C. Léger, A. K. Jones, S. P. J. Albracht and F. A. Armstrong

Effect of a dispersion of electron transfer rates on steady-state catalytic electron transport in [NiFe]-hydrogenase and other enzymes.

Supplementary Information

Derivation of eq 5.

We note $F_{k_0}(t)$ the (cumulative) distribution function of k_0 , i.e. the probability $P(k_0 < t)$ that k_0 takes a value lower than t, and $f_{k_0}(t)$ the density function of k_0 [that we loosely note $p(k_0)$ in the main text]. They are related to each other by $F_{k_0}(t) = \int_0^t f_{k_0}(u) du$.

$$F_{k_0}(t) = P\left(k_0^{(d=0)}\exp(-\beta d) < t\right)$$
 (S1a)

$$= 1 - P\left(d < -\frac{1}{\beta} \ln \frac{t}{k_0^{(d=0)}}\right)$$
(S1b)

$$= 1 - F_d \left(-\frac{1}{\beta} \ln \frac{t}{k_0^{(d=0)}} \right)$$
(S1c)

Differentiation of eq S1c with respect to t gives:

$$f_{k_0}(t) = \frac{1}{\beta t} f_d \left(-\beta^{-1} \ln \frac{t}{k_0^{(d=0)}} \right)$$
(S2)

With

$$f_d\left(-\frac{1}{\beta}\ln\frac{t}{k_0^{(d=0)}}\right) = \begin{cases} 1/d_0 & \text{for } d \in [d_{\min}, d_{\max}] \\ 0 & \text{for any other value} \end{cases}$$
(S3)

and $d_{\max} = d_{\min} + d_0$, we get eq 5, with $k_0^{\min} = k_0^{\max} \exp(-\beta d_0)$:

$$f_{k_0}(t) = \begin{cases} 1/\beta d_0 t & \text{for } t \in [k_0^{\min}, k_0^{\max}] \\ 0 & \text{for any other value} \end{cases}$$
(S4)

Derivation of eq 6, and corresponding equation for a reductive wave.

For oxidative catalysis, the corrected current i^* is obtained by integrating eq 2 (derived in ref 5) across the distribution of k_0 values (eq 5), $i^* = \int_{k_0^{\min}}^{k_0^{\max}} i(k_0)p(k_0)dk_0$ with $k_0^{\min} = k_0^{\max} \exp(-\beta d_0)$, and so:

$$\frac{i^{\star}}{i_{\text{ilim}}} = \int_{k_0^{\text{min}}}^{k_0^{\text{max}}} \frac{1}{1 + e_{\text{O/I}}^{-1} \left(1 + e_{\text{I/R}}^{-1}\right) + \frac{k_2}{u} \left\{ e_{\text{I/R}}^{-1/2} + e_{\text{O/I}}^{-1/2} \left(1 + e_{\text{I/R}}^{-1}\right) \right\}} \frac{(\beta d_0)^{-1}}{u} du \qquad (S5)$$

Changing variables, we let

$$v^{\text{ox}} = \frac{k_2}{u} \left\{ e_{\text{I/R}}^{-1/2} + e_{\text{O/I}}^{-1/2} \left(1 + e_{\text{I/R}}^{-1} \right) \right\}$$
(S6)

so that

$$\frac{i^{\star}}{i_{\text{lim}}} = -\frac{1}{\beta d_0} \int_{v_1^{\text{ox}}}^{v_2^{\text{ox}}} \frac{1}{a^{\text{ox}} + v^{\text{ox}}} \frac{1}{v^{\text{ox}}} dv^{\text{ox}}$$
(S7a)

$$v_2^{\text{ox}} = \frac{k_2}{k_0^{\text{max}}} \left\{ e_{\text{I/R}}^{-1/2} + e_{\text{O/I}}^{-1/2} \left(1 + e_{\text{I/R}}^{-1} \right) \right\}$$
 (S7b)

$$v_1^{\text{ox}} = v_2^{\text{ox}} \exp(\beta d_0) \tag{S7c}$$

with a^{ox} given by eq 6b. Integration, using $\int (a+v)^{-1}v^{-1}dv = a^{-1} [\ln(v) - \ln(a+v)]$, gives

$$\frac{i^{\star}}{i_{\text{ilim}}} = \frac{1}{\beta d_0} \frac{1}{a^{\text{ox}}} \Big[-\ln v + \ln(a^{\text{ox}} + v) \Big]_{v_2^{\text{ox}} \exp(\beta d_0)}^{v_2^{\text{ox}}}$$
(S8a)

$$= \frac{1}{\beta d_0} \frac{1}{a^{\text{ox}}} \left(\beta d_0 + \ln \frac{a^{\text{ox}} + v_2^{\text{ox}}}{a^{\text{ox}} + v_2^{\text{ox}} \exp(\beta d_0)} \right)$$
(S8b)

This is equivalent to eq 6 with $v_2^{\text{ox}} \equiv b_2^{\text{ox}}$.

When k_2/k_0^{max} , and thus b_2 , tends to zero, i^*/i_{lim} tends to $1/a^{\text{ox}}$ and the reversible limit is recovered. When βd_0 tends to zero, i^*/i_{lim} tends toⁱ $(a^{\text{ox}} + b_2^{\text{ox}})^{-1}$ and the dispersion of ET rates is negligible.

ⁱThis can be obtained from eq 6a with $\exp(\epsilon) \approx 1 + \epsilon$ and $\ln(1 + \epsilon) \approx \epsilon$, so that

$$\ln \frac{a+b_2}{a+b_2 \exp(\epsilon)} \approx -\ln \frac{a+b_2(1+\epsilon)}{a+b_2} \approx -\ln\left(1+\frac{b_2}{1+b_2}\epsilon\right) \approx -\frac{b_2}{1+b_2} \text{ and } \frac{1}{a}\left(1-\frac{b_2}{1+b_2}\right) = \frac{1}{a+b_2}$$

For reductive catalysis, the ideal current equation is:⁵

$$i_{\rm lim}/i - 1 = e_{\rm I/R} \left(1 + e_{\rm O/I} \right) + \frac{k_2}{k_0} \left\{ e_{\rm O/I}^{1/2} + e_{\rm I/R}^{1/2} \left(1 + e_{\rm O/I} \right) \right\}$$
(S9)

and once integrated over the values of k_0 , the corrected current equation reads as eqs 6a and 8 but with

$$a^{\text{red}} = 1 + e_{\text{I/R}}(1 + e_{\text{O/I}})$$
 (S10a)

$$b_2^{\text{red}} = (k_2/k_0^{\text{max}}) \left(e_{\text{O/I}}^{1/2} + e_{\text{I/R}}^{1/2} (1 + e_{\text{O/I}}) \right)$$
 (S10b)