Compound 4:

Merrifield-OH resin ($10 \mathrm{~g}, 14.4 \mathrm{mmol}$, Novabiochem) was swelled in 1:1 tetrahydrofuran (THF) /dichloromethane (DCM). To this was added triphenylphosphine ($7.9 \mathrm{~g}, 30 \mathrm{mmol}$, Aldrich) and N_{α}-Boc- N_{β} -Fmoc-L-Diaminopropionic acid ($12.7 \mathrm{~g}, 30 \mathrm{mmol}$) and the slurrry was cooled to $0^{\circ} \mathrm{C}$ under Argon. To this gently agitating solution was added diethylazodicarboxylate ($5.22 \mathrm{~g}, 30 \mathrm{mmol}$, Aldrich) slowly over a period of 5 minutes. This reaction was kept at $0^{\circ} \mathrm{C}$ for 60 minutes then allowed to gradually warm to room temperature while agitating for 60 h . The off-white colored resin was filtered and washed with THF (5X), DCM (5X), then alternating DCM/methanol (MTH) washes (6 each). The resin was vacuum dried for 18 h . Yield: $14.3 \mathrm{~g}(90 \%), \mathrm{CHN}: \% \mathrm{~N} 2.263$ (obs.), 2.5 (calc.), IR (cm^{-1}): 1731, 1716, 1695

Compound 6:

N_{α}-Boc- N_{β}-Fmoc-L-Diaminopropionic acid loaded hydroxymethyl Merifield-PS resin ($1.72 \mathrm{~g}, 1.4 \mathrm{mmol}$) was rinsed three times with (DCM) then treated with a solution of 25% piperidine in N, N dimethylformamide (DMF). The reaction was allowed to agitate for 30 minutes. The resin was filtered and washed liberally with DMF (6X) followed by $\mathrm{MeOH}(3 \mathrm{X})$, $\mathrm{DCM}(3 \mathrm{X})$ and alternating MeOH-DCM washes (3 X each). (Ninhydrin testing ${ }^{1}$ of resin 4 gave a strong positive result.) The deprotected resin (4) was rinsed a final time with a $4: 1$ solution of chloroform (CHL)/MeOH. Resin 4 was swelled in 4:1 CHL/MTH ($20-25 \mathrm{~mL}$) and to this was added hydrocinnamaldehyde (5 eq., 7.5 mmol , Aldrich). The resin was agitated for 5 minutes before adding 2,6-dimethylphenyl isocyanide (5 eq., 7.5 mmol , Fluka) followed by $R(+)$-2-bromopropionic acid (5 eq., 7.5 mmol , Fluka). The resin mixture was agitated for 2.5 h before filtering and washing with 4:1 CHL/MeOH (5X). The reaction was repeated in an identical manner for 3.5 h. The resin was filtered and washed with $4: 1 \mathrm{CHL} / \mathrm{MeOH}(5 X)$ followed by alternating DCM/MeOH washes (3X each). Ninhydrin testing of resin 5 was negative. Resin 5 was treated with 25% trifluoroacetic acid (TFA) in DCM for 1 h . The resin was filtered and washed with DCM (6X) followed by alternating DCM/MeOH (3X each) washes. The Boc deprotected resin 5 b was swelled in 10% diisopropylethylamine (DiPEA)/DCM and agitated for 18 h then filtered and washed with DMF (3X) followed by alternating DCM/MeOH (3X each) washes.

Preparation of the isobutylcarbonic acid mixed anhydride ${ }^{2}$ of Boc-Phe-OH

Boc-Phe-OH (5eq., 7.5 mmol , Advanced Chemtech) was dissolved in dry THF (20 mL) under an Argon atmosphere and cooled to $0^{\circ} \mathrm{C}$ using an ice bath while being magnetically stirred. To the cooled solution was added N -methylmorpholine (5.5 eq., 8.25 mmol) followed by the slow addition of isobutylchloroformate (5 eq., 7.5 mmol , Aldrich) over a period of 10 minutes. A white precipitate was observed immediately. The heterogeneous solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 15 minutes.

Compound 7a and 7b:

Resin 6 was swelled in DMF (5 mL) and to this was added the heterogeneous mixed anhydride solution prepared previously. The reaction was allowed to agitate for 6 h . before filtering and washing with DMF (5X). The reaction was repeated in an identical manner except that it was allowed to agitate for 72 hr . The resin was filtered and washed with DMF (5X) followed by alternating DCM/MeOH (3X each) washes. The resin 6d was agitated with a solution of 25% TFA/DCM for 1 h . The resin $6 \mathbf{e}$ was filtered and washed with alternating DCM/MeOH (5X each) followed by DCM (2X) then taken up in a 2 M solution of acetic acid $(\mathrm{AcOH}) / 2$-propanol (iPrOH) and heated to $50^{\circ} \mathrm{C}$ for 18 h . The resin was filtered and washed with MeOH $(4 \mathrm{X})$ and the filtrate and washings were collected and combined before evaporating to dryness under reduced pressure. The crude, yellowish-orange, solid was co-evaporated with CHL (3X) then vacuum dried for 18 h . Crude yield: $0.327 \mathrm{~g}(42 \%)$, MS APCI: $553=[\mathrm{M}+\mathrm{H}]$ The crude sample was purified by RPHPLC (C_{4} column, 55 min linear gradient start: 95% water with 0.1% TFA added / 5% acetonitrile to 100% acetonitrile) to give $0.167 \mathrm{~g}(22 \%$ from 4$)$ of a white solid.

References

1) Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Anal. Biochem. 1970, 34, 595-598
2) Bodanszky, M.; Bodanszky, A. The Practice of Peptide Synthesis, $2^{\text {nd }}$ ed.; Springer-Verlag, New York, 1994, pp. 93-94.

Separation and characterization of diastereomers 7a and 7b:

The purified mixture of C^{*} diastereomers $(0.167 \mathrm{~g})$ was separated by RP-HPLC (Inertsil ODS-3, $50 \times 250 \mathrm{~mm}, \mathrm{C}_{18}$) using a 60 min gradient at $50 \mathrm{~mL} / \mathrm{min}$. Mobile phase: 50% methanol; 50% water; 0.1% trifluoracetic acid ($\mathrm{v} / \mathrm{v} / \mathrm{v}$) to 100% methanol. The individual diastereomers had retention times of 25 min and 32 min respectively. Early fraction: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 1.44\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{fe}}=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.90\left(\mathrm{dd}, \mathrm{J}_{\mathrm{a}^{\prime} \mathrm{a}}=14.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{a}^{\prime} \mathrm{b}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.55$ (dd, $\left.J_{a a^{\prime}}=14.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ab}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18\left(\mathrm{dd}, \mathrm{J}_{\mathrm{ba}}=9.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ba}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78\left(\mathrm{dd}, \mathrm{J}_{\mathrm{cd}}=11.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{cd}}=3.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08\left(\mathrm{dd}, \mathrm{J}_{\mathrm{dd}}=14.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{dc}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46\left(\mathrm{dd}, \mathrm{J}_{\mathrm{d}^{\prime} \mathrm{d}}=14.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{d}^{\prime} \mathrm{c}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.83\left(\mathrm{q}, \mathrm{J}_{\mathrm{ef}}=7.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.40(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 18.8,19.7,30.0,32.9$, $37.2,41.5,53.6,55.2,55.4,56.7,126.7,127.9,128.0,128.5,128.7,129.0,129.5,129.6,133.3,135.2$, 135.4, 140.6, 165.9, 166.3, 168.0, 170.4 MS (DCI): m/z $553[\mathrm{M}+\mathrm{H}]^{+}$Late fraction: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right) 1.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{fe}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}$, $\left.J_{a^{\prime} \mathrm{a}}=14.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{a}^{\prime} \mathrm{b}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.48\left(\mathrm{dd}, \mathrm{J}_{\mathrm{a}}{ }^{\prime}=14.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ab}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.24\left(\mathrm{dd}, \mathrm{J}_{\mathrm{ba}}=9.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{ba}}=3.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.35\left(\mathrm{dd}, \mathrm{J}_{\mathrm{cd}}=11.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{cd}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.28\left(\mathrm{dd}, \mathrm{J}_{\mathrm{dd}}=13.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{dc}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.35$ (dd, J $\mathrm{d}^{\prime} \mathrm{d}=13.8$ $\left.\mathrm{Hz}, \mathrm{J}_{\mathrm{d}^{\prime} \mathrm{c}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.78\left(\mathrm{q}, \mathrm{J}_{\mathrm{ef}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.25\left(\mathrm{dd}, \mathrm{J}_{\mathrm{gh} / h^{\prime}}=8.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.00-7.35(\mathrm{~m}, 13 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 18.7,19.8,30.9,32.8,37.2,42.5,54.1,55.2,55.3,56.3,126.8,127.8,127.9$, $128.5,128.6,129.0,129.4,129.6,133.3,135.2,135.4,140.3,166.2,166.6,169.0,170.4 \mathrm{MS}(\mathrm{DCI}): \mathrm{m} / \mathrm{z}$ $553[\mathrm{M}+\mathrm{H}]^{+}$

Table of Proton Assignments for Separated Diastereomers

Proton $\left(\mathrm{H}_{\mathrm{x}}\right)$	Chemical Shift (δ) Early Fraction	Chemical Shift (δ) Late Fraction
a'	2.90	2.94
a	3.55	3.48
b	4.18	4.24
c	3.78	4.35
d	4.08	4.28
d'	3.46	3.35
e	4.83	4.78
f	1.44	1.43
g	5.21	5.25
h	2.44	2.39
h'	2.12	2.14
l	2.78	2.68
l'	2.66	2.68
aromatic dimethyl	2.17	2.13
aromatic	$7.04-7.40$	$7.0-7.35$

NOESY Interpretation and Mechanism of Bromide Displacement

The relative stereochemistry at $C^{* *}$ for each of the separated C^{*} isomers (7a \& 7b) was determined by NOE cross peak correlation. In each case, the $\mathrm{CH}_{3}\left(\mathrm{H}_{\mathrm{f}}\right)$ resonance at $1.44 / 1.43 \mathrm{ppm}$ shows a cross peak to $\mathrm{H}_{\mathrm{d}^{\prime}}$ at $3.46 / 3.35 \mathrm{ppm}$. This would strongly indicate that these two groups are in close proximity (cofacial). The $\mathrm{H}_{d^{\prime}}$ assignment was confirmed by measurement of the 11.2 Hz vicinal coupling constant to H_{c}. This is consistent with a dihedral angle of approximately 180° between these two protons. This direct evidence coupled with a lack of cross peak correlation of H_{e} with $\mathrm{H}_{\mathrm{d}^{\prime}}$ would strongly suggest that the resulting $\mathrm{C}^{* *}$ stereochemistry is \mathbf{S} and a result of $\mathrm{S}_{\mathrm{n}} 2$ displacement of bromine with inversion of configuration at $\mathrm{C}^{* *}$.

2D-NOESY 500 MHz NMR Experiments

Early fraction

