## THE JOURNAL OF PHYSICAL CHEMISTRY A J. Phys. Chem. A, 1998, 102(35), 6942-6949, DOI:10.1021/jp981548j

## **Terms & Conditions**

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at <a href="http://pubs.acs.org/page/copyright/permission.html">http://pubs.acs.org/page/copyright/permission.html</a>



Copyright © 1998 American Chemical Society

"Elimination of Ethylene from Metastable Isomeric Silylenium Ions in the Gas Phase: IN FINAL FORM Experiment and Theory"

Belinda B. Willard, Susan T. Graul, Department of Chemistry, Carnegie Mellon University, Pittsburgh PA 15213

## Supporting Information

Details of the statistical phase space calculations used for modeling the experimental kinetic energy release distributions are provided here.

The experimental KERDs were modeled with statistical phase space theory.<sup>1-4</sup> The vibrational frequencies and geometric mean rotational constants for Si(CH<sub>3</sub>)<sub>3</sub><sup>+</sup>, HSi(CH<sub>3</sub>)(C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>, HSi(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>, H<sub>2</sub>Si(C<sub>2</sub>H<sub>5</sub>)<sup>+</sup> and the tight transition states **TS1**, **TS2** and H<sub>2</sub>Si(CH<sub>3</sub>)(CH<sub>2</sub><sup>+</sup>) were obtained from *ab initio* calculations. The vibrational frequencies and rotational constants for the orbiting transition states (OTS) were taken as the values for the separated products. The parameters for H<sub>2</sub>Si(CH<sub>3</sub>)<sup>+</sup>, SiH<sub>3</sub><sup>+</sup> and (CH<sub>3</sub>)Si(CH<sub>2</sub>)<sup>+</sup> were obtained by *ab initio* calculations and the parameters for C<sub>2</sub>H<sub>4</sub> and H<sub>2</sub> were taken from the literature.<sup>5</sup> The parameters used are listed in Tables 1 and 2. In order to check the sensitivity of the modeling to the parameters obtained from *ab initio* techniques, the three lowest frequencies and rotational constants were varied by  $\pm 25\%$ . The calculated KERD was not affected to a significant extent by this variation.

The models used to fit the data were based on the potential energy surface calculated by *ab initio* methods. For dissociation of  $HSi(CH_3)(C_2H_5)^+$  to  $H_2Si(CH_3)^+$  and  $C_2H_4$ , the model included the reactant ion, the product species, the orbiting transition state in the exit channel, and the primary carbenium ion TS2 as an equilibration channel. The effect of TS3 and TS4 on the dissociation was checked by a separate calculation which included reactants, OTS, and either TS3 or TS4. For the dissociation of Si(CH\_3)\_3^+, both isomerization pathways were considered. Thus, the model included both TS1 and TS2, the precursor ion Si(CH\_3)\_3^+, and the product OTS. The model used for the reactions of the SiC\_2H\_7^+ ions is given in Figure 4.

JUN 1 7 1998

RECEIVED

OURNAL OF PHYSICAL CHEMISTRY

For the calculation of the KERDs, the fraction of molecules with internal energy E, and angular momentum J, that dissociate through channel i with translational energy  $E_i$  is given by eq. 1.

$$P_i(E,J) = \frac{F_i^{orb}(E,J;E_t)}{F_i^{orb}(E,J)}$$

(1)

The overall probability of forming products in channel i with translational energy  $E_i$  is evaluated using eq. 2:

$$P_i(E_t) = \frac{\int \int P(E)dE P(J)dJ P_{diss}(E,J) f_i(E,J) P_i(E,J;E_t)}{\int \int P(E)dE P(J)dJ P_{diss}(E,J) f_i(E,J)}$$
(2)

in which P(E) and P(J) are the internal energy and total angular momentum distributions respectively,  $P_{diss}(E,J)$  is the probability of dissociation in the second field-free region (eq. 3),  $f_i(E,J)$  is the branching fraction (eq. 4) and  $P_i(E,J;E_t)$  is given in eq. 1.

$$P_{diss}(E,J) = \exp[-k_i(E,J)t_1] - \exp[-k_i(E,J)t_2]$$

$$f_i(E,J) = \frac{k_i(E,J)}{\sum_i k_i(E,J)}$$
(4)

In eq. 3  $t_1$  and  $t_2$  are the transit times for an ion to reach the entrance and exit respectively of the second field-free region. For reaction coordinates that include a tight transition state prior to dissociation, the effect of the transition state may be incorporated into the calculation using eq. 5.

$$P_{i}(E_{t}) = \frac{EJ}{\int_{EJ} P(E)dE P(J)dJ P_{diss}(E,J) f_{i}(E,J) N^{\ddagger}(E,J)}$$
(5)

where  $N^{\dagger}(E,J)$  is the sum of available states above the tight transition state at energy E and total angular momentum J.

In order to model the KERDs, it is necessary to integrate over the energy and angular momentum distribution of the reactant ion. Because the reactant ions were formed by dissociative ionization, the energy distribution of the reactant ions is unknown. To test for sensitivity of the calculated KERD to assumed forms of P(E,J), three different energy

distributions were used in the modeling. The first is a square distribution in which it was assumed that the probability was a constant over the energy range being studied (eq. 6).

$$P(E) = \text{constant} \tag{6}$$

The second function used was a decreasing linear function (eq. 7). A number of different slopes m were used in the calculations.

$$P(E) = 1.00 - mE$$
(7)

The third function that was used was a Boltzmann distribution (eq. 8), with T = 425 K.

$$P(E) = \exp(-E/kT) \tag{8}$$

In all three cases, the expressions for P(E) are further modified by the inclusion of the experimental time window, as revealed in the dissociation probability (eq. 3). The calculated KERDs were found not to vary to a significant extent with the different functions used. This is most likely a consequence of the restrictions imposed by eq. 3. The angular momentum distribution used in the calculations is a Boltzmann distribution at a temperature of 425K, the source temperature used for these experiments.

Because the energies of TS1 and TS2 were found to be very sensitive to the level of theory used, these parameters were varied over a range of about 1 eV in the modeling, as described in the text. The overall thermochemistry for the dissociation of  $Si(CH_3)_3^+$  to  $H_2Si(CH_3)^+$  and  $C_2H_4$  was taken from the literature and adjusted to 0 K.<sup>6</sup> For dissociation of  $HSi(CH_3)(C_2H_5)^+$ , the overall thermochemistry is not known, but was estimated from the known thermochemistry for the  $Si(CH_3)_3^+$  reaction and the relative energies of  $Si(CH_3)_3^+$  and  $HSi(CH_3)(C_2H_5)^+$  determined by *ab initio* techniques.

## References

- (1) Chesnavich, W. J.; Bowers, M. T. J. Am. Chem. Soc. 1976, 98, 8301.
- (2) Chesnavich, W. J.; Bowers, M. T. J. Chem. Phys. 1978, 68, 901.
- (3) Chesnavich, W. J.; Bowers, M. T. In Gas Phase Ion Chemistry; M. T. Bowers, Ed.;

Academic Press: New York, 1979; Vol. 1; pp 119-51.

- (4) Chesnavich, W. J.; Bowers, M. T. Prog. React. Kin. 1982, 11, 137.
- (5) Shimanouchi, T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1;

National Bureau of Standards: Washington, D. C., 1972.

(6) Shin, S. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1989, 111, 900.

| Table 1. Parameters Used in Statistical Phase Space Modeling for SiC <sub>2</sub> H <sub>7</sub> <sup>+</sup> . |                 |                 |                                         |                                                                   |                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------------------------------|-------------------------------------------------------------------|--------------------------------|--|--|--|
|                                                                                                                 | $HSi(CH_3)_2^+$ | $H_2SiC_2H_5^+$ | $H_2Si(CH_3)CH_2^+$<br>transition state | H <sub>3</sub> Si <sup>+</sup> +<br>C <sub>2</sub> H <sub>4</sub> | $CH_{3}SiCH_{2}^{+}$ $+ H_{2}$ |  |  |  |
| -1 a                                                                                                            | 2944            | 2947            | 3072                                    | 2261                                                              | 3016                           |  |  |  |
| $v, cm^{-1 a}$                                                                                                  |                 |                 |                                         |                                                                   | 2961                           |  |  |  |
|                                                                                                                 | 2942            | 2934            | 3024                                    | 2261<br>2197                                                      | 2901                           |  |  |  |
| •                                                                                                               | 2886            | 2826<br>2841    | 3014<br>2966                            | 912                                                               | 2929                           |  |  |  |
|                                                                                                                 | 2884<br>2826    | 2841            | 2900                                    | 912<br>912                                                        | 2837                           |  |  |  |
|                                                                                                                 | 2825            | 2234            | 2920                                    | 813                                                               | 1381                           |  |  |  |
|                                                                                                                 | 2209            | 2199            | 2161                                    | 3106                                                              | 1365                           |  |  |  |
|                                                                                                                 | 1382            | 1454            | 1397                                    | 3026                                                              | 1332                           |  |  |  |
|                                                                                                                 | 1379            | 1446            | 1394                                    | 2989                                                              | 1263                           |  |  |  |
|                                                                                                                 | 1373            | 1396            | 1388                                    | 1623                                                              | 923                            |  |  |  |
|                                                                                                                 | 1369            | 1361            | 1282                                    | 1444                                                              | 832                            |  |  |  |
|                                                                                                                 | 1290            | 1242            | 1071                                    | 1342                                                              | 799                            |  |  |  |
|                                                                                                                 | 1282            | 1203            | 880                                     | 1023                                                              | 760                            |  |  |  |
|                                                                                                                 | 915             | 1014            | 863                                     | 3103                                                              | 616                            |  |  |  |
|                                                                                                                 | 865             | 947             | 843                                     | 1236                                                              | 569                            |  |  |  |
|                                                                                                                 | 829             | 939             | 801                                     | 949                                                               | 258                            |  |  |  |
|                                                                                                                 | 745             | 914             | 680                                     | 943                                                               | 92                             |  |  |  |
|                                                                                                                 | 628             | 726             | 607                                     | 826                                                               | 89                             |  |  |  |
|                                                                                                                 | 616             | 647             | 575                                     | 1                                                                 | 4403                           |  |  |  |
|                                                                                                                 | 597             | 547             | 519                                     |                                                                   |                                |  |  |  |
|                                                                                                                 | 449             | 486             | 342                                     |                                                                   |                                |  |  |  |
|                                                                                                                 | 210             | 223             | 178                                     |                                                                   |                                |  |  |  |
|                                                                                                                 | 41              | 194             | 136                                     |                                                                   |                                |  |  |  |
|                                                                                                                 | 24              | 61              |                                         | ι.                                                                |                                |  |  |  |
| B, cm <sup>-1 b</sup>                                                                                           | 0.289           | 0.288           | 0.271                                   | 4.18                                                              | 0.382                          |  |  |  |
| D, CIII                                                                                                         |                 |                 |                                         | 1.59                                                              | 60.8                           |  |  |  |
| $\alpha$ , Å <sup>3 c</sup>                                                                                     |                 |                 |                                         | 4.25                                                              | 0.804                          |  |  |  |
| $\sigma^{d}$                                                                                                    | 2.              | 1               | 1                                       | 24                                                                | 2                              |  |  |  |
| $\Delta \Delta E$ , eV <sup>e</sup>                                                                             | 0.0             | 0.91            | 2.65                                    | 3.05                                                              | 3.05                           |  |  |  |
| <u>μ, amu</u> <sup>f</sup>                                                                                      |                 |                 |                                         | 14.7                                                              | 1.93                           |  |  |  |

<sup>a</sup> Vibrational frequencies, determined as described in the text. <sup>b</sup> Geometric mean rotational constants. <sup>c</sup> Polarizability of neutral products. <sup>d</sup> Rotational symmetry number. <sup>e</sup> Energy relative to HSi(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>. <sup>f</sup> Reduced mass.

- 5

|                          | Si(CH <sub>3</sub> ) <sub>3</sub> <sup>+</sup> | $HSi(CH_3)(C_2H_5)^+$ | TS1    | TS2      | $H_2Si(CH_3)^+ + C_2H_4$ |
|--------------------------|------------------------------------------------|-----------------------|--------|----------|--------------------------|
| , cm <sup>-1 a</sup>     | 2940                                           | 2946                  | 3058   | 3050     | 2941                     |
| , ••••                   | 2939 (2)                                       | 2943                  | 3045   | 3001 (2) | 2896                     |
| [                        | 2888 (3)                                       | 2929                  | 2961   | 2977 (2) | 2814                     |
| [                        | 2830                                           | 2885                  | 2956   | 2949     | 2242                     |
| · .                      | 2828 (2)                                       | 2863                  | 2932   | 2891     | 2207                     |
|                          | 1387 `´                                        | 2840                  | 2916   | 2890     | 1377                     |
|                          | 1382 (3)                                       | 2826                  | 2845   | 2219     | 1365                     |
| ł                        | 1378 (2)                                       | 2811                  | 1916   | 1409     | 1285                     |
|                          | 1294                                           | 2202                  | 1904   | 1402     | 943                      |
|                          | 1286                                           | 1456                  | 1470   | 1397     | 870                      |
|                          | 878 (2)                                        | 1448                  | 1413   | 1393     | 827                      |
| i.                       | 829                                            | 1395                  | 1401   | 1389     | 675                      |
| · .                      | 708 (2)                                        | 1380                  | 1395   | 1269 (2) | 531                      |
|                          | 706                                            | 1376                  | 1298   | 1044     | 490                      |
|                          | 649 (2)                                        | 1365                  | 1204   | 881      | 24                       |
|                          | 552                                            | 12868                 | 1193   | 872      | 3106                     |
|                          | 212                                            | 1244                  | 1115   | 865      | 3026                     |
|                          | 201 (2)                                        | 1206                  | 1087   | 787      | 2989                     |
|                          | 59                                             | 1016                  | 1069   | 693      | 1623                     |
|                          | 32 (2)                                         | 940                   | 1056   | 683      | 1444                     |
|                          |                                                | 923                   | 831    | 629      | 1342                     |
| • *                      |                                                | 896                   | 825    | 596      | 1023                     |
|                          |                                                | 764                   | 796    | 590      | 3103                     |
|                          |                                                | 757                   | 685    | 522      | 1236                     |
|                          |                                                | 645                   | 664    | 239      | 949                      |
|                          |                                                | 571                   | 625    | 210      | 943                      |
|                          |                                                | 561                   | 478    | 176      | 826                      |
|                          |                                                | 435                   | 469    | 148      |                          |
|                          |                                                | 329                   | 305    | 136      |                          |
|                          |                                                | 201                   | 194    |          |                          |
|                          | · ·                                            | 135                   | 186    |          |                          |
|                          | •                                              | 56                    | 15     |          |                          |
|                          |                                                | 41                    |        |          |                          |
| . •                      |                                                |                       |        |          |                          |
| B, cm <sup>-1 b</sup>    | 0.150                                          | 0.151                 | 0.164  | 0.154    | 0.745                    |
| D, Chi                   |                                                |                       |        |          | 1.588                    |
| α, Å <sup>3 c</sup>      |                                                | ,                     |        |          | 4.25                     |
| σ <sup>d</sup>           | 6                                              | 1                     | 1      | 1        | 8                        |
|                          |                                                |                       |        | 200      | 2.86                     |
| $\Delta\Delta E, eV^{e}$ | 0.0                                            | 0.82                  | 3.06   | 2.88     | 2.00                     |
|                          |                                                |                       | (2.25) | (2.50)   | 17.26                    |
| µ, amu <sup>f</sup>      |                                                |                       | · •    |          | 17.26                    |

<sup>a</sup> Vibrational frequencies, determined as described in the text. Degeneracies shown in parentheses. <sup>b</sup> Geometric mean rotational constants. <sup>c</sup> Polarizability of neutral products. <sup>d</sup> Rotational symmetry number. <sup>e</sup> Energy relative to HSi(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>. <sup>f</sup> Reduced mass.

6