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Abstract

Electrostatic interactions between charged surfaces across an electrolyte solution are
commonly described by boundary conditions of constant charge or constant surface
potential. These two extremes aré in general not appropriate fdr an equilibrium
.description of materials with ionizable surface groups, but do provide an upper and
lower bound for the interaction engergy. We propose a quantitative criterion Whiéh
permits to evaluate the degree of charge regulation for surfaces with arbitrary elec-
trostatic potential, as considered in the Poisson-Boltzmann theory. Our approach
represents a generalization of the linearized regulation model proposed earlier for
the framework of Debye-Hiiékel theory only. Like in the case of low surface poten-
tials, the regulation behavior is generally determined by the competition between
the capacities of the diffuse and the compact part of the electric double layer. Our
results suggest a new way of using the limiting conditions of constant charge and

constant potential to approximate the interaction free energy of charge regulating

surfaces.
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Introduction

The electric double layer interaction of two charged flat surfaces in an electrolyte
solution is commonly calculated under the assumption that either the electrostatic
surface potential or the surface charge density is independent of the surface sepa-
ration {1]. A more elaborate model describes the charge density as due to ioniz-
able surface groups maintaining chemical equilibrium at all surface separations [2].
The nonlinear charge density—surface potential relation resulting from the ionization
isotherm for these so-called “charge regulating” surfaces, however, complicates the
calculation.

Chan and Mitchell [3] have given a graphical interpretation of the corresponding
interaction free energy, which for equal surfaces. identifies the interaction at consfant
charge as an upper bound and the interaction at constant surface potential as a
lower bound for the double layer repulsion. By linearizing the ionization isotherm
around the equilibrium of the isolated surface, Carnie and Chan [4] have derived
analytic expressions for the force and interaction energy, valid in the situation of
low electrostatic potentials described by the Debye-Hiickel equation. Their results
imply a criterion of how similar the interaction under charge regulation will be to
both limiting cases of constant charge and constant potential. They show that the
regulation behavior is determined by the competition between the two capacities

associated with the diffuse part and the compact inner part of the electric double

layer; a large diffuse layer capacity leading to constant-charge-like behavior, and
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a predominant capacity of the compact layer producing a constant-potential-like

interaction.

In the following we will present a simple generalization of the above approach to
arbitrary potentials. Geometric arguments indicate that a similar regulation cri-
terion holds much more generally than the origin‘al derivation in the framework of
Debye-Hiickel theory would suggest. As a practical consequence, we propose a sim-
ple approximation for the interaction energy of charge regulating surfaces, when
only the limiting results for constant charge and the constant potential are available

from calculations.

The Electrostatic Surface Potential

Thé general concept of an electric double layer involves a diffuse part formed by
mobile ions in the solution and a compact inner part containing immobile surface
charges. The electrostatic potential at the interface of these two regions, subse-
quently called “surface potential” 1, is determined by the structure of both the
diffuse layer and the compact inner layer.

For charge regulating surfaces, the ionization reaction of the surface groups in the
inner layer imposes a functional dependence of the surface potential on the surface
charge density [3], which we will denote by ! (¢). Depending on the chosen surface

complexation model, this function may reflect further structural features, such as

for example, the presence of a Stern layer, but we will assume that the function does
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not depend on the surface separation.

At the same time, the surface potential must obéy a charge-potential relation dic-
tated by the diffuse layér, which will be deséribed by a function P (o, L). If the
diffuse layer is described on the basis of the Poisson-Boltzmann equation, then for
an isolated surface in a solution of monovalent electrolyte this relation is the familiar

Grahame equation

limg roet® (0, L) = 2 sinh™ (-ﬂ—"—> . M

fBe 2ee0K
! = kT being the thermal energy, s~ the Debye length, and e¢o the total per-
mittivity of the solution. For a finite surface separation L, this relation cannot be
expressed anaiytically [2].
A schematic representation of the function %! and the function ¥ (for a finite and
infinite separation) is given in figure 1. Their intersection point defines the charge

and potential actually assumed by the surface in equilibrium.

Double Layer Interaction under Charge Regulation

Chan and Mitchell [3] have shown that for identical surfaces, the free energy per

unit area.at a given separation L can be expressed as

a(L) o(L)
F(L) = /wD(a,L) do — /zp’(a) do . )
0 0

We can interpret the first term on the right hand side of (2) as the free energy stored

in the diffuse layer, and the second term as contribution of the compact inner part




© 1999 American Chemical Society, J. Phys. Chem. B, Behrens jp984099w Supporting Info Page 5

S. H. Behrens 6

of the double layer including the chemically stored energy. As pointed out in [3],

the interaction free energy (per unit area)
F(L) = F(L) — F(0) (3)

corresponds to the area enclosed by the curves ¢ (o), ¥” (0, L) and ¥ P (0, 00); this
is the vertically hatched area of figure 1. In the same way, the area obtained when
¢! (o) is replaced by the curves ¢ = 9> = const. or o = o™ = const. represents
the free energy of interaction at constant potential (cp) or constant charge (ce), and
clearly,

FeP)(L) < F(L) < FI)(L) .
Our aim is to see what fraction of F(¢¢) — F(¢P) actually contributes to the interaction

energy in the regulating case; thus, we ask for the value of the “regulation parameter”

F(L) — F(P(L)
TR ) @

p(L) =

which can obviously take values between 0 for constant potential and 1 for constant
charge conditions.

Carnie and Chan [4, 5] have linearized the function ! (o) around the equilibrium
value fo.r the isolated surface and considered the Debye-Hiickel limit of the function
¥P (0, L) (dotted straight lines in figure 1). The interaction free energy thus found
is represented by the diagonally hatched area.

In typical applications, ¥T (o) can be a rather straight, featureless curve between

the point describing the isolated surface (point C in figure 1) and some equilibrium
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point (E) at a finite separation of interest [6]. We therefore suggest to linearize

¢! (o) around the equilibrium charge density o*° for infinite separation as proposed

in reference [4] for a treatment on the level of Debye-Hiickel theory. Since the

regulation parameter p (= area(ACE)/area(ACDE) in figure 1) is mainly determined

by the local behavior of both curves, it seems consistent to also linearize ¥? (o, L) .
locally (and not globally as it is done in the Debye-Hiickel approach).

First we note that replacing the segment ACDE of figure 1 with the triangle ACD,

wiH not affect the ratio p very strongly — not even if %P (o, L) is locally curved.

Next, we approximate the slope of the secant AD by its large separation limit, the

inverse of the diffuse layer capacity

1 oD
cP = a0 ®)

which is evaluated at the equilibrium charge density o™ of the isolated surface. If the
Poisson-Boltzmann equation is used to describe the diffuse layer, then the capacity
is given by [1]

CP = eegok cosh (Bep™/2) . (6)

In the same way, we introduce the capacity of the compact inner layer (called “regu-
lation capacity” {4, 5])

L

= — 7

CI da_ 3 ( )

evaluated again at 0. When the segments ACE and ACDE (ﬁguré 1) are approx-
imated as triangles, the regulation parameter is given by the ratio of their areas

and can be expressed as a ratio of lengths BE/CD = AB/(AB + BC). With the
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capacities CP and C7 given by AB/BE and BC/BE respectively, we find for the
regulation parameter of equation (4) in this approximation

. cP
p = lim p(L) = e EsIl | (8)

L—oo
The same parameter describes the effect of charge regulation on the equilibrium
value of the surface charge and potential [7).

1 — p(P) o — glep)
PO g T gl _glem) P )

We conclude that the regulation behavior of flat surfaces is governed quite generally
by the competition of two capacities that reflect how easily charge can be stored in
either the compact or the diffuse part of the double layer.

Whenever the diffuse layer capacity prevails surface will interact at constant charge;
if, on the other hand, the capacity of the compact inner layer dominates, surface
will interact at constant surface potential. Every form of intermediate behavior will
be characterized by a value of the regulation parameter p between 0 and 1.

This regulation criterion,‘ equation (8), is the generalization of a Iresult previously
reported by Carnie and Chan [4]. They showed that on the leifel of Debye-Hiickel
theory and linearized ! (o), the interaction energy per unit area (the diagonally

hatched area between the dotted lines in figure 1) is given by [8]

_ wor2  exp(—kL)
F(L) = ecor(¥%) 1+ Aexp(—«L) (10
with
A CI—CD=1—2p, (11)

=. CI+CD
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and CP = eegk. For arbitrary poteﬁtials, no analytical expression is available
for the interaction energy. Yet, the parameter p in its general form characterizes
the location of the interaction energy between its limits for constant charge and
constant potential even when none of these energies can be written down explicitly.

This parameter can easily be computed from the common double layer models.

In the common situation where the double layer interacfion can be evaluated for the
cases of constant charge and constant potential only, an obvious way of accounting
for charge regulation is to approximate the interaction (free) energy per unit area
by

Fapprox(D) = F(L) +p [FC(L) = F(L)] (12)

where p is the constant given by equation (8). Clearly, this approximation will be
~ best for large separations L. In the Debye-Hiickel case with linearized regulation

(10), the relative error at finite separation introduced by (12) is

Fapprox(L) — F(L) _ 4p(1 —p)
F(L) ~ exp(2kL) - 1"

In that case, the error is below 5% down to surface separations of 1.5 1. A model
study of different types of charge regulating surfaces [6] indicates, that for realistic

values of the surface potential and the regulation parameter, the approximation (12)

is applicable down to much smaller Separations.
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Conclusion

A local linearization of both charge density — surface potential relations character-
izing fhe diffuse and the compact part of the electric double layer proves useful to
describe the interaction of charge regulating surfaces at arbitrary potentials. Like.
in a descripﬁion based on the Debye-Hiickel equation, a characteristic regulation
parameter taking values between 0 for interaction at constant potential and 1 for
interaction at constant charge, is simply given by the ratio of the diffuse layer ca-
pacity to the sum of the diffuse layer capacity and the iﬁner layer capacity. This
regulation parameter is also convenient for an approximation of the interaction free
energy under conditions of charge regulation in terms of the limiting results for

constant charge and constant surface potential.
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Figure 1. Schematic representation of the charge-potential relations %! (¢) and
¥? (o, L) and of the Debye-Hiickel limit for 1 (o, L). The intersection of /! (¢) and
%P (0, L) corresponds to the equilibrium value of the surface charge and potential,
the hatched area between the curves is a measure of the interaction energy. The
curve 1! (o) is replaced by the horizontal line at ¥4 = ¥$° in the constant potential
limit and by the vertical line through ¢ = ¢® in the constant charge limit; for the
regulated case, ¥ (o) is approximated by its tangent in the equilibrium point for
infinite separation. Inset: the contribution to the interaction energy for the different

boundary conditions. The interaction parameter p is given by the ratio of the area

of ACE to the area of ACDE, which we approximate as triangles.
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