Supporting information for

Piezoelectric and Dielectric Properties of Multilayered $\mathrm{BaTiO}_{3} /(\mathrm{Ba}, \mathrm{Ca}) \mathrm{TiO}_{3} / \mathrm{CaTiO}_{3}$ Thin Films

Xiao Na Zhu, ${ }^{1,2}$ Ting Ting Gao, ${ }^{1}$ Xing Xu, ${ }^{2}$ Wei Zheng Liang ${ }^{3}$, Yuan Lin ${ }^{3}$, Chonglin Chen ${ }^{2, *}$, Xiang Ming Chen ${ }^{\text {l,* }}$
${ }^{1}$ Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
${ }^{2}$ Department of Physics and Astronomy, University of Texas at San Antonio, Texas 78249, USA
${ }^{3}$ State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

* Corresponding authors: Chonglin.Chen@utsa.edu \& xmchen59@zju.edu.cn.

Table S1 The bulk lattice constant of every composition layer and substrate.

Compositions	$\mathrm{a}(\AA)$	$\mathrm{b}(\AA)$	$\mathrm{c}(\AA)$
BaTiO_{3}	3.997	3.997	4.037
CaTiO_{3}	5.387	5.439	7.646
$($ Orthohombic $)$	$(3.809$ in cubic $)$	$(3.846$ in cubic $)$	$(3.823$ in cubic $)$
$\left(\mathrm{Ba}_{0.85} \mathrm{Ca}_{0.15}\right) \mathrm{TiO}_{3}$	3.972	3.972	4.019
$\left(\mathrm{Ba}_{0.75} \mathrm{Ca}_{0.25}\right) \mathrm{TiO}_{3}$	3.959	3.959	4.003
$\mathrm{Nb}: \mathrm{SrTiO}_{3}$	3.905	3.905	3.905

According to Bragg equation:

$$
\begin{equation*}
2 \mathrm{~d}_{\mathrm{hicl}} \sin \theta-\mathrm{K} \lambda \tag{S1}
\end{equation*}
$$

The d_{002} of peak1, Peak2, and Peak3 can be calculated, and $\mathrm{d}_{001}\left(\mathrm{~d}_{001}=2 \mathrm{~d}_{002}\right)$ corresponds to the out of plane constant $\mathrm{c}_{\text {measured }}$. Based on the unchanged volume of each layer, the in plane constant $\mathrm{a}_{\text {film }}$ can be calculated from equation S 2 :

$$
\begin{equation*}
a_{\text {buik }} \times b_{\text {bulk }} \times c_{\text {buik }}=a_{\text {film }} \times b_{\text {film }} \times c_{\text {measured }} \tag{S2}
\end{equation*}
$$

Where the $a_{\text {bulk }}, b_{\text {bulk }}$ and $c_{\text {bulk }}$ of each layer can be obtained from Table S 1 , the Cmeasured is the calculated d_{001}, thus we can get the in plane constant of each layer $\mathrm{a}_{\text {film }}=b_{\text {film }}$.

Figure S1. Comparison of SS-PFM (a) and conventional PFM (b) of amplitude-voltage butterfly loops and phase-voltage hysteresis loops for $\mathrm{CT}^{(1)} / \mathrm{BCT}^{(15} 5^{(1)} / \mathrm{BT}^{(1)}$ sample.

Figure S2. Distribution of amplitude in Figure 3 and Figure 4 for (a) $\mathrm{S} 1: \mathrm{CT}^{(1)} / \mathrm{BCT}^{(1)}{ }^{(1)} / \mathrm{BT}^{(1)}$ (b)S2: $\mathrm{CT}^{(1)} / \mathrm{BCT}^{(15} 5^{(1)} / \mathrm{BT}^{(2)}$ (c) $\mathrm{S} 3: \mathrm{CT}^{(1)} / \mathrm{BCT}^{2} 5^{(1)} / \mathrm{BT}^{(1)}(\mathrm{d}) \mathrm{S} 4: \mathrm{CT}^{(1)} / \mathrm{BCT}^{2} 5^{(1)} / \mathrm{BT}^{(2)}$.

Figure S3. Distribution (a) of amplitude (b) and phase contrast in Figure 5.

