Supporting information for

Piezoelectric and Dielectric Properties of Multilayered BaTiO₃/(Ba,Ca)TiO₃/CaTiO₃ Thin Films

Xiao Na Zhu, ^{1,2} Ting Ting Gao, ¹ Xing Xu, ² Wei Zheng Liang ³, Yuan Lin ³, Chonglin Chen ^{2,*}, Xiang Ming Chen ^{1,*}

¹Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

²Department of Physics and Astronomy, University of Texas at San Antonio, Texas 78249, USA

³State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

^{*} Corresponding authors: Chonglin.Chen@utsa.edu & xmchen59@zju.edu.cn.

Table S1 The bulk lattice constant of every composition layer and substrate.

Compositions	a (Å)	b (Å)	c (Å)
BaTiO ₃	3.997	3.997	4.037
CaTiO ₃	5.387	5.439	7.646
(Orthohombic)	(3.809 in cubic)	(3.846 in cubic)	(3.823 in cubic)
$(Ba_{0.85}Ca_{0.15})TiO_3$	3.972	3.972	4.019
$(Ba_{0.75}Ca_{0.25})TiO_3$	3.959	3.959	4.003
Nb:SrTiO ₃	3.905	3.905	3.905

According to Bragg equation:

$$2d_{nkl}\sin\theta - K\lambda \tag{S1}$$

The d_{002} of peak1, Peak2, and Peak3 can be calculated, and d_{001} (d_{001} =2 d_{002}) corresponds to the out of plane constant $c_{measured}$. Based on the unchanged volume of each layer, the in plane constant a_{film} can be calculated from equation S2:

Where the a_{bulk} , b_{bulk} and c_{bulk} of each layer can be obtained from Table S1, the Cmeasured is the calculated d_{001} , thus we can get the in plane constant of each layer $a_{\text{film}} = b_{\text{film}}$.

Figure S1. Comparison of SS-PFM (a) and conventional PFM (b) of amplitude-voltage butterfly loops and phase-voltage hysteresis loops for $CT^{(1)}/BCT15^{(1)}/BT^{(1)}$ sample.

Figure S2. Distribution of amplitude in Figure 3 and Figure 4 for (a)S1: $CT^{(1)}/BCT15^{(1)}/BT^{(1)}$ (b)S2: $CT^{(1)}/BCT15^{(1)}/BT^{(2)}$ (c) S3: $CT^{(1)}/BCT25^{(1)}/BT^{(1)}$ (d)S4: $CT^{(1)}/BCT25^{(1)}/BT^{(2)}$.

Figure S3. Distribution (a) of amplitude (b) and phase contrast in Figure 5.