Palladium-Catalyzed Cyanation of Propargylic Carbonates with Trimethylsilyl Cyanide

Yasushi Tsuji,* Masahiko Taniguchi, Tamami Yasuda, Takashi Kawamura, and Yasushi Obora
Catalysis Research Center and Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0811, Japan, and Department of Chemistry, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

SUPPORTING INFORMATION

Analytical Procedure. The NMR spectra of the sample in CDCl_{3} were recorded on J EOL $\alpha-400$ spectrometer: ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}(100 \mathrm{MHz})$, and ${ }^{29} \mathrm{Si}(79.4 \mathrm{MHz})$. The mass (GCMS) spectra were measured with Shimadzu QP-1000 equipped with a PAC 1100 S computer system. The GC analysis was made on a Shimadzu GC-8APF with a column (3 mm i.d. $\times 3 \mathrm{~m}$) packed with Silicon OV-17 (2% on Uniport HP, 60/80 mesh) or Apiezon Grease L (5% on Uniport HP, 60/80 mesh). Elemental analysis was performed at the Microanalytical Center of Kyoto University.

Cyanation of propargylic carbonate (1) with 1 equiv of trimethylsilyl cyanide (2) (eq 1 and Table 1). A typical procedure is described for the cyanation of 1a (entry 1). A mixture of $\mathbf{1 a}(226 \mathrm{mg}, 1.0 \mathrm{mmol}), 2(99 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58$ $\mathrm{mg}, 0.050 \mathrm{mmol}$), and THF (4.0 mL) was placed under argon atmosphere in a 20 mL flask equipped with a three-way stopcock. The reaction was carried out under reflux for 1 h . After the reaction, the resulting reaction mixture was passed through a short Florisil column (8 mm i.d. $\times 70 \mathrm{~mm}$) to give a almost colorless (or slightly yellow) solution. Kugelrohr distillation (pot temp $90-100{ }^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) provided 3a (161 mg) in 91% yield as colorless liquid.

Cyanation of 1 with excess 2 (Table 2, eq 3, and eq 5). A typical procedure is as follows (entry 9): A 20 mL flask was charged with $\mathbf{1 h}(212 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{2}(595$ $\mathrm{mg}, 6.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58 \mathrm{mg}, 0.050 \mathrm{mmol})$, and THF (4.0 mL) under argon atmosphere. The reaction was carried out under reflux for 20 h . After the reaction, the
resulting reaction mixture was passed through a short Florisil column (8 mm i.d. $\times 70$ mm) to afford a pale yellow solution. Kugelrohr distillation (pot temp $90{ }^{\circ} \mathrm{C} / 0.04$ mmHg) afforded (Z)-7a (199 mg) in 80\% yield as colorless liquid.

Reaction of cyanoallene (3) with excess 2 (eq 4 and eq 6). The following reaction shows a typical procedure (eq 4). A mixture of $\mathbf{3 g}(149 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{2}$ (496 $\mathrm{mg}, 5.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58 \mathrm{mg}, 0.050 \mathrm{mmol})$, and THF $(4.0 \mathrm{~mL})$ was stirred under argon atmosphere at $70{ }^{\circ} \mathrm{C}$ for $20 \mathrm{~h} . \mathrm{GC}$ analysis of the reaction mixture with the internal standard method showed (Z)-7a was afforded in 93% yield.

3a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.45$ (quin, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}), 2.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.89\left(\mathrm{CH}_{3}\right), 19.53\left(\mathrm{CH}_{3}\right)$, $22.44\left(\mathrm{CH}_{2}\right), 27.42\left(\mathrm{CH}_{2}\right), 28.08\left(\mathrm{CH}_{2}\right), 31.33\left(\mathrm{CH}_{2}\right), 31.46\left(\mathrm{CH}_{2}\right), 79.62(\mathrm{C}), 101.60(\mathrm{C})$, $116.52(\mathrm{C}), 209.11(\mathrm{C}) ; \mathrm{MS} m / z=177\left(\mathrm{M}^{+}\right)$.

3b: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.30-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), $1.75(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 19.64\left(\mathrm{CH}_{3}\right), 22.26\left(\mathrm{CH}_{3}\right), 27.01$ $\left(\mathrm{CH}_{2}\right), 29.57(\mathrm{CH}), 36.51\left(\mathrm{CH}_{2}\right), 79.78(\mathrm{C}), 101.76(\mathrm{C}), 117.90(\mathrm{C}), 209.01(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}, 80.93 ; \mathrm{H}, 10.50$. Found: C, 81.14; H, 10.73 .

3c: $\quad{ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{sex}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(q u i n, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.78\left(\mathrm{CH}_{3}\right), 13.67\left(\mathrm{CH}_{3}\right), 18.15\left(\mathrm{CH}_{2}\right), 21.67\left(\mathrm{CH}_{3}\right), 21.68$ $\left(\mathrm{CH}_{2}\right), 29.74\left(\mathrm{CH}_{2}\right), 31.32\left(\mathrm{CH}_{2}\right), 81.50(\mathrm{C}), 107.98(\mathrm{C}), 116.79(\mathrm{C}), 208.67(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}: ~ \mathrm{C}, 80.93$; H, 10.50. Found: C, 81.04; H, 10.68.

3d: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.34(\mathrm{~m}$, $6 \mathrm{H}), 1.46$ (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.75\left(\mathrm{CH}_{3}\right), 13.93\left(\mathrm{CH}_{3}\right), 18.11\left(\mathrm{CH}_{3}\right), 22.47\left(\mathrm{CH}_{2}\right), 26.71\left(\mathrm{CH}_{2}\right)$, $27.60\left(\mathrm{CH}_{2}\right), 28.21\left(\mathrm{CH}_{2}\right), 31.38\left(\mathrm{CH}_{2}\right), 31.60\left(\mathrm{CH}_{2}\right), 81.55(\mathrm{C}), 107.93(\mathrm{C}), 116.72(\mathrm{C})$, 208.65(C). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}: ~ \mathrm{C}, ~ 81.62 ;$ H, 11.06. Found: C, 81.48; H, 11.28.

3e: ${ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.73(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H})$, 1.90 (dd, $J=7.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.06$ (sex, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 17.60\left(\mathrm{CH}_{3}\right)$, $22.20\left(\mathrm{CH}_{3}\right), 26.08(\mathrm{CH}), 42.27\left(\mathrm{CH}_{2}\right), 65.49(\mathrm{CH}), 105.12(\mathrm{C}), 114.22(\mathrm{C}), 213.64(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}$: C, 79.95; H, 9.69. Found: C, 80.24; H, 9.88.

3f: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 2.14(\mathrm{td}, J=7.4 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{qt}, J=7.6 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $13.25\left(\mathrm{CH}_{3}\right), 13.99\left(\mathrm{CH}_{3}\right), 22.50\left(\mathrm{CH}_{2}\right), 27.47\left(\mathrm{CH}_{2}\right), 28.19\left(\mathrm{CH}_{2}\right), 31.23\left(\mathrm{CH}_{2}\right), 31.38$ $\left(\mathrm{CH}_{2}\right), 81.52(\mathrm{C}), 91.49(\mathrm{CH}), 116.10(\mathrm{C}), 211.75(\mathrm{C}) ; \mathrm{MS} m / z=163\left(\mathrm{M}^{+}\right)$.

3g: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.51$ (quin, $J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.17(\mathrm{tt}, J=7.4 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.96$ $\left(\mathrm{CH}_{3}\right), 22.46\left(\mathrm{CH}_{2}\right), 27.41\left(\mathrm{CH}_{2}\right), 28.21\left(\mathrm{CH}_{2}\right), 30.72\left(\mathrm{CH}_{2}\right), 31.33\left(\mathrm{CH}_{2}\right), 80.23\left(\mathrm{CH}_{2}\right)$, 82.08 (C), 115.33 (C), $214.82(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=134\left(\mathrm{M}^{+}-\mathrm{Me}\right)$.

7a: (Z)-isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.36(\mathrm{~m}$, 6 H), 1.57 (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-1.67$ $\left(\mathrm{CH}_{3}\right), 13.82\left(\mathrm{CH}_{3}\right), 22.31\left(\mathrm{CH}_{2}\right), 26.65\left(\mathrm{CH}_{2}\right), 28.01\left(\mathrm{CH}_{2}\right), 28.13\left(\mathrm{CH}_{2}\right), 31.14\left(\mathrm{CH}_{2}\right)$, $33.42\left(\mathrm{CH}_{2}\right), 116.13(\mathrm{C}), 116.23(\mathrm{C}), 124.59(\mathrm{C}), 127.38(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=248\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Si}$: C, 67.68; H, 9.74. Found: C, 67.95; H, 9.82. (E-isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta-1.48\left(\mathrm{CH}_{3}\right)$, $17.03\left(\mathrm{CH}_{2}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=248\left(\mathrm{M}^{+}\right)$. These (Z) and (E) assignments are confirmed with NOESY and HMQC spectra.

7b: ${ }^{1} \mathrm{H}$ NMR $\delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{sex}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.42 (quin, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.94(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-1.51$ $\left(\mathrm{CH}_{3}\right), 13.64\left(\mathrm{CH}_{3}\right), 21.82\left(\mathrm{CH}_{2}\right), 26.83\left(\mathrm{CH}_{2}\right), 30.28\left(\mathrm{CH}_{2}\right), 33.31\left(\mathrm{CH}_{2}\right), 116.32(\mathrm{C})$, 116.39 (C), $124.72(\mathrm{C}), 127.56(\mathrm{C}) ; \mathrm{MS} m / z=220\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Si}: \mathrm{C}$, $65.40 ;$ H, 9.15 . Found: C, $65.21 ;$ H, 9.32 . NOESY spectrum showed the product is the (Z)-isomer.

8: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.51(\mathrm{~m}, 8 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.86$ $\left(\mathrm{CH}_{3}\right), 20.66\left(\mathrm{CH}_{3}\right), 22.35\left(\mathrm{CH}_{2}\right), 25.05\left(\mathrm{CH}_{3}\right), 26.75\left(\mathrm{CH}_{2}\right), 28.35\left(\mathrm{CH}_{2}\right), 30.96(\mathrm{CH})$, $31.28\left(\mathrm{CH}_{2}\right), 31.81\left(\mathrm{CH}_{2}\right), 105.71(\mathrm{C}), 115.77(\mathrm{C}), 118.23(\mathrm{C}), 157.15(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=$ $204\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 76.42; H, 9.87, Found: C, 76.30; H, 10.11.

