Catalyzed Asymmetric Diels-Alder Reaction of Benzoquinone. ## Total Synthesis of (-)-Ibogamine James D. White,* and Younggi Choi Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 ## SUPPORTING INFORMATION - Preparative procedures and characterization data for 2, 5-17, 19-21, and (-)-1 - Copies of ¹H and ¹³C NMR spectra of all compounds - X-ray crystallographic summary data for 12 ### Diene 2 Into a flame dried pressure bottle cooled -78 °C was condensed 1-butyne (3.25 g, 60.1 mmol) under argon. A 1M solution of catecholborane-THF complex (60 mL, 60 mmol) was injected into the stirred mixture, and the solution was heated at 70 °C for 24 h. After the solution had cooled to room temperature, the mixture was distilled at reduced pressure to give 8.57 g (82%) of (*E*)-1-butenyl-1,3,2-benzodioxaborole as a colorless oil: bp 77-78 °C (2.5 Torr); IR (neat) 742, 1246, 1643, 2959, 3199 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.11 (t, J = 7.4 Hz, CH₃), 2.33 (ddq, J = 1.7, 7.5, 7.5 Hz, 2H), 5.83 (dt, J = 1.7, 18.0 Hz, 1H), 7.01-7.28 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 12.2, 28.8, 106.1, 112.2, 122.5, 148.2, 159.2; MS (CI) m/z 174 (M⁺), 159, 146, 134, 120, 115, 101, 93, 69; HRMS (CI) m/z 174.0852 (calcd for C₁₀H₁₁O₂¹¹B: 174.0852). To a solution of 1.04 g (3 mol%) of Pd(PPh₃)₄ in THF (80 mL) was added a solution of 3 (7.53 g, 30.0 mmol) in THF (10 mL), and the mixture was stirred for 1 h at room temperature. To this mixture was added a solution of (*E*)-1-butenyl-1, 3, 2-benzodioxaborole (5.80 g, 33.3 mmol) in THF (10 mL) followed by 66.6 mmol (2 eq) of NaOEt, and the resultant mixture was heated under reflux for 7h. The mixture was allowed to cool to room temperature during 1h, and the residual borane was treated with an aqueous solution of NaOH (3M, 1 mL) and H_2O_2 (30%, 1 mL) for 1h at room temperature. The mixture was extracted with hexane (3x 30 mL), and the extract was washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (ether-pentane, 1:30) gave 4.55 g (67%) of **2** as a colorless oil: R_f 0.4 (hexanes); IR (neat) 1110, 1253, 2337, 2359, 2883, 2957 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.09 (s, 6H), 0.92 (s, 9H), 1.02 (t, J = 7.4 Hz, CH₃), 2.11 (m, 2H), 4.32 (m, 2H), 4.98 (s, 1H), 5.19 (m, 1H), 5.70 (dt, J = 6.5, 16.1 Hz, 1H), 6.06 (d, J = 16.1, Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.4 (2C), 13.5, 18.3, 25.9 (3C), 26.1, 63.0, 112.1, 128.7, 131.4, 144.8; MS (CI) m/z 227 (M*+H), 211, 195, 193, 169, 139, 137, 95, 83, 75; HRMS (CI) m/z 227.1815 (calcd for C₁₃H₂₇OSi: 227.1831). ## Diketone 5 To a solution of BINOL-Ti complex 4 (1M solution, 1.7 mL) and 1,4-benzoquinone (603 mg, 5.58 mmol) in toluene (3 mL) at room temperature was added a solution of 2 (1.47 g, 6.49 mmol) in toluene (2 mL), and the mixture was stirred for 30 min at room temperature. The mixture was concentrated under reduced pressure, and the residue was used for the next reaction without purification due to the instability of 5. ## Hydroxy Ketone 6 To a solution of 5 obtained above in MeOH (5 mL) at 0 °C was added NaBH₄ (211 mg, 5.58 mmol) and CeCl₃ 7H₂O (2.08 g, 5.58 mmol), and the mixture was stirred for 1 h at 0 °C. The mixture was diluted with Et₂O (30 mL) and was washed with H₂O and saturated aqueous NaCl, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3) gave 6 (1.23 g, 65% from 2) as a colorless oil: R_f 0.34 (EtOAc-hexanes, 1: 3); [α]_D -35.3 (c 1.45, CHCl₃); IR (neat) 777, 836, 1073, 1254, 1673, 1685, 2853, 2926, 2953, 3370 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.93 (t, J = 7.4 Hz, 3H), 1.80-2.27 (m, 5H), 2.73 (m, 2H), 3.98 (m, 2H), 4.92 (m, 1H), 5.62 (s, 1H), 5.83 (dd, J = 2, 7, 10.3 Hz), 6.57 (ddd, J = 2, 3.5, 10.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.3, -5.2, 12.5, 18.4, 22.2, 25.6, 25.9 (3C), 41.3, 43.7, 48.2, 67.0, 70.7, 125.7, 129.6, 134.1, 147.4, 199.7; MS (CI) m/z 335(M*-H), 321, 279, 261, 205, 187, 159, 75; HRMS (CI) m/z 335.2047 (calcd for C₁₉H₃₁O₃Si: 335.2043). ## Mandelate 7 To a solution of 6 (45 mg, 0.13 mmol), (R)-O-methylmandelic acid (24 mg, 0.15 mmol), and DCC (30 mg, 0.15 mmol) in CH₂Cl₂ (4 mL) at room temperature was added DMAP (8 mg, 0.07 mmol). After 30 min, the reaction mixture was passed through a plug of cotton which was rinsed with hexanes. The eluant was diluted with saturated aqueous NaHCO₃ (1 mL), washed with saturated aqueous NaCl, dried over MgSO₄, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:7) afforded 53 mg (82%) of 7 as a colorless oil: R_f 0.25 (EtOAc-hexanes, 1:7), [α]_D -67.1 (c 1.2, CHCl₃). Integrations in two regions were performed in the crude ¹H NMR spectrum; they are labeled a and b in the following NMR data: IR (neat) 1168, 1252, 1689, 1751, 2852, 2920, 2950 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.05 (s, 6 H), 0.91 (s, 9 H), 0.92 (t, J = 7.4 Hz, 3H), 1.72-2.09 (m, 4H), 2.15 (m, 1H), 2.79 (t, J = 3.9 Hz, 1H), 2.89 (m, 1H), 3.42 (s, 3H), 3.88-4.01^a (m, 2H), 4.81 (s, 1H), 5.58 (m, 1H), 5.83 (dd, J = 2.5, 10.4 Hz, 1H), 5.93 (dt, J = 2.4, 5.3 Hz, 1H), 6.24^b (ddd, J = 2.1, 4.0, 10.4 Hz, 1H), 7.31-7.52 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ -5.3, -5.2, 12.4, 18.4, 22.8, 25.5, 25.9 (3C), 40.9, 41.0, 47.9, 57.4, 66.9, 73.3, 82.4, 125.5, 127.0 (2C), 128.9, 131.0, 133.9, 135.8, 142.4, 170.0, 198.7; MS (CI) m/z 483 (M⁺- H), 469, 427, 353, 319, 261, 187, 121; MS (CI) m/z 483 (M⁺- H), 469, 427, 353, 319, 261, 187, 121; HRMS (CI) m/z 483.2567 (calcd for C₂₈H₃₉O₅Si: 483.2559). ## Mandelate 8 To a solution of 7 (14 mg, 0.04 mmol), (*S*)-*O*-methylmandelic acid (11 mg, 0.06 mmol), and DCC (13 mg, 0.06 mmol) in CH₂Cl₂ (3 mL) at room temperature was added DMAP (3 mg, 0.02 mmol). After 30 min, the reaction mixture was passed through a plug of cotton which was rinsed with hexanes. The mixture was diluted with saturated aqueous NaHCO₃ (1 mL), washed with saturated aqueous NaCl, dried over MgSO₄, filtered, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:5) gave 17 mg (82%) of 8 as a colorless oil: R_f 0.22 (EtOAc-hexanes, 1:5); [α]_D -29.0 (c 1.53, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.02 (s, 6 H), 0.89 (s, 9 H), 0.91 (t, J = 7.7 Hz, 3H), 1.36 (m, 1H), 1.71-1.97 (m, 3H), 2.09 (m, 1H), 2.64-2.78 (m, 2H), 3.42 (s, 3H), 3.70 (d, J = 12.9 Hz, 1H), 3.78 (d, J = 12.9 Hz, 1H), 4.81 (s, 1H), 5.52 (m, 1H), 5.87 (dd, J = 2.7, 10.3 Hz, 1H), 5.94 (dt, J = 2.5, 5.1 Hz, 1H), 6.45 (ddd, J = 1.7, 3.8, 10.3 Hz, 1H), 7.31-7.49 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ - 5.3 (2C), 12.4, 18.3, 22.4, 25.5, 25.9 (3C), 40.7, 40.9, 47.9, 57.3, 66.4, 73.2, 82.3, 124.5, 127.2 (2C), 128.8 (2C), 129.0, 131.1, 133.7, 136.0, 142.5, 169.9, 198.6 ## Diol 9 To a solution of **5** obtained above in MeOH (15 mL) at room temperature was added NaBH₄ (633 mg, 16.7 mmol) and CeCl₃7H₂O (6.24 g, 16.7 mmol), and the mixture was stirred for 8 h at room temperature. Workup as for **6** gave diol **9** (1.18 g, 62% from **2**) as a colorless solid: R_f 0.33 (EtOAc-hexanes, 1:3); mp 105-106 °C; $[\alpha]_D$ -129.7 (c 1.95, CHCl₃); IR (neat) 776, 834, 1005, 1254, 2858, 2881, 2928, 2956, 3387 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.02 (s, 6H), 0.91 (s, 9H), 1.04 (t, J = 7.4 Hz, 3H), 1.69 (m, 2H), 1.89-2.11 (m, 4H), 2.14 (d, J = 6 Hz, 1H), 2.23-2.35 (m, 2H), 4.01 (m, 2H), 4.15 (m, 1H), 4.44 (m, 1H), 5.65 (d, J = 10.2 Hz, 1H), 5.76-5.83 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ -5.3 (2C) 12.4, 18.3, 23.1, 24.2, 25.9 (3C), 37.0, 37.3, 40.9, 64.4, 66.7, 70.3, 127.2, 128.4, 130.3, 137.5; MS (CI) m/z 337 (M⁺- H), 321, 303, 262, 205, 189, 171, 161; HRMS (CI) m/z 337.2202 (calcd for C₁₀H₃₃O₃Si: 337.2199). #### Bromoketones 12 and 13 To a stirred solution of 9 (28 mg, 0.08 mmol) in THF (4 mL) was added N-bromosuccinimide (16 mg, 0.09 mmol), and the mixture was stirred for 1h at room temperature. The mixture was passed through a short pad of silica gel, with EtOAc-hexanes (1:5) as eluent, and the concentrated eluent was purified by column chromatography (EtOAc-hexanes, 1:5) to give 31 mg (91%) of inseparable 10 and 11 as a colorless oil. The mixture of 10 and 11 was dissolved in CH₂Cl₂ (2 mL), and the solution was added dropwise to a suspension of PDC (68 mg, 0.18 mmol) and NaOAc (15 mg, 0.18 mmol) in CH₂Cl₂ (4 mL). The resulting mixture was stirred for 2h at room temperature, then filtered through Florisil, and the filtrate was concentrated under reduced pressure. Flash chromatography (EtOAc:hexanes, 1:20 to 1:10) of the residue afforded 22 mg (73%) of a mixture of 12 and 13. A homogeneous sample of 12 was obtained as a colorless solid by repeated chromatography: R_f 0.24 (EtOAc-hexanes, 1:5), mp 106-107 °C; [α]_D -29.2 (c 0.36, CHCl₃); IR (neat) 1689 cm⁻¹; H NMR (300 MHz, CDCl₃) δ 0.05 (s, 6H), 0.91 (s, 9H), 1.01 (t, J = 7.4 Hz, 3H), 1.33-1.62 (m, 2H), 1.99 (dd, J = 10.3, 16.1, 1H), 2.25 (dd, J = 8.1, 16.1 Hz, 1H), 2.50 (t, J = 3.8 Hz, 1H), 2.72 (t, J = 7.5 Hz, 1H), 2.85 (ddd, J = 3.8, 8.1, 11.0 Hz, 1H), 3.64 (d, J = 10.7 Hz, 1H), 3.75 (d, J = 10.7 Hz, 1H), 4.23 (s, 1H), 4.47 (t, J = 4.4 Hz, 1H), 5.96 (d, J = 9.9 Hz, 1H), 6.84 (dd, J = 5.0, 9.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.4, 11.4, 18.3, 22.6, 25.8, 35.6, 43.1, 44.5, 46.5, 69.9, 70.8, 71.6, 82.9, 128.8, 141.5, 201.6; MS (CI) m/z 415 (M⁺), 359, 335, 277, 259, 203, 175, 161, 105. HRMS (CI) m/z 413.1142 (calcd for $C_{19}H_{30}O_3SiBr$: 413.1148). The data for 13 was determined from the mixture: R_f 0.22 (EtOAchexanes, 1:5); ¹H NMR (300 MHz, CDCl₃) δ 1.08 (t, J = 7.4 Hz, 3H), 1.61 (m, 1H), 1.70 (m, 1H), 1.76 (m, 1H), 2.13-2.21 (m, 2H), 2.37 (dd, J = 12.1, 14.5 Hz, 1H), 2.68 (m, 1H), 3.59 (s, 2H), 3.93 (m, 1H), 4.38 (m, 1H), 5.96 (d, J = 9.9 Hz, 1H), 7.01 (dd, J = 5.7, 9.9 Hz, 1H); ¹³C NMR (75 MHz,CDCl₃) δ -5.3 (2C), 11.7, 23.7, 25.9 (3C), 36.1, 42.1, 49.5, 51.4, 63.5, 66.9, 106.0, 127.2, 147.0, 201.6. #### Dione 14 To a solution of 9 (913 mg, 2.70 mmol) in EtOAc (10 mL) was added 5% Rh on Al₂O₃ (1.40 g), and the mixture was placed under a balloon filled with H₂. After 24h, the mixture was filtered through a pad of Celite with EtOAc (10 mL) as eluant, and the filtrate was concentrated under reduced pressure. Chromatography (EtOAc-hexanes, 1:3) of the residue on silica gel produced the saturated diol (871 mg, 94%) as a colorless oil: R_f 0.22 (EtOAc-hexanes, 1:3); mp 123-124 °C; [α]_D -3.4 (c 2.3, CHCl₃); IR (neat) 836, 1079, 1104, 1254, 1462, 1500, 2856, 2928, 2952, 3439 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.04 (s, 6H), 0.89 (s, 9H), 0.93 (t, J = 7.1 Hz, 3H), 1.06 (br s, 1H), 1.23-1.91 (m, 15H), 3.44 (dd, J = 6.4, 9.9 Hz, 1H), 3.49 (dd, J = 4.5, 9.9 Hz, 1H), 3.74 (ddd, J = 4.5, 9.4, 11.5 Hz, 1H), 4.09 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.3 (2C), 12.3, 18.4, 24.3, 24.7, 26.0 (3C), 26.5, 32.9, 33.3, 39.9, 41.3, 41.9, 43.1, 66.7, 69.0, 73.2.; MS (CI) m/z 343 (M*+H), 325, 283, 267, 209, 193, 175; HRMS (CI) m/z 343.2674 (calcd for $C_{19}H_{19}O_4Si$: 343.2669). To a solution of pyridinium dichromate (1.20 g, 3.20 mmol) in CH₂Cl₂ (10 mL) at room temperature was added a solution of the diol prepared above (730 mg, 2.13 mmol) in CH₂Cl₂ (3 mL), and the mixture was stirred for 4h at room temperature. The mixture was diluted with Et₂O (30 mL) and the solution was filtered through a Celite pad. The filtrate was concentrated, and the residue was chromatographed on silica gel (EtOAc-hexanes, 1:3) yielded 635 mg (88%) of **14** as a colorless oil: R_f 0.16 (EtOAc-hexanes, 1:5); [α]_D +88.5 (c 1.42, CHCl₃); IR (neat) 837, 1098, 1250,1713, 2852, 2925, 2959 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.02 (s, 6H), 0.86 (s, 9H), 0.87 (overlapping m, 1H), 0.88 (t, J = 7.4 Hz, 3H), 1.21-1.35 (m, 2H), 1.53-1.76 (m, 4H), 2.00 (m, 1H), 2.35-2.49 (m, 1H), 2.59 (dt, J = 4.5, 13.6 Hz, 1H), 2.65-2.74 (m, 2H), 2.83 (m, 1H), 3.09 (m, 1H), 3.34 (dd, J = 6.4, 9.9 Hz, 1H), 3.43 (dd, J = 5.4, 9.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.5 (2C), 12.3, 18.2, 25.8 (3C), 26.2, 29.6, 30.6, 37.0 (2C), 40.4, 40.6, 49.3, 51.8, 67.7, 208.9, 210.9 ; MS (CI) m/z 339 (M⁺+H), 323, 281, 263, 207, 189, 147, 75; HRMS (CI) m/z 339.2352 (calcd for C₁₉H₃₅O₃Si: 339.2356). #### Ketal 15 A solution of 14 (570 mg, 1.68 mmol) and PPTS (43 mg, 0.17 mmol) in MeOH (10 mL) was heated at 55 °C for 3h, after which the mixture was allowed to cool to room temperature. The solution was diluted with saturated aqueous NaHCO₃ (3 mL) and was extracted with Et₂O (20 mL). The extract was washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAchexanes, 1:2) gave 404 mg (89%) of 15 as a colorless oil: R_f 0.16 (EtOAchexanes, 1:2); [α]_D +15.7 (c 0.21, CHCl₃); IR (neat) 1097, 1123, 1461, 1712, 2831, 2867, 2923, 2958, 3419 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.66 (ddd, J = 12.7, 12.7, 12.7 Hz, 1H), 0.84 (t, J = 7.5 Hz, 3H), 1.18 (m, 1H), 1.31 (ddd, J = 12.3, 12.3, 12.3 Hz, 1H), 1.49-1.67 (m, 4H), 1.76 (m, 1H), 1.79 (dt, J = 5.0, 14.3 Hz, 1H), 1.89 (br s, 1H, OH), 2.08 (ddd, J = 2.1, 5.0, 14.3 Hz, 1H), 2.13 (ddt, J = 2.5, 9, 14.3 Hz, 1H), 2.22 (ddt, J = 2.6, 4.6, 13.1 Hz, 1H), 2.41 (dt, 6.8, 14.3 Hz, 1H), 2.91 (m, 1H), 3.19 (s, 3H), 3.29 (s, 3H), 3.44 (dd, J = 6.0, 10.6 Hz, 1H), 3.46 (dd, J = 6.4, 10.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 12.4, 26.3, 28.1, 28.2, 30.1, 38.6, 40.5, 41.7, 45.7, 47.2, 47.9, 48.2, 68.1, 100.5, 211.6; MS (CI) m/z 270 (M*), 253, 239, 221, 207, 189, 125, 101, 84; HRMS (CI) m/z 270.1830 (calcd for C₁₅H₂₆O₄: 270.1831). ## Oxime 16 To a solution of TIPSCl (332 mg, 1.72 mmol) and imidazole (117 mg, 1.72 mmol) in DMF (5 mL) at room temperature was added a solution of **15** (310 mg, 1.15 mmol) in DMF (1 mL, 1.15 mmol), and the mixture was stirred for 2h at room temperature. The mixture was diluted with pentane (20 mL), and the solution was washed with H_2O (3x 10 mL) and saturated NaCl, dried over MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica (EtOAc-hexanes, 1:5) furnished 456 mg (93%) of the TIPS ether as a colorless oil: R_f 0.23 (EtOAc-hexanes, 1:10); $[\alpha]_D$ +6.6 (c 1.16, CHCl₃); IR (neat) 1055, 1097, 1116, 1719, 2361, 2864, 2942, 2956 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.64 (ddd, J = 13.1,13.1, 13.1 Hz, 1H), 0.85 (t, J = 7.5 Hz, 3H), 1.03-1.07 (m, 21H), 1.19 (m, 1H), 1.28 (ddd, J = 12.0, 12.0, 12.0 Hz, 1H), 1.49-1.69 (m, 4H), 1.73.1.87 (m, 2H), 2.08 (ddd, J = 2.1, 4.8, 11.3 Hz, 1H), 2.21 (ddt, J = 2.8, 5.3, 13.1 Hz, 1H), 2.40 (dt, J = 6.1, 13.5 Hz, 1H), 2.92 (m, 1H), 3.19 (s, 3H), 3.30 (s, 3H), 3.45 (dd, J = 6.8, 9.5 Hz, 1H), 3.53 (dd, J = 5.8, 9.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.9, 12.4, 17.9, 26.3, 28.0, 28.4, 30.3, 38.6, 41.0, 41.8, 45.9, 47.7, 47.8, 48.4, 68.5, 100.6, 211.5; MS (CI) m/z 426 (M⁺), 409, 383, 351, 221, 184, 171, 147, 101; HRMS (CI) m/z 426.3162 (calcd for $C_{2a}H_{ac}O_4$ Si: 426.3165). A suspension of the ketone prepared above (312 mg, 0.73 mmol), hydroxylamine hydrochloride (508 mg, 2.31 mmol), and NaOAc (600 mg, 7.31 mmol) in MeOH (3 mL) was heated gently at reflux for 3h. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. Chromatography of the residue on silica gel (MeOH-CH₂Cl₂, 1:60) gave 261 mg (81%) of **16** as a colorless oil: R_f 0.21 (EtOAc-hexanes, 1:5); [α]_D +20.1 (c 1.05, CHCl₃); IR (neat) 881, 1056, 1099, 1120, 1462, 2864, 2941, 2956, 3404 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.06 (brs, 1H), 3.46-3.57 (m, 2H), 3.33 (m, 1H), 3.23 (s, 3H), 3.18 (s, 3H), 2.77 (t, J = 3.4 Hz, 1H), 2.02 (m, 1H), 1.93 (m, 1H), 1.3-1.7 (m, 9H), 1.07 (m, 21H), 0.88 (m, 1H), 0.87 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 11.9, 12.5, 17.9, 20.1, 26.6, 26.7, 26.8, 30.2, 41.4, 41.7, 43.1, 45.5, 47.3, 47.5, 68.7, 101.2, 158.2. ## Lactam 17 To a mixture of *p*-toluenesulfonyl chloride (203 mg, 1.07 mmol), triethylamine (0.15 mL, 1.07 mmol), and a catalytic amount of DMAP in dichloromethane (3 mL) was added a solution of **16** (186 mg, 0.43 mmol), and the mixture was stirred for 3h at room temperature. The mixture was diluted with dichloromethane (10 mL), and the solution was washed with H_2O and saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (EtOAc-hexanes, 1:3, to MeOH-CH₂Cl₂, 1:15) afforded 138 mg (74%) of **17** as a colorless oil: R_f 0.12 (EtOAc-hexanes, 1:3); [α]_D -8.4 (c 2.38, CHCl₃); IR (neat) 882, 1055, 1106, 1461, 1663, 2864, 2941, 2956 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.83 (ddd, J = 12.8, 12.8, 12.8 Hz, 1H), 0.92 (t, J = 7.4 Hz, 3H), 0.96-1.13 (m, 22H), 1.31 (dq, J = 7.4, 7.4 Hz, 1H), 1.49-1.83 (m, 6H) 1H, 1.91 (ddt, J = 1.7, 7.5, 13.6 Hz, 1H), 2.19-2.28 (m, 1H), 2.47 (dt, J = 1.2, 13.1 Hz, 1H); 3.15 (s, 3H), 3.18 (s, 3H), 3.50 (br d, J = 6.0, 2H), 3.79 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.4, 11.8, 17.9, 23.3, 25.3, 25.8, 29.65, 29.70, 40.6, 42.8, 46.8, 47.2, 47.3, 49.6, 68.2, 102.0, 176.5; MS (CI) m/z 442 (M⁺+H), 410, 398, 378, 366; HRMS (CI) m/z 442.3353(calcd for $C_{24}H_{48}NO_4Si$: 442.3353). #### Tosylate 19 To a solution of 17 (125 mg, 0.28 mmol) in THF (3 mL) at room temperature under argon was added a 1M solution of TBAF (0.4 mL, 0.4 mmol), and the mixture was stirred for 1h at room temperature. The mixture was diluted with dichloromethane (10 mL), and the solution was washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (MeOH-CH₂Cl₂, 1:15) gave 79 mg (99%) of an alcohol as a colorless oil: R_f 0.1 (MeOH-CH₂Cl₂, 1:15); [α]_D -31.7 (c 1.1, CHCl₃); IR (neat) 1054, 1104, 1452, 1655, 2872, 2929, 2956, 3385 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.93 (ddd, J = 12.3, 12.3, 12.3 Hz, 1H), 0.94 (t, J = 7.3 Hz, 3H), 1.09 (ddd, J = 12.4, 12.4, 12.4 Hz, 1H), 1.33 (dq, J = 7.2, 7.2 Hz, 2H), 1.51-1.87 (m, 7H), 1.93 (ddt, J = 2.3, 7.6, 15.2 Hz, 1H), 2.26 (m, 1H), 2.48 (dt, J = 1.4, 13.7 Hz, 1H), 3.16 (s, 3H), 3.18 (s, 3H), 3.49 (m, 2H), 3.79 (m, 1H), 5.25 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 11.4, 23.2, 25.3, 25.7, 29.4, 29.7, 40.0, 42.8, 46.6, 47.3, 47.4, 49.6, 67.7, 101.9, 176.8; MS (CI) m/z (M⁺) 286, 268, 254, 222, 204, 146, 114, 101; HRMS (CI) m/z 286.2013 (calcd for $C_{15}H_{28}NO_4$: 286.2019). To a mixture of p-toluenesulfonyl chloride (21 mg, 0.11 mmol), triethylamine (31 uL, 0.23 mmol), and a catalytic amount of DMAP in dichloromethane (3 mL) was added the alcohol obtained above (21 mg, 0.08 mmol), and the mixture was stirred for 3h at room temperature. The mixture was diluted with dichloromethane (10 mL), and the solution was washed with H₂O and saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (MeOH-CH₂Cl₂, 1:15) produced 33 mg (100%) of 19 as a colorless oil: R_c 0.29 (MeOH-CH₂Cl₂, 1:15); $[\alpha]_D$ - 27.2 (c 1.2, CHCl₃); IR (neat) 1052, 1104, 1176, 1188, 1357, 1456, 1660, 2956 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.74 (ddd, J =12.8, 12.8, 12.8 Hz, 1H), 0.94 (t, J = 7.3 Hz, 3H), 0.96 (ddd, J = 12.7, 12.7, 12.7 Hz, 1H), 1.31 (dq, J = 7.3, 7.3 Hz, 2H), 1.41-1.58 (m, 3H), 1.68 (dt, J = 3.5, 13.6 Hz, 1H), 1.71-1.95 (m, 3H),2.15-2.27 (m, 1H), 2.37-2.49 (overlapping m, 1H), 2.47 (s, 3H), 3.11 (s, 3H), 3.15 (s, 3H), 3.72-3.80 (overlapping m, 2H), 3.82 (dd, J = 6.6, 9.6 Hz, 1H), 4.97 (br s, exchangeable, 1H); 7.36 (d, $J = 8.2 \text{ Hz}, 2\text{H}, 7.76 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}); ^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 11.4, 21.6, 22.9, 25.3,$ 25.6, 29.0, 29.7, 37.0, 42.5, 46.3, 47.36, 47.44, 49.1, 74.2, 101.7, 127.9, 129.9, 132.7, 144.9, 176.6; MS (CI) m/z (M⁺-OMe) 408, 376, 285, 204, 173; HRMS (CI) m/z 439.2029 (calcd for C₂₂H₃₃NO₆S: 439.2028). #### Lactam 20 To a solution of NaH (3 mg, 0.11 mmol) in THF (3 mL) at 0°C under argon was added a solution of 19 (16 mg, 0.04 mmol) in THF (1 mL), and the mixture was stirred for 30 min at room temperature and then refluxed for 1 h. The mixture was diluted with saturated aqueous NH₄Cl (0.5 mL), and the solution was extracted with dichloromethane. The extract was washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (MeOH-CH₂Cl₂, 1:15) yielded 6.6 mg (71%) of **20** as a colorless oil: R_f 0.1 (MeOH-CH₂Cl₂, 1:15); [α]_D -21.2 (c 1.1, CHCl₃); IR (neat) 1051, 1064, 1102, 1404, 1454, 1634, 1658, 2358, 2930 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.91 (t, J = 7.3 Hz, 3H), 1.12 (ddt, J = 2.4, 9.2, 13.6 Hz, 1H), 1.30-1.81 (m, 7H), 1.92-2.13 (m, 3H), 2.27 (ddd, J = 1.0, 7.4, 13.2 Hz, 1H), 2.72 (dt, J = 0.9, 13.3 Hz, 1H), 3.09 (m, 1H), 3.17 (s, 3H), 3.19 (s, 3H), 3.60 (br d, J = 2.8 Hz, 1H), 3.75(ddd, J = 2.6, 4.3, 11.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 12.2, 25.8, 27.2, 27,4 28.3, 30.0, 31.4, 40.5, 42.8, 47.7 (2C), 50.1, 50.7, 103.1, 179.2; MS (CI) m/z (M⁺) 267, 252, 236, 220, 204, 138, 101; HRMS (CI) m/z 267.1835 (calcd for C₁₅H₂₅NO₃: 267.1834). #### Oxoibogamine 21 To a solution of *p*-toluenesulfonic acid monohydrate (11 mg, 0.06 mmol) in acetone (3 mL) at 0°C under argon was added a solution of **20** (15 mg, 0.06 mmol) in acetone (1 mL), and the mixture was stirred for 12h at room temperature. The mixture was diluted with saturated aqueous NaHCO₃ (0.5 mL) and was extracted with CHCl₃. The extract was washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure to give 11 mg of the keto lactam (86%) as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 0.97 (t, J = 7.3 Hz, 3H, CH₃), 1.33-1.60 (m, 4H), 1.69-1.87 (m, 2H), 1.89-2.06 (m, 2H), 2.54 (ddd, J = 4.9, 9.7, 13.8 Hz, 1H), 2.62-2.74 (m, 3H), 3.02 (ddd, J = 7.4, 10.1, 13.6 Hz, 1H) 3.17 (d, J = 11.8 Hz, 1H), 3.84-3.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 12.0, 26.0, 27.1, 28.6, 30.2, 31.5, 37.1, 38.4, 49.6, 49.9, 52.1, 175.8, 210.5. To a solution of the keto lactam (7 mg, 0.03 mmol) in AcOH (1 mL) at room temperature was added a solution of phenylhydrazine (5 mg, 0.05 mmol) in AcOH (1 mL), and the mixture was stirred for 1h at 50°C. The mixture was allowed to cool to room temperature during 1h, after which boron trifluoride etherate (9 mg, 0.06 mmol) was added. The resulting yellow solution was stirred for 12h at 80 °C. After the mixture had cooled to room temperature, it was diluted with CH₂Cl₂, and the solution was washed with H₂O and saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel (MeOH-CH₂Cl₂, 1:30) gave 7 mg (77%) of **21** as a pale yellow solid: R_f 0.23 (MeOH-CH₂Cl₂, 1:30); mp 230-232 °C; [α]_D +27.9 (c 0.7, CHCl₃); IR (neat) 1631, 3429 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.98 (t, J = 7.4 Hz, 3H), 1.48-2.19 (m, 8H), 3.03 (m, 1H), 3.18 (d, J = 11.8 Hz, 1H), 3.74 (d, J = 15.7 Hz, 1H), 3.81 (m, 1H), 3.97 (dd, J = 1.7, 15.7 Hz, 1H), 4.15 (s, 1H) 7.06-7.18 (m, 2H), 7.25 (m, 1H), 7.50 (m, 1H), 7.89 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 12.1, 27.5, 28.6, 30.7, 32.1, 32.8, 35.9, 38.9, 49.3, 51.5, 102.6, 110.3, 118.2, 119.7, 121.7, 127.8, 135.0, 138.8, 175.8 ; MS (CI) m/z (M⁺+H) 295, 279, 135, 122, 91, 73; HRMS (CI) m/z 294.1731 (calcd for C₁₉H₂₂N₂O: 294.1732). #### (-)-Ibogamine (1) To a solution of 21 (4.2 mg, 0.014 mmol) in dry THF (3 mL) was added NaBH₄ (28 mg, 0.74 mmol) in one portion. The mixture was cooled to 0 °C, and BF₃.OEt₂ (160 mg, 1.13 mmol) was syringed into the mixture dropwise at 0 °C. The resulting yellow suspension was stirred at room temperature for 3h under argon. The solvent was evaporated, and MeOH (2 mL), H₂O (0.4 mL), and 10% HCl (0.2 mL) were added. This acidic solution was stirred at room temperature for 4h, after which the MeOH was evaporated and the residue was taken up into CH₂Cl₂ (10 ml). The solution was neutralized (pH 8) with saturated aqueous NaHCO₃, and the aqueous layer was extracted with CH₂Cl₂. The organic extract was dried over MgSO₄ and was concentrated to give a yellow solid. Column chromatography of this material (MeOH: CH₂Cl₂ = 1:30) afforded ibogamine (1, 3.1 mg, 78%) as a pale yellow crystalline solid; R, 0.23 (MeOH-CH₂Cl₂, 1:15); mp 156-157 °C; $[\alpha]_D$ -45.8 (c 0.2, EtOH; IR (neat) 3400 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 0.91 (t, J = 7.1 Hz, 3H), 1.24 (m, 1H), 1.43-1.62 (m, 3H), 1.66 (ddd, J = 3.4, 6.4, 13.2 Hz, 3H), 1.77-1.00 (ddd, J = 3.4, 6.4, 13.2 Hz, 3H)1.90 (m, 2H), 2.06 (m, 1H), 2.72 (m, 1H), 2.91 (s, 1H), 2.96 (ddd, J = 1.6, 3.8, 11.7 Hz, 1H), 3.02-3.11 (m, 2H), 3.17 (m, 1H), 3.33 (ddd, J = 4.4, 12.3, 16.6 Hz, 1H), 3.42 (m, 1H), 7.06-7.31(m, 3H), 7.48 (d, 7.1 Hz, 1H), 7.67 (br s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 11.9, 20.5, 26.3, 27.7, 31.9, 34.0, 41.1, 41.9, 49.9, 54.3, 57.7, 109.1, 110.1, 117.9, 119.2, 121.1, 129.6, 134.7, © 2000 American Chemical Society, Org. Lett., White ol0001463 Supporting Info Page 13 141.5; MS (CI) m/z (M⁺+H) 281, 195, 149, 136, 97, 69 HRMS (CI) m/z 280.1938 (calcd for $C_{19}H_{24}N_2$: 280.1940). Table 1. Crystal data and structure refinement for choi. Identification code choi Empirical formula C19 H31 Br O3 Si Formula weight 415.44 Temperature 298(2) K Wavelength 1.54178 Å Crystal system Monoclinic Space group P21 Unit cell dimensions a = 12.019(3) Å b = 6.524(5) Å a = 14.017(6) Å Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 57.74° Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole a = 12.019(3) Å α = 90°. b = 6.524(5) Å $\beta = 105.64(2)^{\circ}$. c = 14.017(5) Å $\gamma = 90^{\circ}$. 1058.4(9) Å³ 2 1.304 Mg/m³ 3.290 mm⁻¹ 436 $0.50 \times 0.50 \times 0.50 \text{ mm}^3$ 3.27 to 57.74°. -13<=h<=13, -7<=k<=6, -15<=l<=15 3193 2755 [R(int) = 0.0654]97.3 % 0.2900 and 0.2900 Full-matrix least-squares on F2 2755 / 1 / 219 2.841 R1 = 0.0428, wR2 = 0.0970R1 = 0.0444, wR2 = 0.0995 0.05(5) 0.007(3) 1.263 and -1.354 e. A-3