A Facile Highly Regio- and Stereo-selective

Preparation of \boldsymbol{N}-Tosyl Allylic Amines from

Allylic Alcohols and Tosyl Isocyanate via

Palladium(II)-Catalyzed Aminopalladation-

β-Heteroatom Elimination

Aiwen Lei and Xiyan Lu*
Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 354 Fenglin Lu, Shanghai, 200032, China
xylu@pub.sioc.ac.cn

General procedure for the synthesis of N-tosyl Allylic amines from allylic N -tosyl carbamates
Allylic N-tosyl carbamate (1.0 mmol) was reacted with $\operatorname{Pd}(\mathrm{OAc})_{2}(0.05 \mathrm{mmol})$ and $\mathrm{LiBr}(4.0 \mathrm{mmol})$ in $\operatorname{DMF}(5 \mathrm{~mL})$ at rt or $100^{\circ} \mathrm{C}$. After the reaction was complete as monitored by TLC, diethyl ether (100 mL) was added and the organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{X} \mathrm{20} \mathrm{mL})$ and brine (3 X 20 mL), dried and concentrated. The crude product was purified by column chromatography on silica gel to give the product.

General procedure for the synthesis of Allylic sulfonamides from allylic alcohol

Allylic alcohol (1.0 mmol) was reacted with TsNCO (1.1 mmol) in THF (5 mL) for 10 min at rt under N_{2}; the THF solvent was removed and the residue was dissloved in DMF (5 mL), then $\mathrm{Pd}(\mathrm{OAc})_{2}(0.05 \mathrm{mmol})$ and $\mathrm{LiBr}(4.0 \mathrm{mmol})$ were added and the reaction was stirred at rt or $100^{\circ} \mathrm{C}$. After the reaction was complete as monitored by TLC, diethyl ether (100 mL) was added and the organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{X} 20 \mathrm{~mL}$) and brine (3 X 20 mL), dried and concentrated. The crude product was purified by column chromatography on silica gel to give product.

3a: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.65-5.59 (m, 1H), 5.12-4.98 (m, 2H), $4.93(\mathrm{br}, 1 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}$, 3H); IR (neat): 3250, 1596, 1494, 1425, 1331, 1321, $1161 \mathrm{~cm}^{-1}$; MS m/e: $211\left(\mathrm{M}^{+}\right)$, 149, 139, 120, 92, 91, 65, 56.

3b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.65-5.56 (m, 1H), 5.06-4.91 (m, 3H), 3.89-3.83 (m, 1H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}$); IR (neat): 3278, 2980, 1598, 1428, 1328, 1159, $1093 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e}: 226$ $\left(\mathrm{M}^{+}\right), 210,198,172,155,139,91,65$

3c: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.50-5.42 (m, 1H), 4.95-4.86 (m, 2H), $4.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 1 \mathrm{H})$, 2.35 (s, 3H), 1.37-1.35 (m, 2H), 1.19-1.12 (m, 4H), 0.75 (t, $J=6.9 H z, 3 H$); IR (neat): $3279,2998,2922,1599,1496,1429,1328,1306,1289,1162,1095,1042,923$, 815, 668, 577, $550 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e}: 268\left(\mathrm{M}^{+}+1\right), 210,184,172,155,112,97,91,65$.

3d: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 7 \mathrm{H}), 6.35$ (d, $J=15.9,1 \mathrm{H}), 5.93(\mathrm{td}, J=6.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J$ $=1.4,6.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.33 (s, 3H); IR (neat) 3283, 1597, 1494, 1446, 1421, 1307, 1292, 1162, 1154, 1092, 1047, 817, 747, 689, 670, 59, $547 \mathrm{~cm}^{-1}$; MS m/e: $287\left(\mathrm{M}^{+}\right)$, $184,155,132,130,117,105,91,77,65$.

3e: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 5.53-5.44 (m, 1H), 5.30-5.21 (m, 1H), $4.48(\mathrm{br}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}$, 3 H), 1.53 (dd, $J=1.1,6.5 \mathrm{~Hz}, 3 \mathrm{H}$); IR (neat): 3250, 3044, 2947, 2922, 2856, 1677, 1650, 1597, 1495, 1421, 1342, 1324, 1290, 1161, 1093, 1048, 971, 933, 869, 811, $708,670,552,520 \mathrm{~cm}^{-1} ;$ MS m/e: $225\left(\mathrm{M}^{+}\right), 210,184,155,139,91,70,65$.

3f: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 5.50-5.40 (m, 1H), 5.26-5.16 (m, 1H), $4.83(\mathrm{br}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.2,2 \mathrm{H}), 2.35(\mathrm{~s}$, 3 H), 1.83-1.79 (m, 2H), 1.17-1.13 (m, 6H), $0.77(\mathrm{t}, J=7.0,3 H)$; IR (neat): 3282, 2926, 2956, 2858, 1598, 1428, 1327, $1160 \mathrm{~cm}^{-1}$; MS m/e: $281\left(\mathrm{M}^{+}\right), 266,238,210$, 184, 155, 126, 110, 91, 56.

3g: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 12 \mathrm{H}), 6.36$ (d, $J=15.8,1 \mathrm{H}), 6.07(\mathrm{dd}, J=6.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=6.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (s, 3H); IR (neat): 3271, 3062, 3030, 2958, 2926, 1599, 1495, 1455, 1327, 1160, 1093, 968, 747, 699, $564 \mathrm{~cm}^{-1}$; MS m/e: $363\left(\mathrm{M}^{+}\right), 208$, 206, 193, 178, 155, 130, 115, 104, 91.

3h: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.99-4,94 (m, 1H), 4.58 (br, 1H), $3.44(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$, 1.44 (s, 3H); IR (neat): 3277, 1630, 1599, 1430, 1328, 1160, 1093, 1051, 908, 815, $660,554 \mathrm{~cm}^{-1} ; \mathrm{MS}$ m/e: $239\left(\mathrm{M}^{+}\right), 224,184,171,155,91,84,65$.

14: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.18-5.98 (m, 2H), 5.51-5.42 (m, 1H), 5.11-4.99 (m, 2H), $4.57(b r, 1 H), 3.55(t, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.35 (s, 3H); IR (neat): 3265, 3093, 2858, 1656, 1604, 1496, 1451, $1422,1325,1289,1162,1093,1014,977,920,873,814,707,663,610,550,503$ $\mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e}: 237\left(\mathrm{M}^{+}\right), 210,184,172,155,139,91,82,65$.

The reaction of $\mathbf{1 b}$ under $\mathbf{P d}(\mathbf{O A c})_{2} / \mathbf{P P h}_{3}$

$\mathbf{1 b}(1.0 \mathrm{mmol})$ was reacted with $\mathrm{Pd}(\mathrm{OAc})_{2}(0.05 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.2 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ at rt under Ar. After the reaction was complete as monitored by TLC, diethyl ether (100 mL) was added and the organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$) and brine (3 X 20 mL), dried and concentrated. The crude product was purified by column chromatography on silica gel to give products.
(3b, (E)-3e): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H})$, $5.65-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.30(\mathrm{~m}, 0.56 \mathrm{H}), 5.09-4.95(\mathrm{~m}, 1.32 \mathrm{H}), 4.84(\mathrm{br}, 0.56 \mathrm{H})$, $3.53-3.48(\mathrm{~m}, 1.56 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=6.5,1.2 \mathrm{~Hz}, 1.68 \mathrm{H}), 1.19$ (d, $J=$ $6.9 \mathrm{~Hz}, 1.32 \mathrm{H}$);
As compared with standard sample, the experiments of HPLC showed that the area percent of $\mathbf{3 b}$ and (E) - $\mathbf{3 e}$ was 37% and 51%, respectively.

