79(\mathrm{~m}, 1 \mathrm{H}$, H-5), 2.23 (ddd, $J=16.4,12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), 2.00-1.85 (m, 3H, H-2,3,4), 1.75 (s, 3H, CH3-7), 1.69 (d, t-like, $J=16.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), 1.55 (d, $J_{4}, 5^{\prime}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-5$ '), 1.35 (d, $\left.J_{1^{\prime}, 2^{\prime}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$. ${ }^{13} \mathrm{C}$ NMR $\delta 166.0,145.0,121.8,111.1,110.9,110.4,77.9,77.2$, $75.5,47.3,44.8,44.6,43.8,43.7,23.7,19.7,15.5,15.4,13.6 .{ }^{1} \mathrm{H}$ NMR NOE enhancement; $\mathrm{CH}_{3}-7$ to $\mathrm{H}-1$, and $\mathrm{H}-5$ to $\mathrm{H}-2^{2}$.

Cycloheptatriene from 8 with $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$: The reaction was carried out with $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$ at rt for 2 h . Silica gel column purification eluted with 20% ethyl acetate in hexane gave colorless oil in 75% yield. $[\alpha]^{\mathrm{D}}{ }_{20}=+35.5\left(\mathrm{c} 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 2977, 1731, 1273, 1186, 1130, 1081. ${ }^{1} \mathrm{H}$ NMR $\delta 6.38\left(\mathrm{dd}, J_{2,3}=5.9 \mathrm{~Hz}, J_{3,4}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $6.25\left(\mathrm{dd}, J_{3,4}=4.9 \mathrm{~Hz}, J_{4.5}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 6.13\left(\mathrm{~d}, J_{2,3}=5.9 \mathrm{~Hz}, \mathrm{H}-2\right), 5.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2^{\prime}), 4.35 (m, 1H, H-4'), 3.15 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-7$), 2.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-6$), 2.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 1.78 (d, J $\left.=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.39(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR d 171.4, 145.2, 127.7, 127.5, 124.8, 124.6, 110.6, 78.6, 75.4, 51.5, 45.7, 23.0, 22.6, 22.4. HRMS, m / z $(\mathrm{M}+)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, 234.1256$; found 234.1213. ${ }^{1} \mathrm{H}$ NMR NOE enhancement; $\mathrm{H}-7$ to H $2 '=5.9 \%$, and $\mathrm{H}-7$ to $\mathrm{CH}_{3}-2=8.4 \%$.

Determination of diastereomeric and regioisomeric purities. Stereoselectivity of the all rhodium-catalyzed reactions are over 90% judging by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR after and before the silica gel column purification. The diastereomeric excesses at the 6 a -position (7-position
of the cycloheptatriene unit) were confirmed by the capillary GLC analysis after the derivation of the reaction mixture.

For example, when the reaction mixture of $\mathbf{1}(50-100 \mathrm{mg})$ was treated with excess LiAlH_{4} in dry ether at $-78{ }^{\circ} \mathrm{C}$ followed by treatments with acetic anhydride/pyridine, the produced diacetate showed a single peak on the GLC analysis (OV-1, $0.25 \mathrm{~mm} x 60 \mathrm{~m}, 30 \mathrm{~cm} / \mathrm{min}, 145$ ${ }^{\circ} \mathrm{C}$) at 56 min . When the reaction product of $\mathbf{1}$ after purification was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol at rt , transesterification took place and gave a mixture of the methyl esters, where the stereochemical purity at the 7 position of the cycloheptatriene unit was completely lost. After the reduction and acetylation, GLC analysis showed two separated peaks at 56 and 58 \min in a 1 to 1 ratio. Judging from the detection limit of these GLC conditions, production of the diastereomer in the reaction of $\mathbf{1}$ was determined to be less than 0.2%, and thus, the product diastereomeric excess is concluded to be over 99.6\%. Results of GLC analysis with a chiral column (Chirasil-DEX-CB, GL Science, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}, 30 \mathrm{~cm} / \mathrm{min}$) also supported this value.

Similar analyses were conducted for the reactions of the other substrates. Since small amounts of dimmeric compounds through intramolecular additions are possible in the reactions of the substrates having lower effective molarities, the stereoselectivities might be underestimated. In addition, there is a possibility to overestimate amounts of the epimers due to other products on the GLC analyses even though the two different columns were employed. Regioselectivity in the reaction of $\mathbf{6}-\mathbf{8}$ was determined to be over 90% by ${ }^{1} \mathrm{H}$ NMR.

Determination of the effective molarities. A solution of the substrate (20 mM) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene ($=0: 1$ to $1: 0.03$) was added to the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ at $20 \pm 1{ }^{\circ} \mathrm{C}$. The product ratios were determined by the integration of the corresponding peaks on ${ }^{1} \mathrm{H}$ NMR. The results are shown in Table A. The competitive reaction of benzene and isopropoxybenzene with ethyl diazoacetate was carried out similarly. The reaction of ethyl diazoacetate $(4.4 \mathrm{mM})$ with isopropoxybenzene $(44 \mathrm{mM})$ and benzene $(0.13-1.1 \mathrm{M})$ in the presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ was carried out in dichloromethane. The results are shown in Table B.

Table A.

Substrate	concentration of benzene (M)	intramolecular vs. intermolecular addition ratio	$k($ intra $) / k($ inter $)$
$\mathbf{1}$	11.25	$31: 69$	5.05
	2.81	$70: 30$	6.55
	1.61	$79: 21$	6.05
average	1.12	$85: 15$	6.34
$\mathbf{2}$	11.25	$-2:>98$	$\mathbf{6 . 0 0} \pm \mathbf{0 . 5 8}$
	2.81	$47: 53$	-
	1.61	$66: 34$	2.49
average	1.12	$69: 31$	3.13
$\mathbf{3}$	1.12	$27: 73$	2.94
	0.56	$41: 59$	$\mathbf{2 . 8 5} \pm \mathbf{0 . 2 7}$
	0.38	$52: 48$	0.414
average			0.389
$\mathbf{4}$	1.12	$21: 79$	0.412
	0.56	$50: 50$	$\mathbf{0 . 4 0 6} \pm \mathbf{0 . 0 1 2}$
	0.38	$57: 43$	0.316
average			0.560
$\mathbf{5}$	1.12	$7: 93$	0.504
	0.56	$16: 84$	$\mathbf{0 . 4 6 0} \pm \mathbf{0 . 1 0 4}$
	0.38	$19: 81$	0.091
average			0.107
$\mathbf{6}$	11.25	$46: 54$	0.089
	1.16	$91: 9$	$\mathbf{0 . 0 9 5 7} \pm \mathbf{0 . 0 0 8 1}$
	1.12	$92: 8$	9.583
average		$12: 88$	11.73
$\mathbf{7}$	11.25	$35: 65$	12.88
average	0.38	$16: 84$	$\mathbf{1 1 . 4 0} \pm \mathbf{1 . 3 7}$
$\mathbf{8}$	0.56	$33: 76$	0.153
	0.38		0.200
average			$\mathbf{0 . 1 7 7} \pm \mathbf{0 . 0 2}$

Table B.

$[\mathrm{PhH}] / \mathrm{M}$	Product ratio from $\mathrm{PhH} / \mathrm{iPrOPh}$	$k(\mathrm{iPrOPh}) / k(\mathrm{PhH})$
1.10	3.15	7.94
0.731	1.74	9.55
0.550	1.43	8.74
0.504	1.17	9.79
0.441	1.09	9.20
0.221	0.562	8.94
0.127	0.259	11.14
average		$\mathbf{9 . 3 3} \pm \mathbf{0 . 9 2}$

Data for the intermolecular adducts with benzene

From 1: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=-3.3(\mathrm{c} 0.93, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}$ like, $J=3.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{ddm}$, $J=9.3,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=8.8,5.9$ and $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 2.55$ (t like, $J=5.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (ddd, $J=14.2,6.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (ddd, $J=14.2,6.3,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(\mathrm{CDCl} 3) \delta 172.26$, $157.41,130.79,129.39,125.55,120.63,117.25,115.72,70.54,69.21,44.32,42.47,20.45$, 19.95. IR (neat, cm^{-1}) 2978, 1735, 1598, 1494, 1239, 1029, 752, 693. HRMS, $m / z(\mathrm{M}+$) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}, 298.1569$; found, 298.1534 .
From 2: colorless oil, ${ }^{1} \mathrm{H}$ NMR $\delta 7.25(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.61(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{tm}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{dd}, J=9.3,5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H})$.
From 3: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+39.5(\mathrm{c} 0.53, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (CDCl3) $\delta 7.27-7.22(\mathrm{~m}, 2 \mathrm{H})$, $6.92(\mathrm{t} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}-\mathrm{like}, J=3.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.23$ (ddlike, $J=9.3,3.4$ and $2.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.37 (dd-like, $J=9.3,5.9$ and $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H})$, $4.37-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}$ like, $J=5.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
From 4: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=-60.0(\mathrm{c} 0.57, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$, $6.92(\mathrm{t} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~m}, 2 \mathrm{H}), 5.40$ $(\mathrm{dm}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}$ like, $J=5.9,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
From 5: colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63$ (t-like, $J=3.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{dm}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=$ $8.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}$ like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}$ like, $J=$ $5.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (quint like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, cm^{-1}) 2963, 2926, 1737, $1600,1496,1246,1052,754,692$, 593. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}, 270.1256$; found, 270.1284.

From 6: colorless oil, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.67-6.64 (m, 1H), 6.64 (t like, $J=3.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.24$ (dd, $J=9.3,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.41 (ddd, $J=8.8,5.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{t}$ like, $J=5.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.2,157.4,130.8,130.7,129.0,128.2,121.4,117.4,116.5,112.4,70.3$,
69.1, 44.3, 42.5, 21.6, 20.5, 20.0. HRMS, $m / z(\mathrm{M}+)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}, 312.1725$; found, 312.1677.

From 7: colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}$ like, $J=7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{dm}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{dd}, J=$ $8.8,5.9$ and $5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $4.38(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}$ like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}$ like, $J=5.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (quint like, $J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat, cm^{-1}) 2961, 1738, 1602, 1491, 1262, 1158, 1057, 691. HRMS, $m / z(M+)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$, 284.1412; found, 284.1400.

From 8: colorless oil, $[\alpha]^{\mathrm{D}}{ }_{20}=+7.0(\mathrm{c} 0.93, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 2 H), 6.82 (t like, $J=7.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ (t like, $J=3.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), $6.25(\mathrm{dd}, J=9.3,2.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.41 (ddd, $J=8.8,5.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}$ like, $J=5.9$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (ddd, $J=14.2,6.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.14,155.49,130.72,130.68$, $127.50,126.46,125.47,120.14,117.10,112.23,70.38,69.06,44.18,42.49,20.26,19.92$, 16.43. IR (neat, cm^{-1}) 2978, 1735, 1492, 1239, 1119, 747, 700. HRMS, $m / z(\mathrm{M}+$) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}, 312.1725$; found, 312.1700 .

NOE table to determin the stereochemistry

