

Macromolecules, 1996, 29(3), 1082-1084, DOI:10.1021/ma951414t

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Synthesis and Characterization of R-4, R-5, 6, R-7 and rac-7.

(R)-6,6'-Dibromo-2,2'-dihexyloxy-1,1'-binaphthyl, R-4: To a solution of (R)-6,6'dibromo-1,1'-bi-2-naphthol, R-3 (4.88 g, 11 mmol), in acetone (70 mL) was added 1-iodohexane (12.0 g, 56.5 mmol) and K₂CO₃ (7.0 g, 50.7 mmol). The mixture was heated to reflux and the reaction was monitored by ¹H NMR and TLC. After 24 h, the solvent was evaporated, and water (30 mL) was added to the mixture, which was then extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with Na₂SO₃ solution and brine, and then dried over Na₂SO₄. After evaporation of the solvent, excess 1-iodohexane was recovered by distillation under reduced pressure, and an oily residue was obtained. Flash chromatography of the oil on silica gel by using EtOAc/hexanes as the eluent gave pure R-4 (6.40 g, 95%). The oil solidifies after standing at rt. mp 56.5 - 58.0 °C. $[\alpha]_D = 25.9^\circ$ (c = 0.52, THF). FT-IR (KBr) cm⁻¹ 1616 (w), 1581 (s), 1492 (s), 1468 (s), 1338 (s), 1263 (s), 1238 (s), 1076 (s), 1022 (m), 939 (m), 895 (m), 871 (m), 815 (m), 790 (m). UV-vis λ_{max} (CH₂Cl₂) nm 350, 284, 256. ¹H NMR (270 MHz, CDCl₃) δ 0.74 (t, J = 6.6 Hz, 6 H, -CH₃), 1.01 (m, 8 H, -CH₂CH₂CH₃), 1.38 (m, 4 H, $-OCH_2CH_2$ -), 3.90 (m, 4 H, $-OCH_2$ -), 6.98 (d, J = 8.8 Hz, 2 H), 7.25 (dd, J = 8.8, 2.2 Hz, 2 H), 7.39 (d, J = 8.8 Hz, 2 H), 7.82 (d, J = 8.8 Hz, 2 H), 7.99 (d, J = 2.2 Hz, 2 H). $^{13}C\{^{1}H\}$ NMR (67.5 MHz, CDCl₃) δ 13.90, 22.46, 25.29, 29.25, 31.26, 69.52, 116.40, 117.22, 120.05, 127.10, 128.37, 129.43, 129.74, 130.19, 132.57, 154.77. MS m/z 612 (M⁺), 528, 364. Anal. Calcd for C₃₂H₃₆O₂Br₂: C, 62.76; H, 5.8. Found: C, 62.91; H, 5.60.

(R)-2,2'Dihexyloxy-1,1'-binaphthyl-6,6'-diboronic acid, R-5: To a mixture of Mg (288 mg, 12 mmol) in THF (5 mL) was slowly added a THF solution (15 mL) of R-4 (3.06 g, 5 mmol) and ClCH₂CH₂Cl (0.198 g, 2 mmol) over 30 min at 60 °C under N₂. The mixture was then gently refluxed for 6 h to give a homogeneous solution of the bifunctional Grignard reagent. This solution was then slowly added to a solution of B(OMe)₃ (2.74 g, 26.4 mmol) in Et₂O (30 mL) at -78 °C. The reaction mixture was warmed to room temperature and stirred for 48 h. 1N HCl (50 mL) was added at 0 °C and the resulting solution was extracted with EtOAc (3 x 50 mL).

The combined organic layers were washed with brine, and dried over Na₂SO₄. After filtration and evaporation of the solvent, the product was purified by flash chromatography on silica gel (EtOAc/hexanes) to give R-5 (1.36 g) in 50.2% yield. mp 287-290 °C. [α]_D = 35.6° (c = 0.22, DMSO). FT-IR (KBr) cm⁻¹ 3441 (s), 1620 (s), 1467 (s), 1398 (s), 1377 (s),1315 (s), 1244 (s), 1078 (w), 1047 (m), 908 (w), 831 (w). UV-vis λ_{max} (MeOH) nm 346, 266, 234. ¹H NMR (400 MHz, DMSO- d_6) δ 0.65 (t, J = 6.8 Hz, 6 H, -CH₃), 0.92 [m, 12 H, -(CH₂)₃CH₃], 1.31 (m, 4 H, OCH₂CH₂-), 3.92 (m, 4 H, -OCH₂-), 6.84 (d, J = 8.6 Hz, 2 H), 7.50 (d, J = 9.1 Hz, 2 H), 7.53 (d, J = 8.6 Hz, 2 H), 7.99 (d, J = 9.1 Hz, 2 H), 8.08 [s, 4 H, -B(OH)₂], 8.36 (s, 2 H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) δ 13.94, 22.10, 24.96, 28.96, 30.90, 68.66, 115.29, 119.30, 123.53, 128.30, 128.70, 129,99, 130.88, 134.78, 135.52, 154.84. HRMS (Electron Spray) m/e calcd for C₃₂H₄₀O₆B₂ + H⁺: 543.3089, obsd: 543.3083.

Rac-4 and rac-5 were prepared similarly.

1,4-Bis(*p*-bromostyryl)benzene, 6: To a solution of *p*-bromobenzaldehyde (1.85 g, 10 mmol) and *p*-xylylene-bis-(triphenylphosphonium) chloride (3.50 g, 5 mmol) in EtOH, a solution of lithium (0.1 g, 14 mmol) in EtOH (15 mL) was added over 1 h during which the product precipitated out as a yellow solid. The reaction mixture was stirred at rt for additional 2 h. Filtration and recrystallization from EtOAc gave 6 as light yellow crystals (1.40 g, 64%). mp 174.0 - 179.0 °C. FT-IR (KBr) cm⁻¹ 1631 (w), 1581 (m), 1508 (m), 1485 (s), 1421 (m), 1400 (m), 1068 (s), 1010 (s), 970 (s), 947 (w), 885 (s), 835 (s), 810 (s), 758 (m), 733 (m), 565 (s), 515 (s). UV-vis λ_{max} (CH₂Cl₂) nm 342, 288, 242. ¹H NMR (270 MHz, acetone-*d*₆, cis-trans isomers) δ 6.56 (m, 2.16 H, CH=CH), 7.02-7.48 (m, 12 Ar-H + 1.84 CH=CH). ¹³C{¹H} NMR (67.5 MHz, CDCl₃, cis-trans isomers) δ 121.37, 126.47, 127.47, 127.95, 128.87, 129.14, 129.24, 130.51, 131.36, 136.01, 136.19, 136.40. MS *m/z* 440 (M⁺), 360, 279, 202, 139, 77. Anal. Calcd for C₂₂H₁₆Br₂: C, 60.02; H, 3.63. Found: C, 60.28; H, 3.79.

Polymer R-7: To a mixture of R-5 (544 mg, 1 mmol) and 6 (440 mg, 1 mmol) in THF (10 mL) and K₂CO₃ (15 mL, 1 M), a solution of Pd(PPh₃)₄ (58 mg, 0.050 mmol) in THF (5 mL) was

added. The reaction mixture was refluxed for 48 h. The organic layer was diluted with CH₂Cl₂ (100 mL) and washed with 1N HCl (30 mL) and brine. After removal of the solvent, a solid was obtained, which was dissolved in THF and precipitated twice with MeOH. The solid, R-7, was isolated by centrifugation and removal of the solution with pipette, and was dried under vacuum at room temperature for 24 h. The yield of R-7 was 95% (695 mg). [α]_D = -351° (c = 0.38, THF). GPC (THF, polystyrene standard): M_n = 20,000, M_w = 67,000, PDI = 3.4. DSC: T_g = 211.4 °C. TGA: T_{onset} = 339.6 °C. UV-vis λ_{max} (CH₂Cl₂) nm 390, 268. FT-IR (KBr) cm⁻¹ 1622 (w), 1593 (s), 1518 (w), 1493 (s), 1462 (s), 1402 (w), 1343 (s), 1275 (s), 1244 (s), 1094 (m), 1055 (s), 1018 (w), 961 (w), 945 (w), 817 (s) . ¹H NMR (400 MHz, CDCl₃, broad peaks) δ 0.70 (CH₃), 1.00 [-(CH₂)₂CH₃], 1.42 (-CH₂CH₂O-), 3.96 (-OCH₂-), 6.61 (-CH=CH-), 7.11-7.69 (Ar-H, -CH=CH-), 8.00-8.11 (Ar-H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 13.88, 22.43, 25.31, 29.32, 31.28, 69.65, 116.11, 120.37, 125.45, 126.06, 126.34, 126.83, 126.90, 127.29, 128.13, 129.28, 129.33, 129.40, 133.44, 135.40, 135.94, 135.99, 136.19, 136.65, 139.86, 140.35, 154.74. Anal. Calcd for C₅₄H₅₂O₂: C, 88.53; H 7.10. Found: C, 87.79; H, 7.30.

Polymer rac-7: Rac-7 was prepared similarly to R-7 in 96% yield. GPC (THF, polystyrene standard): $M_n = 17,000$, $M_w = 48,000$, PDI = 2.8. DSC: $T_g = 203.4$ °C. TGA: $T_{onset} = 391.4$ °C. UV-vis λ_{max} (CH₂Cl₂) nm 392,268. FT-IR (KBr) cm⁻¹ 1622 (w), 1593 (s), 1518 (m), 1493 (s), 1462 (s), 1402 (m), 1343 (s), 1275 (s), 1244 (s), 1094 (m), 1055 (m), 1018 (m), 961 (m), 945 (w), 817 (s). 1 H NMR (400 MHz, CDCl₃) δ 0.71 (-CH₃), 1.00 [-(CH₂)₂CH₃], 1.42 (-CH₂CH₂O-), 3.96 (-OCH₂), 6.61 (-CH=CH-), 7.03-7.71 (Ar-H, -CH=CH-), 7.97-8.11(Ar-H). 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 13.94, 22.46, 25.34, 29.34, 31.31, 69.68, 116.13, 120.39, 125.47, 126.08, 126.36, 126.85, 126.92,127.31, 128.15, 129.30, 129.35, 129.42, 133.46, 135.42, 135.96, 136.01,136.21, 136.67, 139.89, 140.37, 154.76. Anal. Calcd for C₅₄H₅₂O₂: C, 88.53; H, 7.10. Found: C, 87.54; H, 7.13.