J. Org. Chem., 1998, 63(17), 5728-5729, DOI:10.1021/jo9806815

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supporting Information

Experimental Section

All glasswares were flame-dried under a stream of argon and experiments were run under an argon atmosphere. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 MHz and 75 MHz respectively. Chemical shifts are reported in ppm relative to internal tetramethylsilane. Uncorrected melting points were recorded on a Kofler apparatus. Flash column chromatography were performed on Merck Kieselgel 60 (230-400 mesh). THF and ether were distilled from sodium benzophenone ketyl. Dichloromethane, 1,2-dichloroethane (DCE), toluene and DMF were distilled from CaH_{2}. Other reagents were obtained from commercial sources and used as received.

Preparation of compound 1

1,1-Dibromo-3-phenylbut-1-ene (13). To a solution of $\mathrm{CBr}_{4}\left(94.9 \mathrm{~g}, 286.0 \mathrm{mmol}\right.$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(400 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{PPh}_{3}(150 \mathrm{~g}, 572 \mathrm{mmol})$. After $15 \mathrm{~min}, 2$-phenylpropionaldehyde $(19.2 \mathrm{~g}, 143.1 \mathrm{mmol}$) was added slowly. After 1 h at rt , the reaction mixture was diluted with pentane (1 L), the precipitated solids were filtered off through Celite and thoroughly washed with pentane. The filtrate was concentrated under reduced pressure and the crude product was taken up in pentane. The solids were filtered off again and the filtrate concentrated under reduced pressure. The crude material was purified by flash chromatography (petroleum ether) to give $35 \mathrm{~g}(85 \%)$ of 13 as a colorless oil; IR $3010,1600,1490,810,760,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.37-7.24(\mathrm{~m}, 5 \mathrm{H})$, $6.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=9.6$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 142.9 (s), 142.7 (d), 128.6 (d), 126.8 (d), 126.7 (d), 88.4 (s), 43.3 (d), 20.0 (q); EI MS m / z (relative intensity) $292\left(\mathrm{M}^{+}+4,7\right), 290\left(\mathrm{M}^{+}+2,13\right), 288\left(\mathrm{M}^{+}, 7\right), 211(28), 209(28), 195(28), 193$ (27), 130 (62), 129 (100), 128 (26), 115 (47), 105 (14), 77 (13), 51 (10).

4-Phenylpent-2-yn-1-ol (14). To a solution of $13(18.1 \mathrm{~g}, 62.4 \mathrm{mmol})$ in dry THF (150 mL) at $-100^{\circ} \mathrm{C}$, was added $n-\operatorname{BuLi}(50.1 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 125.2 mmol$)$ in 2 h . After the addition was complete, dry paraformaldehyde ($3.75 \mathrm{~g}, 124.89 \mathrm{mmol}$ of monomeric HCHO) was added in one portion and the cooling bath was removed immediately. The reaction mixture was allowed to warm to rt (a slighlty exothermic reaction started causing an increase of temperature to $30^{\circ} \mathrm{C}$). After stirring overnight at rt , the reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and was extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 90/10). 9.5 g (95%) of 14 was obtained as a pale yellow liquid; IR 3340 (br), 2240, 1600, 1490, 1450, 1140, 1000, $760,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.20$ $(\mathrm{m}, 5 \mathrm{H}), 4.33(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{qt}, J=7.3$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.51(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR $\delta 142.8(\mathrm{~s}), 128.4$ (d), 126.7 (d), 126.6 (d), 88.8 (s), 80.1 (s), 51.2 (t), 31.7 (d), 24.0 (q); EI MS m / z (relative intensity) $160\left(\mathrm{M}^{+}, 65\right), 145$ (22), 142 (79), 141 (28), 129 (58), 128 (62), 127 (43), 117 (61), 116 (25), 115 (100), 91 (40), 77 (23), 51 (23). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 82.46 ; \mathrm{H}, 7.55$. Found: $\mathrm{C}, 82.39 ; \mathrm{H}, 7.61$.
(Z)-4-Phenylpent-2-en-1-0l (1). A solution of $\operatorname{CuBr}(11.0 \mathrm{~g}, 76.7 \mathrm{mmol})$ and $\mathrm{LiBr}(12 \mathrm{~g}$, 138 mmol) in dry THF (20 mL), was added slowly to a refluxing activated zinc suspension [prepared from zinc dust ($39.5 \mathrm{~g}, 604.1 \mathrm{mmol}$), 1,2-dibromoethane ($4.85 \mathrm{~mL}, 56.28 \mathrm{mmol}$) in isopropanol (90 mL); reflux 10 min]. After 20 min , a solution of $14(8.2 \mathrm{~g}, 51.2 \mathrm{mmol}$) in isopropanol (25 mL) was added slowly. After 2 h reflux, the reaction mixture was cooled to rt , diluted with ether (300 mL) and filtered through Celite. The filtrate was treated with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and was extracted with AcOEt. The combined extracts were dried over MgSO_{4} and concentrated under reduced pressure to give an oil, which was purified by flash chromatography (cyclohexane/AcOEt gradient: $80 / 20$ to $70 / 30$). $6.6 \mathrm{~g}(79 \%)$ of 1 was obtained as a clear yellow liquid; Rf: $0.34\left(\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{AcOEt}: 90 / 10\right)$; IR 3440 (br), 1665, 1600, 1490, 1450, 1010, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.70-5.53(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{ddd}, J=12.6,6.5$ and 1.2 Hz , $1 \mathrm{H}), 4.17(\mathrm{ddd}, J=12.6,6.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dq}, J=9.1$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.34$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 145.7$ (s), 137.6 (d), 128.4 (d), 127.2 (d), 126.7 (d), 126.0 (d), 58.6 (t), 37.4 (d), 22.2 (q); EI MS m/z (relative intensity) $144\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 76\right), 129$ (100), 115 (23), 105 (26), 91 (44). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 81.44 ; \mathrm{H}, 8.70$. Found: C, 81.33; H, 8.78.

$\mathrm{Et}_{2} \mathrm{Zn} / \mathrm{ICH}_{2} \mathrm{Cl}$ promoted cyclopropanation of 1.

To a solution of $\mathrm{Et}_{2} \mathrm{Zn}\left(62 \mathrm{~mL}, 1 \mathrm{M}\right.$ in hexanes, $62 \mathrm{mmol}, 2$ equiv.) in dry DCE (500 mL) at $-23^{\circ} \mathrm{C}$, was added dropwise $\mathrm{ICH}_{2} \mathrm{Cl}\left(9 \mathrm{~mL}, 124 \mathrm{mmol}, 4\right.$ equiv.). After 20 min at $-23^{\circ} \mathrm{C}$, a solution of $\mathbf{1}$ $(5 \mathrm{~g}, 31 \mathrm{mmol})$ in dry DCE (60 mL) was added dropwise. After 1 h at $-23^{\circ} \mathrm{C}$, the reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL) and extracted with ether. The combined extracts were dried over MgSO_{4} and concentrated under reduced pressure. After purification by flash chromatography (cyclohexane/AcOEt gradient: $95 / 5$ to $90 / 10$), 0.98 g (18%) of $\mathbf{2 b}$ was obtained as a colorless oil and $3.47 \mathrm{~g}(64 \%)$ of $\mathbf{2 a}$ as a crystalline white solid.

$\mathrm{Sm}(\mathrm{Hg}) / / \mathrm{CH}_{2} \mathrm{Cl}$ promoted cyclopropanation of 1 .

Dry $\mathrm{HgCl}_{2}(0.67 \mathrm{~g}, 2.47 \mathrm{mmol}, 0.80$ equiv. $)$, dry THF (80 mL) and $1(0.50 \mathrm{~g}, 3.08 \mathrm{mmol}$) were added to samarium powder $(2.27 \mathrm{~g}, 15.10 \mathrm{mmol}, 5.00$ equiv. $)$. To the vigorously stirred mixture at $-50^{\circ} \mathrm{C}$, was added dropwise $\mathrm{ICH}_{2} \mathrm{Cl}(1.10 \mathrm{~mL}, 15.10 \mathrm{mmol}, 5.00$ equiv.). The reaction mixture was then allowed to warm to rt in 1 h . After 1 h stirring at rt , the reaction mixture was poured into a cold saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (50 mL) overlaid with ether (50 mL). After 10 min stirring, the resulting mixture was filtered through Celite and the precipitate thoroughly washed with ether. The aqueous layer was extracted with ether and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure to give a residue which was purified through a short column of silica gel (cyclohexane/AcOEt: 95/5) to give $0.403 \mathrm{~g}(74 \%)$ of a diasteroisomeric mixture of $\mathbf{2 a}$ and $\mathbf{2 b}$, in a $30 / 70$ ratio.
$\left(1 S^{\star}, 2 S^{*}\right)-2-\left(1\left(R^{*}\right)-1-\right.$ phenylethyl $)$ cyclopropanemethanol (2a). Crystallization from n-pentane, white solid, mp $63-64{ }^{\circ} \mathrm{C} ;$ Rf: $0.30\left(\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{AcOEt}: 90 / 10\right)$; IR 3300 (br), 3050, 3020, 1490, 1450, $1015,745,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.34-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{dq}, J=10.5$ and 6.9 Hz $1 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{~m}$, $1 \mathrm{H}), 0.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 147.3(\mathrm{~s}), 128.3(\mathrm{~d}), 126.8(\mathrm{~d}), 125.9(\mathrm{~d}), 62.8(\mathrm{t}), 39.3(\mathrm{~d}), 24.2(\mathrm{~d})$, $22.8(\mathrm{q}), 19.3$ (d), 9.2 (t), EI MS m / z (relative intensity) $158\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 2\right), 143$ (16), 132 (33), 118 (62), 117 (100), 105 (73), 91 (46), 77 (14). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77 ; \mathrm{H}, 9.15$. Found: C, 81.68; H, 9.18.
($1 R^{\star}, 2 R^{*}$)-2-(1($\left.R^{\star}\right)$-1-phenylethyl)cyclopropanemethanol (2b). Rf: $0.38\left(\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{AcOEt}: 90 / 10\right)$; IR 3350 (br), 3050, 3020, 1450, 1030, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.34-7.17(5 \mathrm{H}, \mathrm{m}), 3.66(\mathrm{dd}, J=11.8$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=11.8$ and $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dq}, J=10.1$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 0.12(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 147.4$ (s$), 128.7$ (d), 126.4 (d), 126.3 (d), 63.1 (t), 39.9 (d), 23.8 (q), 23.3 (d), 19.0 (d), 9.5 (t); EI MS m / z (relative intensity) $158\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 30\right), 143(40), 129(25), 128(20), 118(71), 117(100), 115(36)$, 105 (65), 106 (30), 105 (65), 103 (21), 91 (56), 79 (15), 78 (16), 77 (28), 51 (13). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77 ; \mathrm{H}, 9.15$. Found: C, $81.64 ; \mathrm{H}, 9.22$.
(Z)-4-Phenyl-1-tert-butyldimethylsilyloxypent-2-ene (3). To a solution of $1(0.30 \mathrm{~g}, 1.85 \mathrm{mmol})$ in dry DMF (1 mL) were added imidazole ($0.28 \mathrm{~g}, 4.11 \mathrm{mmol}$) and $\operatorname{TBDMSCl}(0.31 \mathrm{~g}$, 2.05 mmol). After 15 min at rt , the reaction was quenched with an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was extracted with petroleum ether/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}: 90 / 10$, and the combined extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/AcOEt: $100 / 0$ to $95 / 5$) to give $0.49 \mathrm{~g}(96 \%)$ of 3 as a colorless oil; IR 3020, 1655, 1600, 1250, 1080, 830, 775, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.17$ (m, $5 \mathrm{H}), 5.61-5.48(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=12.9$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=12.9$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 145.9(\mathrm{~s})$, 135.6 (d), 128.6 (d), 128.5 (d), 126.8 (d), 126.6 (d), 59.5 (t), $37.6(\mathrm{~d}), 26.0(\mathrm{q}), 22.2(\mathrm{q}), 18.35(\mathrm{~s})$, $-5.0(\mathrm{q})$; EI MS m / z (relative intensity) $219\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 100\right), 143(47), 129(31), 115(20), 105$ (71), 75 (75), 73 (19).

Cyclopropanation of 3 . Compound $3(0.20 \mathrm{~g}, 0.72 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Et}_{2} \mathrm{Zn}$ $\left(2.90 \mathrm{~mL}, 1 \mathrm{M}\right.$ in hexanes, 2.90 mmol) and $\mathrm{ICH}_{2} \mathrm{Cl}(0.42 \mathrm{~mL}, 5.77 \mathrm{mmol})$ in $\mathrm{DCE}(10 \mathrm{~mL})$ at $-23{ }^{\circ} \mathrm{C}$ for 2 h . The crude product was dissolved in dry THF (2 mL) and treated with $n-\mathrm{Bu}_{4} \mathrm{NF}$ $\left(1.10 \mathrm{~mL}, 1 \mathrm{M}\right.$ in THF, 1.10 mmol). After 3 h between $0^{\circ} \mathrm{C}$ and rt , the reaction mixture was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ether. The combined extracts were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and the crude product was purified by filtration through silica gel (petroleum ether/AcOEt: 70/30) to give $0.058 \mathrm{~g}(45 \%)$ of a diastereoisomeric mixture of $\mathbf{2 a}$ and $\mathbf{2 b}$ in a $80 / 20$ ratio.
$\mathrm{Et}_{2} \mathrm{Zn} / \mathrm{TCH}_{2} \mathrm{Cl}$ promoted cyclopropanation of 4 . Compound $4(0.20 \mathrm{~g}, 1.23 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Et}_{2} \mathrm{Zn}(4.90 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 4.90 mmol$), \mathrm{ICH}_{2} \mathrm{Cl}(0.72 \mathrm{~mL}$, 9.84 mmol) in DCE (12 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 70/30) to give $0.204 \mathrm{~g}(94 \%)$ of a diastereoisomeric mixture of $7 \mathbf{a}$ and 7 b in a 75/25 ratio.
$\mathrm{Sm}(\mathrm{Hg}) / \mathrm{ICH}_{2} \mathrm{Cl}$ promoted cyclopropanation of 4. Compound $4(0.20 \mathrm{~g}, 1.23 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Sm}(0.93 \mathrm{~g}, 6.18 \mathrm{mmol}), \mathrm{ICH}_{2} \mathrm{Cl}(0.45 \mathrm{~mL}, 6.18 \mathrm{mmol}), \mathrm{HgCl}_{2}(0.27 \mathrm{~g}$, 0.99 mmol) in THF (16 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 85/15) to give $0.205 \mathrm{~g}(95 \%)$ of a diastereoisomeric mixture of 7 a and 7 b in a 50/50 ratio.

Preparation of authentic samples of $7 a$ and $7 b$

($1 S^{\star}, 2 S^{*}$)-2-(1($\left.R^{*}\right)-1$-phenylethyl)cyclopropanecarbaldehyde (15a). To a stirred suspension of 2a ($0.15 \mathrm{~g}, 0.85 \mathrm{mmol}$), $4 \AA$ molecular sieves $(0.70 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added PCC $(0.37 \mathrm{~g}, 1.70 \mathrm{mmol})$. After 2 h at rt , the reaction mixture was filtered through silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $0.136 \mathrm{~g}(92 \%)$ of $\mathbf{1 5 a}$ as a colorless oil; IR $3020,1710,1600,1490,980,950,750,700 \mathrm{~cm}^{-}$ ${ }^{1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 9.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H})$, 1.74-1.62 (m, 1H), 1.35-1.31 (m, 1H), $1.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 201.0 (d), 145.6 (s), 128.4 (d), 126.7 (d), 126.3 (d), 37.9 (d), 32.8 (d), 28.3 (d), 22.0 (q), 14.9 (t); EI MS m / z (relative intensity) $174\left(\mathrm{M}^{+}, 2\right), 156(23), 145(66), 143(30), 130(25), 129(20), 128(21)$, 118 (100), 117 (82), 115 (34), 106 (34), 105 (48), 103 (21), 91 (64), 77 (24), 69 (33). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.72 ; \mathrm{H}, 8.10$. Found: C, 82.72; H, 8.10.
($1 R^{\star}, 2 R^{\star}$)-2-($\mathbf{1}\left(R^{\star}\right)$-1-phenylethyl)cyclopropanecarbaldehyde ($\mathbf{1 5 b}$). Compound $\mathbf{2 b}$ (0.50 g , $2.84 \mathrm{mmol})$ was oxidized with PCC ($1.22 \mathrm{~g}, 5.68 \mathrm{mmol}$), $4 \AA$ molecular sieves (2.5 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at rt for 4 h . The reaction mixture was filtered through silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $0.44 \mathrm{~g}(89 \%)$ of $\mathbf{1 5 b}$ as a colorless oil; IR 3020, 1700, 1600, 1490, 1170, $980,950,760,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 9.37(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.12(\mathrm{~m}, 5 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}$,
$1 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 201.0(\mathrm{~d}), 146.0(\mathrm{~s}), 128.4(\mathrm{~d})$, 126.5 (d), 126.2 (d), 38.2 (d), 32.1 (d), 28.3 (d), 22.7 (q), 14.7 (t); EI MS m / z (relative intensity) $174\left(\mathrm{M}^{+}, 2\right), 145(54), 143(27), 131$ (20), $130(26), 118$ (100), 117 (64), 115 (29), 105 (42), 91 (52), 77 (21). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.72 ; \mathrm{H}, 8.10$. Found: C, 82.64; H, 8.13.
($1 R^{\star}, 2 S^{*}$)-2-(1($\left.R^{\star}\right)$-1-phenylethyl)cyclopropanecarbaldehyde (16a). To a solution of $\mathbf{1 5 a}$ $(0.30 \mathrm{~g}, 1.72 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $\mathrm{MeONa}(0.93 \mathrm{~g}, 17.21 \mathrm{mmol})$. After 6 h reflux, the reaction mixture was quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ether. The combined extracts were dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 90/10, $85 / 15)$ to give $0.23 \mathrm{~g}(77 \%)$ of $\mathbf{1 6 a}$ as a colorless oil; IR $3020,1710,1600,1490,1450,860,750$, $700 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 9.05(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 200.5(\mathrm{~d}), 144.9(\mathrm{~s}), 128.4$ (d), 126.8 (d), 126.3 (d), 42.6 (d), 30.3 (d), 29.3 (d), 21.1 (q), 14.1 (t). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}$, 82.72; H, 8.10. Found: C, 82.72; H, 8.09.
$\left(1 S^{\star}, 2 R^{\star}\right)$-2-($1\left(R^{\star}\right)$-1-phenylethyl)cyclopropanecarbaldehyde ($\mathbf{1 6 b}$). Compound $\mathbf{1 5 b}(0.30 \mathrm{~g}$, 1.72 mmol) was epimerized with $\mathrm{MeONa}(0.93 \mathrm{~g}, 17.21 \mathrm{mmol})$ in refluxing $\mathrm{MeOH}(20 \mathrm{~mL})$ for 6 h . Flash chromatography (cyclohexane/AcOEt: $90 / 10,85 / 15$) gave $0.24 \mathrm{~g}(80 \%)$ of $\mathbf{1 6 b}$ as a colorless oil; IR 3020, 1700, 1600, 1490, 1450, 1400, 1020, 860, $750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.01$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 5 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 200.5(\mathrm{~d}), 144.9(\mathrm{~s}), 128.4(\mathrm{~d}), 126.8(\mathrm{~d}), 126.2(\mathrm{~d}), 42.3$ (d), 29.4 (d), 29.3 (d), 21.2 (q), 14.5 (t); EI MS m / z (relative intensity) 174 ($\mathrm{M}^{+}, 0.4$), 129 (12), 128 (11), 118 (44), 117 (59), 115 (21), 106 (100), 105 (29), 91 (38), 77 (15), 69 (28). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.72 ; \mathrm{H}, 8.10$. Found: C, 82.83; H, 8.16 .
($1 R^{*}, 2 S^{\star}$)-2-($1\left(R^{*}\right)$-1-phenylethyl)cyclopropanemethanol (7a). $\mathrm{NaBH}_{4}(0.06 \mathrm{~g}, 1.59 \mathrm{mmol})$ was added to a solution of $16 \mathrm{a}(0.21 \mathrm{~g}, 1.23 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$. After 20 min at rt , the reaction mixture was quenched with a 1 M aqueous hydrochloric acid solution and extracted with AcOEt. The combined extracts were evaporated and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over
MgSO_{4}, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt gradient: $95 / 5$ to $80 / 20$) to give $0.15 \mathrm{~g}(70 \%)$ of 7 a as a colorless oil; IR 3340 (br), 3050, 3020, 1600, 1490, 1450, 1050, $750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.26-$ $7.10(\mathrm{~m}, 5 \mathrm{H}), 3.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~m}, 1 \mathrm{H}), 0.41-0.29(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 146.6(\mathrm{~s}), 128.3(\mathrm{~d}), 126.9(\mathrm{~d}), 125.9$ (d), 66.9 (t), 43.3 (d), 24.6 (d), 21.5 (q), 21.3 (d), 9.7 (t ; EI MS m / z (relative intensity) $158\left(\mathrm{M}^{+}\right.$$\left.\mathrm{H}_{2} \mathrm{O}, 5\right), 143$ (18), 132 (47), 118 (84), 117 (100), 115 (26), 106 (60), 105 (82), 104 (23), 103 (19), 91 (41), 78 (10), 77 (15). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; H, 9.15 . Found: C, 81.70; H, 9.20 .
($1 S^{\star}, 2 R^{*}$)-2-($1\left(R^{*}\right)$-1-phenylethyl)cyclopropanemethanol (7b). Compound $\mathbf{1 6 b}$ (0.21 g , $1.23 \mathrm{mmol})$ was reduced with $\mathrm{NaBH}_{4}(0.06 \mathrm{~g}, 1.59 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$. Purification by flash chromatography (cyclohexane/AcOEt gradient: $95 / 5$ to $80 / 20$) gave $0.17 \mathrm{~g}(79 \%)$ of 7 b as a colorless oil; IR 3340 (br), 3050, 1600, 1490, 1450, 1050, 750, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.22-7.05$ $(\mathrm{m}, 5 \mathrm{H}), 3.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.85-0.70(\mathrm{~m}, 2 \mathrm{H}), 0.43-0.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.8(\mathrm{~s}), 128.2(\mathrm{~d}), 126.7(\mathrm{~d}), 125.9(\mathrm{~d}), 66.4$ (t), 43.2 (d), 24.6 (d), 21.1 (q), 20.5 (d), 9.9 (t); EI MS m/z (relative intensity) $158\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 17\right.$), 143 (15), 118 (90), 117 (100), 115 (16), 106 (52), 105 (79), 91 (29). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}$, 81.77; H, 9.15. Found: C, 81.72; H, 9.18.

Preparation of compound 5

3-Cyclohexyl-1,1-dibromobut-1-ene (17). To a solution of $\mathrm{CBr}_{4}(9.75 \mathrm{~g}, 29.40 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{PPh}_{3}(15.4 \mathrm{~g}, 58.7 \mathrm{mmol})$. After $15 \mathrm{~min}, 2-$ cyclohexylpropionaldehyde $(2.0 \mathrm{~g}, 14.7 \mathrm{mmol})$ was added slowly. After 1 h at rt , the reaction mixture was diluted with pentane $(100 \mathrm{~mL})$, the precipitate was filtered off through Celite and thoroughly washed with pentane. The filtrate was concentrated under reduced pressure and the crude product was taken up in pentane. The solids were filtered off again and the filtrate concentrated under reduced pressure. The crude material was purified by flash chromatography (pentane) to give $2.95 \mathrm{~g}(68 \%)$ of 17 as a colorless oil; IR $1615,1445,800,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $6.22(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.08(\mathrm{~m}, 4 \mathrm{H}), 1.02-0.70(\mathrm{~m}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.4(\mathrm{~d}), 87.2(\mathrm{~s}), 43.8(\mathrm{~d}), 42.7(\mathrm{~d}), 30.4(\mathrm{t}), 30.3(\mathrm{t})$,
$26.5(\mathrm{t}), 26.4(\mathrm{t}), 26.3(\mathrm{t}), 16.3(\mathrm{q})$; EI MS m/z (relative intensity) $298\left(\mathrm{M}^{+}+4,1\right), 296\left(\mathrm{M}^{+}+2,2\right)$, $294\left(\mathrm{M}^{+}, 1\right), 135(11), 110(18), 83(100), 82(29), 67(10), 55(67)$.

4-Cyclohexylpent-2-yn-1-ol (18). To a solution of $\mathbf{1 7}$ ($2.95 \mathrm{~g}, 9.96 \mathrm{mmol}$) in dry THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$, was added $n-\mathrm{BuLi}\left(8 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexanes, 20 mmol). After 10 min at $-78{ }^{\circ} \mathrm{C}$, dry paraformaldehyde ($0.9 \mathrm{~g}, 30.0 \mathrm{mmol}$ of monomeric HCHO) was added in one portion and the cooling bath was removed immediately. The reaction mixture was allowed to warm to rt. After 1 h , the reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ether. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{CO}_{3}$, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/ether: $80 / 20$) to give $1.25 \mathrm{~g}(75 \%)$ of 18 as a pale yellow liquid; IR $3300(\mathrm{br}), 2230,1450,1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.64(\mathrm{~m}, 7 \mathrm{H}), 1.25-1.00(\mathrm{~m}, 5 \mathrm{H}), 1.13(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 90.0(\mathrm{~s}), 79.3(\mathrm{~s}), 51.4(\mathrm{t}), 42.6(\mathrm{~d}), 31.9(\mathrm{~d}), 30.9(\mathrm{t}), 29.5(\mathrm{t}), 26.5$ $(\mathrm{t}), 26.4(\mathrm{t}), 26.3(\mathrm{t}), 18.2(\mathrm{q})$; EI MS m / z (relative intensity) $148\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 6\right), 135(22), 119(15)$, 91 (17), 83 (34), 81 (22), 79 (17), 66 (100), 55 (70), 53 (14). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.46$; H, 10.91. Found: C, 79.52; H, 11.01
(Z)-4-Cyclohexylpent-2-en-1-ol (5). A solution of $\mathrm{CuBr}(0.91 \mathrm{~g}, 6.34 \mathrm{mmol})$ and $\mathrm{LiBr}(0.99 \mathrm{~g}$, 11.40 mmol) in dry THF (6 mL), was added slowly to a refluxing activated zinc suspension [prepared from zinc dust ($3.26 \mathrm{~g}, 50.60 \mathrm{mmol}$) and 1,2-dibromoethane ($0.40 \mathrm{~mL}, 4.64 \mathrm{mmol}$) in isopropanol (15 mL); reflux 10 min]. After 20 min , a solution of $18(0.70 \mathrm{~g}, 4.21 \mathrm{mmol})$ in isopropanol (5 mL) was added slowly. After 5 h reflux, the reaction mixture was cooled to rt , diluted with ether $(100 \mathrm{~mL})$ and filtered through Celite. The filtrate was treated with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and was extracted with AcOEt . The combined extracts were dried over MgSO_{4}, concentrated under reduced pressure, to give an oil which was purified by flash chromatography (cyclohexane/AcOEt: $70 / 30,60 / 40$) $.0 .56 \mathrm{~g}(79 \%)$ of 5 was obtained as a clear yellow liquid; IR $3320(\mathrm{br}), 1450,1030,1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.55$ (dtd, $J=11.0,7.0$ and 0.7 $\mathrm{Hz}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.25-$ $1.00(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.0(\mathrm{~d}), 127.1(\mathrm{~d}), 58.8$ (t), 43.1 (d), $37.4(\mathrm{~d}), 30.6(\mathrm{t}), 30.3(\mathrm{t}), 26.6(\mathrm{t}), 26.5(\mathrm{t}), 26.4(\mathrm{t}), 18.4(\mathrm{q})$, EI MS m / z (relative
© 1998 American Chemical Society, J. Org. Chem., Cossy jo9806815 Supporting Info Page 9
intensity) $168\left(\mathrm{M}^{+}, 0.3\right), 150\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 21\right), 110(23), 83$ (23), 81 (25), 69 (17), 68 (100), 67 (42), 55 (59), 53 (15). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51 ; \mathrm{H}, 11.98$. Found: C, 78.44; H, 11.97.
$\mathbf{E t}_{2} \mathrm{Zn} / \mathbf{C H}_{2} \mathbf{C l}$ promoted cyclopropanation of $5.5(0.10 \mathrm{~g}, 0.59 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Et}_{2} \mathrm{Zn}(2.40 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 2.40 mmol$), \mathrm{ICH}_{2} \mathrm{Cl}(0.35 \mathrm{~mL}, 4.81 \mathrm{mmol})$ in DCE $(12 \mathrm{~mL})$. The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: $80 / 20$) to give $0.087 \mathrm{~g}(80 \%)$ of a diastereoisomeric mixture of $8 \mathbf{a}$ and $\mathbf{8 b}$ in a $20 / 80$ ratio.
$\mathrm{Sm}(\mathrm{Hg}) / \mathrm{ICH}_{2} \mathrm{Cl}$ promoted cyclopropanation of $5.5(0.10 \mathrm{~g}, 0.59 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Sm}(0.45 \mathrm{~g}, 2.99 \mathrm{mmol}), \mathrm{ICH}_{2} \mathrm{Cl}(0.22 \mathrm{~mL}, 3.02 \mathrm{mmol}), \mathrm{HgCl}_{2}(0.13 \mathrm{~g}, 0.48 \mathrm{mmol})$ in THF (16 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 80/20) to give $0.083 \mathrm{~g}(76 \%$) of a diastereoisomeric mixture of $\mathbf{8 a}$ and $\mathbf{8 b}$ in a 15/85 ratio.
($1 S^{\star}, 2 S^{\star}$)-2-((1 $\left.1 S^{\star}\right)$-1-cyclohexylethyl)cyclopropanemethanol (8a). IR 3320 (br), 3050, 1450, $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.75(\mathrm{dd}, J=11.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=11.0$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.24-0.68(\mathrm{~m}, 13 \mathrm{H}), 0.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 63.1(\mathrm{t}), 44.1(\mathrm{~d}), 38.5(\mathrm{~d}), 31.0$ (t), 29.6 (t), 26.9 (t), 26.8 (t , 26.7 (t), 21.7 (d), 17.8 (q$), 17.3$ (d), 10.0 (t), EI MS m / z (relative intensity) $164\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 1\right), 124$ (39), 123 (25), 110 (32), 109 (28), 95 (28), 83 (30), 82 (70), 81 (87), 69 (31), 67 (66), 55 (100). Anal. Calce for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06 ; \mathrm{H}, 12.16$. Found: $\mathrm{C}, 79.00 ; \mathrm{H}$, 12.30 .
($1 R^{\star}, 2 R^{*}$)-2-(($1 S^{*}$)-1-cyclohexylethyl)cyclopropanemethanol (8b). IR 3320 (br), 3050, 1450, $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.82(\mathrm{dd}, J=11.0$ and $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=11.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-$ $1.64(\mathrm{~m}, 6 \mathrm{H}), 1.24-0.68(\mathrm{~m}, 13 \mathrm{H}),-0.08(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 63.6(\mathrm{t}), 43.8(\mathrm{~d}), 38.1(\mathrm{~d}), 31.3(\mathrm{t})$, 29.1 (t), 26.9 (t), 26.8 (t), 26.7 (t), 22.1 (d), 20.0 (d), 17.1 (q), 8.4 (t) ; EI MS m / z (relative intensity) 164 ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 1$), 124 (47), 123 (35), 110 (24), 109 (28), 96 (18), 95 (38), 83 (29), 82 (68), 81 (87), 79 (26), 69 (29), 68 (20), 55 (100), 53 (28). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06 ; \mathrm{H}$, 12.16. Found: C, $79.00 ; \mathrm{H}, 12.30$.

Correlation for the determination of the relative stereochemistry of 8a

($1 S^{*}, 2 S^{\star}$)-2-[1(R^{*})-1-(cyclohexa-1,4-dien-1-yl)ethyl]cyclopropanemethanol (10a). Compound 2a $(0.53 \mathrm{~g}, 3.00 \mathrm{mmol})$ in dry $t-\mathrm{BuOH}(3.0 \mathrm{~g}, 40.5 \mathrm{mmol})$ and dry THF $(10 \mathrm{~mL})$ was added slowly to dry liquid ammonia (20 mL) . Lithium ($0.10 \mathrm{~g}, 14.41 \mathrm{mmol}, 4.80$ equiv.), freshly cut into four pieces, was then added to the refluxing reaction mixture, at such a rate that the initially observed blue colour has discharged. Once the addition was complete, solid $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~g})$ was added in one portion and the ammonia was allowed to evaporate. Ether was then added followed by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous one was extracted with ether. The combined extracts were dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 80/20) to give $0.38 \mathrm{~g}(72 \%)$ of $\mathbf{1 0 a}$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\delta 5.73(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=$ 7.7 and $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.2-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.72(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 139.2(\mathrm{~s}), 124.5(\mathrm{~d})$, 124.1 (d), 117.2 (d), 62.8 (t), 40.2 (d), 26.6 (t), 26.5 (t), 21.7 (d), 19.8 (q), 18.3 (d), 9.2 (t), EI MS m / z (relative intensity) $178\left(\mathrm{M}^{+}, 0.5\right), 160\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 2\right), 145(13), 131(23), 119$ (37), 118 (27), 117 (19), 106 (14), 105 (57), 92 (17), 91 (100), 79 (49), 78 (25), 77 (38), 67 (17), 65 (12), 55 (16).

Reduction of 10 a with diimide. To a stirred mixture of potassium azodicarboxylate (1.98 g , $5.04 \mathrm{mmol})$ and $10 \mathrm{a}(0.30 \mathrm{~g}, 1.68 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$, was added dropwise $\mathrm{AcOH}(1.2 \mathrm{~mL}$, 10.1 mmol). After $24 . \mathrm{h}$ at $70^{\circ} \mathrm{C}$, the reaction mixture was filtered, evaporated under reduced pressure and the reduction process was repeated with the crude material. After the second reduction, a crude mixture of 11 a and $8 \mathbf{a}$ was obtained in a $70 / 30$ ratio, observed by ${ }^{1} \mathrm{H}$ NMR and GC/MS analysis.
(1S*,2S*)-2-[1(R*)-(cyclohex-1-en-1-yl)ethyl]cyclopropanemethanol (11a). ${ }^{1} \mathrm{H}$ NMR $\delta 5.43$ $(\mathrm{m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.03(\mathrm{~m}, 5 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.76-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~m}, 1 \mathrm{H})$; EI MS m / z (relative intensity) $180\left(\mathrm{M}^{+}, 0.6\right)$, $162\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 5\right), 149(62), 147(22), 133(24), 121$ (26), $109(27), 107(73), 105(40), 94(20), 93$ (62), 91 (62), 81 (51), 79 (100), 77 (45), 67 (44), $55(25), 53(20)$.

Preparation of compound 6

1,1-Dibromo-4-[4-(methoxybenzyl)oxy]-3-methylbut-1-ene (19). To a solution of CBr_{4} (15.0 g , $45.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added $\mathrm{PPh}_{3}(22.5 \mathrm{~g}, 85.8 \mathrm{mmol})$. After 30 min , 3-[4-(methoxybenzyl)oxy]-2-methylpropionaldehyde ($8.9 \mathrm{~g}, 42.7 \mathrm{mmol}$) was added slowly. After 1 h at rt , the reaction mixture was diluted with cyclohexane $(300 \mathrm{~mL})$, the precipitated solids were filtered off through Celite and thoroughly washed with cyclohexane. The filtrate was concentrated under reduced pressure and the crude product was taken up in cyclohexane. The solids were filtered off again and the filtrate concentrated under reduced pressure. The crude material was purified by flash chromatography (toluene/ether: $90 / 10$) to give $12.3 \mathrm{~g}(79 \%)$ of 19 as a colorless oil; IR $1610,1585,1510,1250,1090,1030,845,820,785 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.88(m, 2H), $6.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 159.1$ (s$), 141.1$ (d), 130.2 (s$), 129.0(\mathrm{~d}), 113.7$ (d), 88.7 (s$), 72.6(\mathrm{t}), 72.5(\mathrm{t}), 55.1(\mathrm{q}), 38.6(\mathrm{~d}), 15.8(\mathrm{q})$; EI MS m / z (relative intensity) $366\left(\mathrm{M}^{+}+4,1\right), 364\left(\mathrm{M}^{+}+2,2\right), 362\left(\mathrm{M}^{+}, 1\right), 136(17), 121(100), 91$ (3), 78 (6).

5-[4-(methoxybenzyl)oxy]-4-methyl-pent-2-yn-1-ol (20). To a solution of 19 (12.3 g, 33.8 $\mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added $n-\mathrm{BuLi}(30 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 75 mmol$)$. After 10 min at $-78^{\circ} \mathrm{C}$, dry paraformaldehyde ($3 \mathrm{~g}, 100 \mathrm{mmol}$ of monomeric HCHO) was added in one portion and the cooling bath was removed immediately. After stirring overnight at t , the reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ether. The combined extracts were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 90/10) to give $6.4 \mathrm{~g}(82 \%)$ of 20 as colorless oil; IR 3400 (br), 2240, 1610, 1585, 1510, 1250, 1080, 1030, $820 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=9.0$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=9.0$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 158.9(\mathrm{~s})$, $129.8(\mathrm{~s}), 129.2(\mathrm{~d}), 113.5(\mathrm{~d}), 87.3(\mathrm{~s}), 79.4(\mathrm{~s}), 73.3(\mathrm{t}), 72.3(\mathrm{t}), 54.9(\mathrm{q}), 50.6(\mathrm{t}), 26.5(\mathrm{~d}), 17.4$
(q); EI MS m / z (relative intensity) $234\left(\mathrm{M}^{+}, 1\right), 203(21), 122(9), 121$ (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$: $\mathrm{C}, 71.77 ; \mathrm{H}, 7.74$. Found: $\mathrm{C}, 71.54 ; \mathrm{H}, 7.86$.
(Z)-5-[4-(methoxybenzyl)oxy]-4-methylpent-2-en-1-ol (6). A solution of CuBr (4.6 g, 32.1 $\mathrm{mmol})$ and $\operatorname{LiBr}(5.0 \mathrm{~g}, 57.6 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$, was added slowly to a refluxing activated zinc suspension [prepared from zinc dust ($16.8 \mathrm{~g}, 256.9 \mathrm{mmol}$) and 1,2-dibromoethane (2.0 mL , 23.2 mmol) in isopropanol (80 mL), reflux 10 min]. After 20 min , a solution of $20(5.0 \mathrm{~g}$, 21.3 mmol) in isopropanol (20 mL) was added slowly. After 2 h reflux and stirring overnight at rt , the reaction mixture was diluted with ether $(400 \mathrm{~mL})$ and filtered through Celite. The filtrate was then treated with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the organic phase was separated and the aqueous layer was extrated with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{CO}_{3}$, concentrated under reduced pressure to give an oil which was purified by flash chromatography (cyclohexane/AcOEt: $80 / 20,70 / 30$) to give $4.1 \mathrm{~g}(82 \%)$ of 6 as a colorless liquid; IR 3400 (br), $3000,1610,1585,1510,1250,1080,1030,820,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.27-7.22(\mathrm{~m}$, $2 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{dddd}, J=11.0,7.9,6.6$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, $4.20(\mathrm{ddd}, J=12.1,7.9$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=12.1$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}$, $J=8.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 0.96(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 159.1(\mathrm{~s}), 136.7(\mathrm{~d}), 129.6(\mathrm{~s}), 129.3(\mathrm{~d}, 2 \mathrm{C}), 113.7(\mathrm{~d}), 74.1(\mathrm{t}), 72.8(\mathrm{t})$, $57.7(\mathrm{t}), 55.1(\mathrm{q}), 32.3(\mathrm{~d}), 17.2(\mathrm{q})$; EI MS m/z (relative intensity) $236\left(\mathrm{M}^{+}, 2\right), 150(10), 122(10)$, 121 (100). Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 71.16 ; \mathrm{H}, 8.53$. Found: C, $70.99 ; \mathrm{H}, 8.63$.
$\mathrm{Et}_{2} \mathrm{Zn} / \mathrm{ICH}_{2} \mathrm{Cl}$ promoted cyclopropanation of $6.6(0.40 \mathrm{~g}, 1.69 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Et}_{2} \mathrm{Zn}(6.8 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 6.80 mmol$), \mathrm{ICH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL}, 13.7 \mathrm{mmol})$ in $\mathrm{DCE}(20 \mathrm{~mL})$. The crude material was filtered through silica gel (cyclohexane/AcOEt: 70/30) to give $0.34 \mathrm{~g}(81 \%)$ of a pure diastereoisomeric mixture of $9 \mathbf{a}$ and 9 b in a $70 / 30$ ratio. Purification by flash chromatography (toluene/ether: $80 / 20$) gave 0.084 g of $9 \mathrm{~b}(20 \%)$ and $0.20 \mathrm{~g}(47 \%)$ of 9 a as colorless oils.
$\mathrm{Sm}(\mathrm{Hg}) / \mathrm{ICH}_{2} \mathrm{Cl}$ promoted cyclopropanation of $6.6(0.40 \mathrm{~g}, 1.69 \mathrm{mmol})$ was cyclopropanated by using $\mathrm{Sm}(1.30 \mathrm{~g}, 8.64 \mathrm{mmol}), \mathrm{ICH}_{2} \mathrm{Cl}(0.62 \mathrm{~mL}, 8.51 \mathrm{mmol}), \mathrm{HgCl}_{2}(0.37 \mathrm{~g}, 1.36 \mathrm{mmol})$ in

THF (50 mL). Purification by flash chromatography (toluene/ether: 80/20) gave 0.23 g (54%) of $\mathbf{9 b}$ and $0.15 \mathrm{~g}(36 \%)$ of $9 \mathbf{a}$ as colorless oils.
($1 S^{\star}, 2 R^{\star}$)-2-\{2-[4-methoxybenzyl)oxy]-1(R^{*})-1-methylethyl\}cyclopropanemethanol (9a). IR 3440 (br), $3050,1610,1585,1510,845,820,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.90-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=11.4$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=11.4$ and $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=9.0$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J$ $=9.0$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.43-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.75-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.10-0.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 158.9(\mathrm{~s}), 130.7(\mathrm{~s}), 128.9(\mathrm{~d}), 113.6(\mathrm{~d})$, $75.8(\mathrm{t}), 72.6(\mathrm{t}), 62.7(\mathrm{t}), 55.1(\mathrm{q}), 33.9(\mathrm{~d}), 20.3(\mathrm{~d}), 18.2(\mathrm{~d}), 17.4(\mathrm{q}), 8.5(\mathrm{t})$, EI MS m / z (relative intensity) $250\left(\mathrm{M}^{+}, 2\right), 137$ (7), 121 (100), 78 (7), 77 (7); Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 71.97 ; \mathrm{H}$, 8.86. Found: C, $71.80 ; \mathrm{H}, 8.93$
($1 R^{\star}, 2 S^{\star}$)-2-\{2-[4-methoxybenzyl)oxy]-1 (R^{*})-1-methylethyl\}cyclopropane methanol (9b).
IR 3420 (br), $3050,1610,1585,1510,845,820,740 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H})$, 6.91$6.87(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.8$ and 4.6 Hz , $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=8.8$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=10.3$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.65-0.53(\mathrm{~m}$, $2 \mathrm{H}),-0.16--0.21(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 159.3(\mathrm{~s}), 129.6(\mathrm{~d}), 129.1(\mathrm{~s}), 113.7(\mathrm{~d}), 76.2(\mathrm{t}), 73.0(\mathrm{t})$, $62.5(\mathrm{t}), 55.0(\mathrm{q}), 32.2(\mathrm{~d}), 21.6(\mathrm{~d}), 19.4(\mathrm{~d}), 17.7(\mathrm{q}), 5.7(\mathrm{t})$; EI MS m/z (relative intensity) 250 $\left(\mathrm{M}^{+}, 2\right), 137(19), 121(100), 78(8), 77(8)$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 71.97 ; \mathrm{H}, 8.86$. Found: C, 71.78 ; H, 8.95 .

Correlation for the determination of the relative stereochemistry of 9 a and 9 b 2($\left.R^{\star}\right)$-2-[(1 $\left.R^{\star}, 2 S^{\star}\right)$-2-(acetoxymethyl)cyclopropyl]propanoic acid (12a).

Preparation from 2a. To a solution of $\mathbf{2 a}(0.20 \mathrm{~g}, 1.13 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ containing DMAP $(0.0075 \mathrm{~g}, 0.0614 \mathrm{mmol})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.35 \mathrm{~mL}, 3.71 \mathrm{mmol})$. After 1 h at rt , MeOH (2 mL) was added dropwise, followed by the addition of a saturated aqueous NaHCO_{3} solution The organic phase was separated and the aqueous layer was extracted with ether. The combined extracts were dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 9/1) to give $0.24 \mathrm{~g}(98 \%)$ of the
corresponding acetate, which was dissolved in a mixture of $\mathrm{CCl}_{4}(3.8 \mathrm{~mL}), \mathrm{MeCN}(3.8 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ $(5.6 \mathrm{~mL}) . \mathrm{RuCl}_{3} \mathrm{xH}_{2} \mathrm{O}(0.0043 \mathrm{~g}, 0.0207 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(2.9 \mathrm{~g}, 13.7 \mathrm{mmol})$ were added to the vigorously stirred reaction mixture. After 16 h at $\mathrm{rt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water (10 mL) were added. The organic layer was separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure to give a crude material which was taken up in ether. After 24 h stirring, the mixture was filtered through Celite, and the crude carboxylic acid was purified by flash chromatography (cyclohexane/AcOEt: 70/30) to give $0.09 \mathrm{~g}(52 \%$) of 12 a as a waxy solid.
Preparation from 9a. To a solution of $9 \mathbf{a}(0.12 \mathrm{~g}, 0.45 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ containing a catalytic amount of DMAP, was added $\mathrm{Ac}_{2} \mathrm{O}(0.40 \mathrm{~mL}, 4.24 \mathrm{mmol})$. After 1 h at rt , the reaction mixture was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$. After addition of ether and water, the organic phase was separated and the aqueous layer was extracted with ether. The combined extracts were neutralized with saturated aqueous NaHCO_{3} solution, dried over MgSO_{4}, concentrated under reduced pressure and the crude acetate was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL}) . \operatorname{DDQ}(0.11 \mathrm{~g}, 0.48 \mathrm{mmol})$ was then added in one portion at $0^{\circ} \mathrm{C}$ and after 1 h at rt , the reaction mixture was diluted with water and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by rapid filtration on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ether: $\left.100 / 0,70 / 30\right)$ to give an alcohol which was dissolved in dry DMF (3 mL). PDC ($1.00 \mathrm{~g}, 2.66 \mathrm{mmol}$) was added in one portion and after 24 h at rt , water was added. The resulting mixture was extracted with AcOEt , the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 70/30 to 60/40) to give $0.047 \mathrm{~g}(54 \%)$ of 12 a as a waxy solid; $\mathrm{mp} 36-38^{\circ} \mathrm{C}$; IR $3500-2500$ (br), $1735,1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.30(\mathrm{dd}, J=11.9 \mathrm{and} 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, \mathrm{J}=11.9$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ $(\mathrm{s}, 3 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.91-$ $0.83(\mathrm{~m}, 1 \mathrm{H}), 0.34(\mathrm{dd}, J=11.2$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 182.1(\mathrm{~s}), 171.1(\mathrm{~s}), 64.5(\mathrm{t}), 39.4$ (d), 21.0 (q), 20.1 (d), 17.4 (q), 14.3 (d), 8.9 (t). Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 58.05 ; \mathrm{H} 7.58$. Found: C, 57.89; H, 7.72.
$2\left(R^{\star}\right)$-2-[(1 $\left.S^{\star}, 2 R^{\star}\right)$-2-(acetoxymethyl)cyclopropyl]propanoic acid (12b). To a solution of 9 b ($0.15 \mathrm{~g}, 0.60 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ containing a catalytic amount of DMAP, was added $\mathrm{Ac}_{2} \mathrm{O}(0.40 \mathrm{~mL}, 4.24 \mathrm{mmol})$. After 1 h at rt , the reaction mixture was quenched with MeOH (1 mL). After addition of ether and water, the organic phase was separated and the aqueous layer was extracted with ether. The combined extracts were neutralized with saturated aqueous NaHCO_{3} solution, dried over MgSO_{4}, concentrated under reduced pressure and the crude acetate was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. DDQ $(0.15 \mathrm{~g}, 0.66 \mathrm{mmol})$ was then added in one portion at $0^{\circ} \mathrm{C}$ and after 1 h at rt , the reaction mixture was diluted with water and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and the crude material was purified by rapid filtration through silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ether: $\left.100 / 0,70 / 30\right)$ to give an alcohol which was dissolved in dry DMF (3 mL). $\operatorname{PDC}(1.00 \mathrm{~g}, 2.66 \mathrm{mmol})$ was added in one portion and after 24 h at rt , water was added. The resulting mixture was extracted with AcOEt, the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 60/40) to give $0.064 \mathrm{~g}(56 \%)$ of $\mathbf{1 2 b}$ as a white solid; $\operatorname{mp} 63-64^{\circ} \mathrm{C}$; IR $3500-2500\left(\mathrm{br}\right.$), $1740,1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.27$ (dd, $J=12.0$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94(\mathrm{dd}, J=12.0$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.85(\mathrm{td}, J=8.4$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.14(\mathrm{dd}, J=11.0$ and 5.5 $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 182.4$ (s), 171.7 (s), 65.2 (t), 39.4 (d), 20.9 (q), 19.7 (d), 18.0 (q), 15.1 (d), 9.0 (t). Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 58.05 ; \mathrm{H}, 7.58$. Found: C, $58.02 ; \mathrm{H}, 7.61$.

Crystal Data

A selected crystal was set up on an automatic diffractometer. Unit cell dimensions with estimated standard deviations were obtained from least-squares refinements of the setting angles of 25 well centered reflections. Two standard reflections were monitored periodically; they showed no change during data collection. Crystallographic data and other information are summarized in Table I. Corrections were made for Lorentz and polarisation effects. An extinction correction was necessary.

Computations were performed by using the PC version of CRYSTALS. ${ }^{1}$ Atomic form factors for neutral O, C and H were taken from ref. 2. Real and imaginary parts of anomalous dispersion were taken into account. The structure was solved by direct methods using the SHELXS86 ${ }^{3}$ program and succesive fourrier maps. All hydrogens atoms have been located on difference maps, their position were not refined and they were given an overall thermal parameter.

Oxygen atom was anisotropically refined, other atoms were isotropically refined. Full matrix least-squares refinements were carried out by minimising the function

$$
\sum w\left(F_{0}-\left|F_{C}\right|\right)^{2}
$$

where $F o$ and F_{c} are the observed and calculated structure factors. Models reached convergence with

$$
R=\sum\left(\left|F_{o}-\left|F_{c}\right|\right) / \sum w F_{o} \text { and } R w=\left[\sum w\left(F_{o}-\left|F_{C}\right|^{2}\right) / \sum\left(F_{o}\right)^{2}\right]^{1 / 2}\right.
$$

having value listed in table I.

In the last stages of the refinement, each reflection was assigned a weight:unity. Criteria for a satisfactory complete analysis were the ratio of rms shift to standard deviations being less than 0.2 and no significant features in the difference map. There are hydrogens bonds between molecules building infinite chains parallel to axis a.

Atomic coordinates are given in table II. Interatomic distances and bond angles in Table III. Supplementary material available: Table of atomic parameters for hydrogen atoms, observed and calculated strucure factors. The figure represents a view of the molecule using CAMERON. ${ }^{4}$

[^0]
NUMBER OF REFLECTIONS WITH I > nSIGMA(I)

CONDITIONS $<1 \mathrm{~S}<2 \mathrm{~S}<3 \mathrm{~S}<4 \mathrm{~S}<5 \mathrm{~S}<6 \mathrm{~S}<7 \mathrm{~S}<8 \mathrm{~S}<9 \mathrm{~S}<10 \mathrm{~S}>10 \mathrm{~S} \mathrm{~N}$ AVINT AVSIG
$\begin{array}{llllllllllllllll}00 \mathrm{~L}: & \mathrm{L}=2 \mathrm{~N}+1^{*} & 3 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 3 & 9 . & 1266.3 & 162.7 \\ 0 \mathrm{~K} 0: & \mathrm{K}=2 \mathrm{~N}+1^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.0 & 0.0 \\ \mathrm{H} 00 & \mathrm{H}=2 \mathrm{~N}+1^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.0 & 0.0 \\ 0 \mathrm{KL}: & \mathrm{K}=2 \mathrm{~N}+1^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 . & 0.0 & 0.0\end{array}$
0KL: $\mathrm{L}=2 \mathrm{~N}+1$ * $41 \begin{array}{llllllllllllll}16 & 0 & 2 & 2 & 1 & 3 & 0 & 2 & 3 & 13 & 83 . & 598.0 & 130.3\end{array}$
$0 \mathrm{KL}: \mathrm{K}+\mathrm{L}=2 \mathrm{~N}+1^{*} \begin{array}{lllllllllllllll}41 & 16 & 0 & 2 & 2 & 1 & 3 & 0 & 2 & 3 & 13 & 83 & 598.0 & 130.3\end{array}$
HOL: $\mathrm{H}=2 \mathrm{~N}+1^{*} \quad 0 \quad 0$
HOL: $\mathrm{L}=2 \mathrm{~N}+1^{*} 86 \begin{array}{lllllllllllllll} & 26 & 2 & 2 & 1 & 3 & 5 & 4 & 5 & 13 & 39 & 186 & 2413.8 & 143.2\end{array}$

HKO: $\mathrm{K}=2 \mathrm{~N}+\mathrm{I}^{*} 94 \begin{array}{lllllllllllll}94 & 40 & 2 & 7 & 3 & 7 & 5 & 11 & 16 & 7 & 80 & 272 & 3438.8 \\ 148.8\end{array}$

ALL: $\mathrm{K}+\mathrm{L}=2 \mathrm{~N}+1 * 185066141.57 \quad 35 \quad 5650$

HHL: $\mathrm{L}=2 \mathrm{~N}+\mathrm{I}^{*} \begin{array}{lllllllllllllll}58 & 25 & 0 & 1 & 1 & 3 & 1 & 2 & 1 & 3 & 25 & 120 & 1381.7 & 137.4\end{array}$
H-HL: $\quad \mathrm{L}=2 \mathrm{~N}+1^{*} \begin{array}{lllllllllllllll}66 & 30 & 1 & 0 & 0 & 2 & 3 & 3 & 4 & 6 & 39 & 154 & 4474.2 & 164.1\end{array}$
00L: $\mathrm{L}=3 \mathrm{~N}+1^{*} 662 \begin{array}{lllllllllllll} & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 12 . & 1574.0 \\ 174.7\end{array}$

NUMBER OF REFLECTIONS WITH I > nSIGMA(I)

THETA $<1 \mathrm{~S}<2 \mathrm{~S}<3 \mathrm{~S}<4 \mathrm{~S}<5 \mathrm{~S}<6 \mathrm{~S}<7 \mathrm{~S}<8 \mathrm{~S}<9 \mathrm{~S}<10 \mathrm{~S}>10 \mathrm{~S}$ N

```
0.0-2.0: 0 0 0 0 0 0 0 0
2.0-4.0: 7 4 4 0
4.0-6.0: 16 4.0
6.0-8.0:-22 12 0
8.0-10.0: 43 23 0}000411/\mp@code{2
10.0-12.0: 90 34 1, 4 5 5 5 6 111 16 27 181 380
12.0-14.0: 129 63 2, 5
14.0-16.0: 242 121 8
16.0-18.0: 338 160}1
18.0-20.0: 519}25
20.0-22.0: 751 245 19 21 13 25 18 23 20 26 25 1186
22.0-24.0: 991 295 15 23 14 16 5
24.0-26.0: 535 152 7
```

TOTAL : $36831367 \quad 75 \quad 92 \quad 82106113152 \quad 201 \quad 23010677168$

TABLE I

CRYSTAL DATA: $\mathrm{C}_{12} \mathbf{H 1 6}^{\mathbf{O}}$			
Formula	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$.		
Fw =	176.25		
Crystal System	Orthorhombic		
a $(\AA)=$	8.119(2)		
b $(\AA$ ® $)=$	10.356(2)		
c $\left(\AA^{\text {® }}\right.$) $=$	25.363(7)		
$V\left(\AA^{3}\right)=$	2132(1)		
$\mathrm{Z}=$	8		
Space group	Pnab		
Crystal shape	parallelepiped		
Crystal colour	colourless		
Crystal dimensions (mm)	0.2,0.4,0.5		
Linear absorption coefficient μ (cm^{-1})	0.63		
Density $\rho\left(\mathrm{g} \mathrm{cm}^{3}\right)$	1.09		
Diffractometer	MACH3		
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$		
Scan type	$\omega / 2 \theta$		
Scan range (${ }^{\circ}$)	$0.8+0.345$ tg θ		
θ Limits (${ }^{\circ}$)	1-25		
Temperature of measurement	Room temperature		
Octants collected	h:0, 9; k: 0, 12; 1:0, 30		
Nb of data collected	2194		
Nb of unique data collected	1880		
Nb of unique data used for refinement	709(Fo) ${ }^{2}>3 \sigma(\mathrm{Fo})^{2}$		
Decay of standards reflections \%	none		
$\mathrm{R}=\Sigma\|\mathrm{Fo}-\| \mathrm{Fc}\\| \\| / \Sigma \mathrm{Fo}$	0.072		
$\mathrm{Rw}=\left[\Sigma \mathrm{w}(\mathrm{Fo}-\|\mathrm{Fc}\|)^{2} / \Sigma \mathrm{wFo}^{2}\right]^{1 / 2}$	0.063		
Secondary extinction coefficient	135		
Nb of variables	60		
$\Delta \rho \min \left(\mathrm{e} / \AA^{3}{ }^{\text {a }}\right.$)	-0.21		
$\Delta \rho \max \left(\mathrm{e} / \AA^{\mathbf{3}}\right.$)	0.29		

Atom	x / a	y/b	z/c	U(iso)	U (eqv)
O(1)	0.0868 (5)	0.3901 (4)	$0.5068(2)$		0.0729
C(1)	0.0148 (9)	0.2835 (6)	$0.4795(2)$	0.069 (2)	
C(2)	0.0462 (8)	0.2849 (6)	0.4219 (2)	0.058 (2)	
C(3)	-0.0485 (8)	0.3724 (7)	0.3869 (3)	0.071 (2)	
C(4)	-0.0736(8)	0.2299 (6)	$0.3825(2)$	0.057 (2)	
C(5)	-0.2368(7)	0.1717 (6)	0.3991 (2)	$0.052(2)$	
C(6)	-0.2116 (9)	0.0341 (7)	0.4203 (3)	0.076 (2)	
C(7)	-0.3589(7)	0.1750 (5)	0.3540 (2)	0.049 (2)	
C(8)	-0.3506(8)	0.0880 (6)	0.3123 (2)	0.065 (2)	
C(9)	-0.4635(9)	$0.0958(7)$	0.2700 (3)	0.078 (2)	
C(10)	-0.5779(9)	0.1891 (7)	0.2699 (3)	$0.082(2)$	
c(11)	-0.5910(9)	0.2743 (7)	0.3096 (3)	0.085 (2)	
C(12)	-0.4806(9)	0.2674 (6)	0.3521 (3)	$0.069(2)$	

© 1998 American Chemical Society, J. Org. Chem., Cossy jo9806815 Supporting Info Page 22

Table III: Interatomic distances (\dot{A}) and bond angles (${ }^{\circ}$):

O(1)	- C(1)		1.429(7)	C(1)	- C(2)		1.482 (8)
C(2)	- C(3)		1.484 (8)	C(2)	- C(4)		1.507 (8)
C(3)	- C(4)		1.494 (8)	C (4)	- C(5)		1.516 (8)
C(5)	- C(6)		1.537 (8)	C(5)	- C(7)		1.513 (7)
C(7)	- C(8)		1.392 (7)	C(7)	- $\mathrm{C}(12)$,	1.376 (8)
C(8)	- C(9)		1.414 (8)	C(9)	- C(10)		1.341 (9)
C(10)	- C(11)		1.343 (9)	C(11)	- C(12)		1.402 (9)
O(1)	- C(1)	- C(2)	113.6(6)	C(1)	- C(2)	- C(3)	120.4(6)
C(1)	- C(2)	- C(4)	122.6 (6)	C(3)	- C(2)	- C(4)	60.0 (4)
C(2)	- C(3)	- C(4)	60.8 (4)	C(2)	- C(4)	- C(3)	59.3 (4)
C(2)	- C(4)	- C(5)	122.0 (5)	C(3)	- C(4)	- C(5)	119.4(5)
C(4)	- C(5)	- C(6)	110.4(5)	C(4)	- C(5)	- C (7)	110.7(5)
C(6)	- C(5)	- C(7)	111.9(5)	C(5)	- C(7)	- C ${ }^{(8)}$	121.9(6)
C(5)	- C(7)	- C(12)	120.9 (6)	C(8)	- C(7)	- C(12)	117.2(6)
C(7)	- C(8)	- C(9)	120.6(6)	C (8)	- C(9)	- C(10)	119.4(7)
C(9)	- C(10)	- C (11)	121.9 (7)	C(10)	- C(11)	- C(12)	119.4(7)
C(7)	- C(12)	- C(11)	121.5(7)				

Table: Hydrogen atoms interatomic distances (\dot{A}) and bond angles (${ }^{\circ}$) for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$

$\mathrm{O}(1)-\mathrm{H}(1)$	$1.339(4)$	$\mathrm{O}(1)$	$-\mathrm{H}(2)$	$1.350(4)$
$\mathrm{C}(1)-\mathrm{H}(11)$	$1.089(7)$	$\mathrm{C}(1)$	$-\mathrm{H}(12)$	$0.959(7)$
$\mathrm{C}(2)-\mathrm{H}(21)$	$0.976(6)$	$\mathrm{C}(3)$	$-\mathrm{H}(31)$	$0.963(7)$
$\mathrm{C}(3)-\mathrm{H}(32)$	$0.955(7)$	$\mathrm{C}(4)$	$-\mathrm{H}(41)$	$1.017(6)$
$\mathrm{C}(5)-\mathrm{H}(51)$	$1.068(6)$	$\mathrm{C}(6)-\mathrm{H}(61)$	$1.158(7)$	
$\mathrm{C}(6)-\mathrm{H}(62)$	$0.897(7)$	$\mathrm{C}(6)-\mathrm{H}(63)$	$1.006(7)$	
$\mathrm{C}(8)-\mathrm{H}(81)$	$0.974(6)$	$\mathrm{C}(9)$	$-\mathrm{H}(91)$	$1.021(7)$
$\mathrm{C}(10)-\mathrm{H}(101)$	$0.992(7)$	$\mathrm{C}(11)-\mathrm{H}(111)$	$0.967(8)$	
$\mathrm{C}(12)-\mathrm{H}(121)$	$0.879(7)$			

C(1)	- O(1)	- H(1)	113.0(4)	C(1)	- O(1)	- H(2)	112.1(4)
H(1)	- O(1)	- H(2)	116.6 (3)				
O(1)	- C(1)	- H(11)	112.6 (5)	C(2)	- C(1)	- H(11)	102.4(5)
O(1)	- C(1)	- H(12)	105.0(6)	C(2)	- c(1)	- H(12)	111.1(6)
H(11)	- C(1)	- H(12)	112.4 (6)	C(1)	- C(2)	- H(21)	98.3(5)
C(3)	- C(2)	- H(21)	128.7 (6)	C(4)	- C(2)	- H(21)	126.3(6)
C(2)	- C(3)	- H(31)	117.4(6)	C(4)	- C(3)	- H(31)	111.7(6)
C(2)	- C(3)	- H(32)	119.8 (6)	C(4)	- C(3)	- H(32)	115.5(6)
H(31)	- C(3)	- H(32)	117.9(7)	C(2)	- C(4)	- H(41)	117.7(5)
C(3)	- C(4)	- H(41)	121.9(6)	C(5)	- C(4)	- H(41)	109.2(5)
C(4)	- C(5)	- H(51)	108.0(5)	C(6)	- C(5)	- H(51)	105.2(5)
C(7)	- C(5)	- H(51)	110.5(5)	C(5)	- C(6)	- H(61)	111.4(5)
C(5)	- C(6)	- H(62)	104.5(6)	H(61)	- C(6)	- H(62)	111.3(7)
C(5)	- C(6)	- H(63)	108.4(6)	H(61)	- C (6)	- H(63)	106.3(6)
H(62)	- C(6)	- H(63)	115.0(7)	C(7)	- C(8)	- H(81)	120.6(6)
C(9)	- C (8)	- H(81)	118.8(6)	C(8)	- C(9)	- H(91)	107.4(6)
C(10)	- C (9)	- H(91)	133.2(7)	C(9)	- C(10)	- H(101)	117.9 (7)
C(11)	- $\mathrm{C}(10)$	- H(101)	120.1(8)	C(10)	- C(11)	- H(111)	129.6(8)
C(12)	- C(11)	- H(111)	110.9(7)	C(7)	- C(12)	- H(121)	113.7 (7)

Table : Hydrogen atoms fractional atomic coordinates for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$

H(1)	0.2500	0.3981	0.5000	$0.112(6)$
H(2)	0.0000	0.5000	0.5000	$0.112(6)$
H(11)	0.0671	0.1912	0.4913	$0.112(6)$
H(12)	-0.1009	0.2891	0.4869	$0.112(6)$
H(21)	0.1647	0.2696	0.4229	$0.112(6)$
H(31)	-0.1434	0.4147	0.4017	$0.112(6)$
H(32)	0.0046	0.4124	0.3576	$0.112(6)$
H(41)	-0.0267	0.1780	0.3519	$0.112(6)$
H(51)	-0.2822	0.2260	0.4318	$0.112(6)$
H(61)	-0.1254	0.0334	0.4567	$0.112(6)$
H(62)	-0.1671	-0.0092	0.3932	$0.112(6)$
H(63)	-0.3210	0.0002	0.4328	$0.112(6)$
H(81)	-0.2690	0.0190	0.3123	$0.112(6)$
H(91)	-0.4371	0.0219	0.2447	$0.112(6)$
H(101)	-0.6596	0.1896	0.2409	$0.112(6)$
H(111)	-0.6634	0.3479	0.3133	$0.112(6)$
H(121)	-0.4850	0.3166	0.3803	$0.112(6)$

```
Table : Anisotropic thermal parameters for :
```

Atom	$U(11)$	$U(22)$	$U(33)$	$U(23)$	$U(13)$	$U(12)$
$O(1)$	$0.069(3)$	$0.075(3)$	$0.085(3)$	$-0.019(3)$	$-0.017(3)$	$0.008(3)$

Table : Fo/Fc for $\mathrm{C}_{12} \mathrm{H}_{16}{ }^{\circ}$ $\mathrm{H} / \mathrm{FO} / \mathrm{FC} / \mathrm{PHI}{ }_{\mathrm{H}} / \mathrm{FO} / \mathrm{FC} / \mathrm{PHI}$
 2146714520 ** $\mathrm{K}=4 \mathrm{~L}=1$ ** $4 \quad 94 \quad 120 \quad 0$ $6 \quad 168 \quad 182180$
** $\mathrm{K}=2 \mathrm{~L}=0$ **

H/FO/ /FC/ PHI

*

2	284	287	180
3	82	92	0
4	160	136	0
5	95	97	0
6	116	96	0
9	67	43	0
$* * K=$	4	$L=$	$2 * *$

0	78	94	360
1	90	101	180
3	-121	116	180
4	180	169	0
5	121	124	180
6	160	167	0
7	76	77	180

** $\mathrm{K}=6 . \mathrm{L}=0$ **
** $\mathrm{K}=7 \mathrm{~L}=1$ ** *

$$
\begin{gathered}
* * K=5 \quad L=2 * * \\
2 \quad 275 \quad 257180
\end{gathered}
$$

7	102
$* * K$	84

1	182	192	180
2	639	645	0
3	77	86	0
4	78	86	0
5	40	35	180
6	127	113	0
7	80	66	0

\[

\]

 \(\begin{array}{rrrr}1 & 198 & 209 & 180 \\ 2 & 188 & 192 & 180 \\ 4 & 201 & 216 & 180 \\ 5 & 109 & 94 & 180 \\ 6 & 91 & 102 & 180\end{array}\)
 $$
* * \mathrm{~K}=8 \mathrm{~L}=0 * *
$$

$$
* * \mathrm{~K}=10 \mathrm{~L}=0 * *
$$

** $\mathrm{K}=1 \mathrm{~L}=1$ **

$$
\star \star \mathrm{K}=0 \quad \mathrm{~L}=2 * *
$$

$\mathrm{H} / \mathrm{FO} / / \mathrm{FC} / \mathrm{PHI}$

** $\mathrm{K}=5 \mathrm{~L}=3$ **

$$
\begin{array}{rrrr}
2 & 181 & 178 & 0 \\
3 & 310 & 301 & 180 \\
5 & 80 & 67 & 180
\end{array}
$$

 \(\begin{array}{rrrr}0 & 142 & 132 & 180 \\ 1 & 131 & 130 & 180 \\ 4 & 129 & 139 & 0\end{array}\)
 ** $K=6 L=3$ **
$\begin{array}{llll}2 & 127 & 147 & 180\end{array}$

$$
\begin{array}{rrrr}
0 & 91 & 111 & 0 \\
2 & 76 & 79 & 0 \\
3 & 71 & 86 & 0
\end{array}
$$

 \(\begin{array}{rrr}127 & 147 & 180 \\ 79 & 75 & 0\end{array}\)
 \(\begin{array}{rrr}96 & 88 & 180 \\ .80 & 62 & 0\end{array}\)
 \(\begin{array}{rrrr}0 & 572 & 591 & 180 \\ 1 & 420 & 434 & 0 \\ 3 & 314 & 310 & 0 \\ 4 & 114 & 122 & 0 \\ 5 & 79 & 68 & 180\end{array}\)
 | 1 | 198 | 209 | 180 |
| ---: | ---: | ---: | ---: |
| 2 | 188 | 192 | 180 |
| 4 | 201 | 216 | 180 |
| 5 | 109 | 94 | 180 |
| 6 | 91 | 102 | 180 |

$$
* * \mathrm{~K}=0 \quad \mathrm{~L}=1 * *
$$

$$
2188192 \quad 0 \quad * * \mathrm{~K}=12 \quad \mathrm{~L}=1 * *
$$

$$
* * K=8 \mathrm{~L}=2 * *
$$

** $\mathrm{K}=7 \mathrm{~L}=3$ **

$$
\begin{array}{rrrr}
2 & 188 & 192 & 0 \\
4 & 233 & 228 & 0 \\
6 & 63 & 66 & 0 \\
8 & 211 & 212 & 180
\end{array}
$$

$$
\begin{array}{rrrr}
0 & 90 & 110 & 0 \\
2 & 44 & 45 & 0 \\
3 & 68 & 69 & 180 \\
5 & 48 & 30 & 180 \\
6 & 51 & 29 & 180 \\
& & & \\
\text { ** }= & 9 & L= & 2
\end{array} \text { ** }
$$

 \(\begin{array}{lrrr}3 & 170 & 173 & 180\end{array}\)
 ** \(\mathrm{K}=8 \mathrm{~L}=3\) **
 $$
\begin{array}{rrrr}
0 & 168 & 199 & 0 \\
2 & 85 & 78 & 180 \\
4 & 274 & 255 & 0 \\
* * K= & 1 & L= & 2 * *
\end{array}
$$

 \(\begin{array}{rrrr}2 & 108 & 108 & 0 \\ 4 & 87 & 112 & 0\end{array}\)
 $$
\begin{array}{rrrr}
1 & 65 & 78 & 0 \\
2 & 301 & 308 & 0 \\
3 & 306 & 304 & 0 \\
4 & 92 & 101 & 0 \\
5 & 49 & 41 & 0 \\
6 & 113 & 105 & 180 \\
7 & 190 & 208 & 180 \\
8 & 86 & 85 & 0
\end{array}
$$

$$
* * \mathrm{~K}=12 \quad \mathrm{~L}=2 * *
$$

$$
\begin{array}{llll}
0 & 79 & 68 & 180
\end{array}
$$

$$
* * K=0 \quad L=3 * *
$$

$$
\begin{array}{rrrr}
2 & 154 & 151 & 0 \\
4 & 123 & 114 & 180
\end{array}
$$

$$
\begin{array}{rrrr}
2 & 154 & 151 & 0 \\
4 & 123 & 114 & 180 \\
6 & 121 & 146 & 0
\end{array}
$$

$$
\star \star
$$

$$
\begin{array}{rrrr}
0 & 52 & 36 & 0 \\
1 & 197 & 204 & 0 \\
2 & 269 & 256 & 180 \\
3 & 137 & 145 & 0 \\
4 & 273 & 264 & 180 \\
5 & 194 & 180 & 0 \\
6 & 116 & 116 & 180
\end{array}
$$

$\begin{array}{llrr}* * & \mathrm{~K}= & 1 & \mathrm{~L}= \\ & & & \text { ** } \\ 0 & 988 & 982 & 0 \\ 1 & 648 & 673 & 0 \\ 3 & 426 & 422 & 0 \\ 4 & 227 & 209 & 180 \\ 5 & 127 & 128 & 0\end{array}$

$\begin{array}{rrrrrrrr}0 & 612 & 611 & 180 & 0 & 52 & 36 & 0 \\ 1 & 90 & 72 & 180 & 2 & 269 & 256 & 180 \\ 2 & 464 & 459 & 180 & 3 & 137 & 145 & 0 \\ 3 & 162 & 143 & 0 & 4 & 273 & 264 & 180 \\ 4 & 97 & 93 & 180 & 5 & 194 & 180 & 0 \\ 7 & 96 & 108 & 180 & 6 & 116 & 116 & 180\end{array}$
** $\mathrm{K}=5 \mathrm{~L}=3$ **

** $\mathrm{K}=2 \mathrm{~L}=4$ **
$\begin{array}{lll}0 & 652.626 & 0\end{array}$
$\begin{array}{llll}1 & 167 & 187 & 180\end{array}$
$\begin{array}{rrrr}1 & 167 & 187 & 180 \\ 2 & 229 & 250 & 0 \\ 3 & 472 & 469 & 0\end{array}$
$5 \quad 1$
$\begin{array}{rrrr}3 & 68 & 73 & 0 \\ 4 & 209 & 213 & 0\end{array}$
$\begin{array}{rrr}146 & 177 & 0 \\ 73 & 63 & 180 \\ 81 & 81 & 0\end{array}$
** $\mathrm{K}=3 \mathrm{~L}=4^{* *}$
$\begin{array}{llll}1 & 390 & 408 & 180\end{array}$
$\begin{array}{rrr}127 & 133 & 0\end{array}$
$\begin{array}{rrrr}371 & 380 & 180 \\ 89 & 85 & 0\end{array}$
** $\mathrm{K}=4 \mathrm{~L}=3$ ** ** $\mathrm{K}=4 \mathrm{~L}=4$ **
$\begin{array}{rrrrrrrr} & & & 3 & 261 & 275 & 180 \\ 0 & 83 & 105 & 180 & 5 & 111 & 132 & 180 \\ 1 & 54 & 49 & 180 & 8 & 57 & 54 & 180\end{array}$
** $\mathrm{K}=.7 \mathrm{~L}=4$ **
$\begin{array}{rrrr}1 & 62 & 62 & 180 \\ 2 & 152 & 164 & 0 \\ 3 & 95 & 94 & 180\end{array}$
** $\mathrm{K}=9 \mathrm{~L}=3$ ** ** $\mathrm{K}=8 \mathrm{~L}=4$ **
$\begin{array}{llllllll}1 & 62 & 62 & 180 & 1 & 123 & 120 & 180\end{array}$
** $\mathrm{K}=11 \mathrm{~L}=3$ ** ** $\mathrm{K}=10 \mathrm{~L}=.4 * *$
$\begin{array}{lrrrrrrr}0 & 113 & 107 & 0 & 0 & 120 & 141 & 0 \\ & & & & 76 & 77 & 0\end{array}$
** $\mathrm{K}=0 \mathrm{~L}=4 * * \quad * * \mathrm{~K}=0 \mathrm{~L}=5$ **
$\begin{array}{rrrrrrrr}0 & 472 & 492 & 180 & & & & \\ 2 & 499 & 495 & 0 & 2 & 275 & 274 & 0 \\ 4 & 234 & 216 & 180 & 4 & 348 & 326 & 180\end{array}$
$\begin{array}{lrrrrrrr}4 & 234 & 216 & 180 & 4 & 348 & 326 & 180\end{array}$
** $\mathrm{K}=1 \mathrm{~L}=4 * * * * \mathrm{~K}=1 \mathrm{~L}=5$ **
$\begin{array}{rrrrrrrr}1 & 1523 & 1521 & 0 & 0 & 196 & 221 & 0 \\ 2 & 504 & 478 & 180 & 1 & 813 & 835 & 0\end{array}$
page 1 $\mathrm{H} / \mathrm{FO} / / \mathrm{FC} / \mathrm{PHI}$

$* * K=$	4	$L=$	4
0	402	380	180
1	551	543	0
2	208	198	180
3	310	310	0
4	73	72	0
5	70	77	0
6	74	96	0

 ** \(\mathrm{K}=5 \mathrm{~L}=.4\) **
 \(\begin{array}{llll}1 & 296 & 296 & 0\end{array}\)
 \(104 \quad 98180\)
 \(\begin{array}{lll}94 & 83 & 180\end{array}\)
 67180
 ** \(\mathrm{K}=6 \mathrm{~L}=4\) **
 \(\begin{array}{llll}0 & 226 & 211 & 180\end{array}\)
 282
 150
292
152
$\begin{array}{lll}150 & 152 & 0\end{array}$
180

** $\mathrm{K}=6 \mathrm{~L}=3$ ** \quad	2	104	98	180
4	94	83	180	
6	80	67	180	

Table : Fo/Fc for $\mathrm{C}_{12} \mathrm{H}_{16}{ }^{\mathrm{O}}$
$\mathrm{H} / \mathrm{FO} / \mathrm{FC} / \mathrm{PHI}{ }^{2}{ }_{\mathrm{H}} / \mathrm{FO} / \mathrm{FC} / \mathrm{PHI}$

2	393	400	180
3	416	424	0
4	49	42	360
5	336	315	0
6	146	148	180
7	122	120	180

** $\mathrm{K}=2 \mathrm{~L}=5$ **

1	258	251	0
3	425	398	0
5	54	51	0
6	83	74	0
7	52	54	180
$* *$	$K=$	3	

0	114	105	180
1	88	66	180
2	200	217	0
3	90	79	180
5	74	74	0
6	99	88	0
8	69	70	180

** $\mathrm{K}=4 \mathrm{~L}=5$ ** ** $\mathrm{K}=$

$$
\begin{array}{rrrr}
0 & 209 & 219 & 180 \\
1 & 43 & 23 & 0 \\
2 & 220 & 214 & 0 \\
3 & 42 & 53 & 180 \\
4 & 246 & 238 & 0 \\
5 & 63 & 69 & 0 \\
6 & 71 & 71 & 0
\end{array}
$$

$\mathrm{H} / \mathrm{FO} / / \mathrm{FC} / \mathrm{PHI}$
** $\mathrm{K}=1 \mathrm{~L}=7$ **

H/FO/ /FC/ PHI
page 2
$\mathrm{H} / \mathrm{FO} / / \mathrm{FC} / \mathrm{PHI}$

$$
\text { ** } \mathrm{K}=3 \mathrm{~L}=6 * *
$$

$$
\begin{gathered}
\text { ** } K=4 \quad L=7 * * \\
2 \quad 58 \quad 58 \quad 0
\end{gathered}
$$

$$
\begin{array}{rrrr}
2 & 58 & 58 & 0 \\
3 & 146 & 157 & 180
\end{array}
$$

$$
* * K=5 L=7 * *
$$

$$
\begin{array}{llll}
0 & 379 & 373 & 180
\end{array}
$$

$$
\begin{array}{rrrr}
0 & 403 & 379 & 0 \\
1 & 91 & 99 & 180 \\
2 & 91 & 92 & 180 \\
4 & 97 & 105 & 0
\end{array}
$$

$$
* * \mathrm{~K}=5 \mathrm{~L}=6 * *
$$

$$
\begin{array}{rrr}
379 & 373 & 180 \\
105 & 103 & 0 \\
196 & 186 & 180
\end{array}
$$

$$
N \pi \begin{array}{lrrr}
\\
K= & S & L= & \\
1 & 55 & 58 & 0 \\
2 & 98 & 108 & 180 \\
3 & 185 & 172 & 0 \\
5 & 138 & 121 & 0 \\
6 & 60 & 38 & 0
\end{array}
$$

$$
\begin{aligned}
& \text { ** } \\
& \\
& 0 \\
& 80
\end{aligned}
$$

$$
\begin{array}{rrrr}
2 & 196 & 186 & 180 \\
3 & 126 & 121 & 180 \\
4 & 173 & 191 & 0
\end{array}
$$

$$
\begin{array}{r}
0 \\
80
\end{array}
$$

$$
* * \mathrm{~K}=6^{*} \mathrm{~L}=5^{* *}
$$

$$
* * \mathrm{~K}=6 \mathrm{~L}=7 \star *
$$

$$
\begin{array}{llll}
1 & 336 & 341 & 0 \\
2 & 187 & 180 & 0 \\
3 & 178 & 198 & 0
\end{array}
$$

$$
\begin{array}{llll}
1 & 166 & 163 & 0
\end{array}
$$

$$
\text { ** } \mathrm{K}=7 \mathrm{~L}=5 * *
$$

$$
\begin{array}{rrrrrrrr}
1 & 97 & 110 & 0 & 5 & 65 & 55 & 180 \\
2 & 126 & 110 & 180 & & & 112 & 180 \\
2 & 270 & 277 & 180 & \star \star & & 7 & \\
\hline
\end{array}
$$

3239227180 ** $\mathrm{K}=7 \mathrm{~L}=6$ **

$$
\text { ** } K=8 L=5 * *
$$

$$
\begin{array}{llll}
1 & 220 & 238 & 180 \\
2 & 113 & 113 & 180
\end{array}
$$

$$
\begin{array}{rrrr}
1 & 198 & 181 & 0 \\
2 & 109 & 129 & 180 \\
4 & 82 & 65 & 180 \\
5 & 60 & 5 \kappa & 100
\end{array}
$$

$$
\begin{array}{rrrr}
2 & 113 & 113 & 180 \\
3 & .58 & 80 & 180
\end{array}
$$

$$
* * K=8 \mathrm{~L}=6 * *
$$

$$
\begin{array}{rrrr}
0 & 309 & 316 & 0 \\
1 & 73 & 76 & 180 \\
3 & 98 & 92 & 0 \\
4 & 173 & 169 & 180 \\
5 & 187 & 187 & 180
\end{array}
$$

$$
* * K=0 \quad L=8 * * \quad 5 \quad 187 \quad 187180
$$

$$
\begin{array}{rrrrr}
1 & 197 & 205 & 0 \\
2 & 146 & 144 & 180 \\
3 & 96 & 114 & 0 \\
4 & 111 & 116 & 0 \\
6 & 97 & 91 & 180 \\
7 & 66 & 94 & 180 \\
& & & & \\
\text { ** }= & 4 & \mathrm{~L}= & 9 & * * \\
1 & 131 & 118 & 180 \\
2 & 118 & 124 & 180 \\
3 & 190 & 230 & 0 \\
5 & 84 & 86 & 0 \\
7 & 85 & 87 & 180 \\
& & & & \\
\mathrm{~K}= & 5 & \mathrm{~L}= & 9 & * * \\
0 & 445 & 396 & 180 \\
2 & 65 & 72 & 180 \\
3 & 192 & 178 & 180 \\
4 & 91 & 81 & 0 \\
6 & 163 & 148 & 0 \\
& & & & \\
\mathrm{~K}= & 6 & \mathrm{~L}= & 9 & * * \\
\hline 2 & 121 & 136 & 180 \\
3 & 113 & 115 & 180 \\
4 & 126 & 116 & 0 \\
\text { ** } \mathrm{K}= & 2 & \mathrm{~L}= & 10 & * * \\
\hline 1 & 313 & 317 & 0 \\
4 & 61 & 44 & 180 \\
5 & 117 & 95 & 0 \\
6 & 128 & 138 & 0
\end{array}
$$

$$
\begin{array}{rrrr}
0 & 841 & 867 & 0 \\
2 & 844 & 859 & 0 \\
4 & 88 & 101 & 0 \\
6 & 118 & 138 & 180
\end{array}
$$

$$
\begin{array}{rrrrrrrr}
0 & 75 & 51 & 180 & 2 & 103 & 108 & 0 \\
2 & 449 & 462 & 0 & & & &
\end{array}
$$

$$
\begin{array}{rrrr}
1 & 82 & 64 & 360 \\
5 & 55 & 57 & 0
\end{array} \quad \mathrm{~K}=3 \quad \mathrm{~L}=10 * *
$$

$$
* * \mathrm{~K}=0 \mathrm{~L}=7 * * * * \mathrm{~K}=1 \mathrm{~L}=8 * *
$$

$$
\begin{array}{rrr}
25 & 114 & 180 \\
99 & 14 & 0 \\
58 & 42 & 0
\end{array}
$$

$$
\begin{array}{rrrr}
1 & 248 & 243 & 180 \\
2 & 172 & 173 & 0 \\
3 & 169 & 155 & 0
\end{array}
$$

$$
\begin{gathered}
* * K=3 \quad L=9 * * \\
0 \quad 148 \quad 1520
\end{gathered}
$$

$$
\begin{array}{llll}
0 & 148 & 152 & 0
\end{array}
$$

Table H	$\begin{aligned} & \text { : FO/ } \\ & / \mathrm{FO} / \end{aligned}$	$\begin{aligned} & \mathrm{FC} \text { for } \\ & / \mathrm{FC} / \mathrm{PHI} \end{aligned}$	$12^{\mathrm{H}_{1}}{ }_{\mathrm{H}}^{\mathrm{O}}$	/FO/	/FC/				/FO/	/FC/ P	PHI		H	/FO/	/FC/	PHI	page 3$\mathrm{H} / \mathrm{FO} / / \mathrm{FC} / \mathrm{PHI}$				
2	63	68180	4	156	152	180	**	$\mathrm{K}=$	9	$\mathrm{L}=12$			1	94		180	**	$\mathrm{K}=$	5	$L=15$	
3	76	780	5	126	133	0							2	55	59	180				$L=15$	
5	215	209180						2	86	80	0		4	118	101	0		1	71		
			** K=	6	$\mathrm{L}=11$	1 **							5	148	106	0		2	61		180
K=	5	$\mathrm{L}=10$ **					**	$\mathrm{K}=$	0	$\mathrm{L}=13$	**							3	96	92	
			1	72		180						**	$\mathrm{K}=$	2	$\mathrm{L}=14$						
1	98	$107 \quad 0$	4	118	121	180		2	185	195	0						**	$\mathrm{K}=$	6	$\mathrm{L}=15$	
2	104	111180	5	77	84	0							0	63	38	180			6	$1=15$	
4	206	219180					**	$\mathrm{K}=$	1	$\mathrm{L}=13$			1	71	69	0		1	221	242	0
			** K=	7	$\mathrm{L}=11$	1 **							2	149	154	180		3	80	74	0
* K=	6	$\mathrm{L}=10$ **						0	107		180		3	240	229	0		4	80	110	0
			0	102		180		1	160	148			6	109	115	180		5	84		
0	131	129180	1	87	109			2	71		180							6	67	78	0
2	67	52180	5	129	166			3	256	228	0	**	$\mathrm{K}=$	3	$\mathrm{L}=14$						
4	251	2610						4	133	1321	180						**	K=	7	$\mathrm{L}=15$	**
5	106	1030	** K=	8	$L=11$	**		5	193	181	0		1	199	184	180				$\pm=15$	
													3	203	194	180		2	68		
** $\mathrm{K}=$	7	$\mathrm{L}=10$ **	2	67	62	0	**	$\mathrm{K}=$	2	$L=13$	**		4	77	78	0		3	116	136	180
			4	96	91	0															
1	72	82180	5	61	50	180		3	92	85	0	**	$\mathrm{K}=$	4	$\mathrm{L}=14$	**	*	$\mathrm{K}=$	8	$\mathrm{L}=15$	
2	111	1060						4	55	51										$L=15$	
3	93	760	** K=	9	$\mathrm{L}=11$	**							0	92	85	0		1	77		180
							**	$\mathrm{K}=$	3	$\mathrm{L}=13$			1	68	56	0					
* K=	8	$\mathrm{L}=10$ **	0	84	98	0							4	141	158	0	*	$\mathrm{K}=$	0	$\mathrm{L}=16$	**
								0	74	593	360		5	136	139	0					
0	88	$77 \quad 0$	** K=	0	$\mathrm{L}=12$	**		1	91	87	0							0	117	127	0
3	145	172180						2	144	134	0	**	$\mathrm{K}=$	5	$L=14$	**		4	200	236	
4	104	102180	0	466	470	0		3	73	82	0										
			2	84	103	180		4	108	1261			1	109		0	**	$\mathrm{K}=$	1	$L=16$	
** K=	10	$\mathrm{L}=10$ **	4	66	59	0		5	121	131			2	75						± 16	
													4	117	128			2	47		
0	53	$35 \quad 0$	** K=	1	$\mathrm{L}=12$	**	**	$\mathrm{K}=$	4	$L=13$			6	97	86	180		3	152	135	
3	66	810																6	87	94	180
			1	525	491	0		1	50	531	180	**	$\mathrm{K}=$	6	$L=14$	**					
* * $\mathrm{K}=$	0	$\mathrm{L}=11$ **	2	187	182	0		2	95	82	180						**	$\mathrm{K}=$	2	$\mathrm{L}=16$	**
			3	233	229	0		3	190	174	180		0	47	9	180					
2	526	551 0	4	66	59	0		4	86		180		3	126	107	180		0	103	107	0
4	366	3840	5	141	131	0		5	57	371	180		4	138	142	180		3	135	148	0
													6	58	48	0		5	71		180
* K=	1	$\mathrm{L}=11$ **	** $\mathrm{K}=$	2	$\mathrm{L}=12$	**	**	$\mathrm{K}=$	5	$\mathrm{L}=13$								6	68	69	0
0	201	2120	0	104	130	0		0	84	75	180		$\mathrm{K}=$	0	$\mathrm{L}=15$		**	$\mathrm{K}=$	3		
1	108	- 990	1	219	218	0		2	129	162	180 0		2	219	222			$\mathrm{K}=$	3	$L=16$	
2	458	4310	2	84		180		4	199	219	0		4	255	277	180		1	63		
3	451	4250	3	160	130	- 0		5	109		180		8	83	72	180		2	136	138	180
4	119	111180	5	114	111	0												3	48	55	180
* K=	2	$\mathrm{L}=11$ **	** K=	3	$\mathrm{L}=12$	**	**	$\mathrm{K}=$	6	$L=13$		**	$\mathrm{K}=$	1	$L=15$		*	$K=$	4	$L=16$	**
								1	82	119	0		0	201	190	0					
1	54	58180	1	232	214	180		2	80	71	0		1	114	129	0		0	73		180
2	349	333180	2	67		180		3	89	. 93	0		2	126	113	0		1	121	123	
3	65	920	4	213	211	180							5	130	123	0					
4	108	85180	7	49	52	180	**	$\mathrm{K}=$	7	$L=13$	**		6	78	79	180	**	$\mathrm{K}=$	5	$\mathrm{L}=16$	**
5	100	1010								L= 13								K=	5	L= 16	
			** K=	4	$\mathrm{L}=12$	$2^{\text {** }}$		0	141	151	180	**	$\mathrm{K}=$	2	$\mathrm{L}=15$	5 **		1	52	81	0
** K=	3	$\mathrm{L}=11$ **						1	107	114	180										
			4	138	130	0		2	91	79	180		2	365	356	0	**	$\mathrm{K}=$	6	$\mathrm{L}=16$	**
0	466	469180	6	79	77	0							4	108	115	0					
1	126	139180					**	$\mathrm{K}=$	8	$L=13$			6	102	84	0		0	176	192	180
2	165	181180	** $\mathrm{K}=$	5	$\mathrm{L}=12$	**												2	82	71	0
4	156	170 0						1	54	78	180	**	$\mathrm{K}=$	3	$\mathrm{L}=15$	**		4	84	85	0
5	67	650	2	96	102	180		5	56	40	180							6	51	48	0
			3	158	181	0		.					0	241	248	180					
** $\mathrm{K}=$	4	L= 11 **	4	115	116	0	**	$\mathrm{K}=$	9	$L=13$	**		3	133	124	0	**	$\mathrm{K}=$	7	$L=16$	**
													4	86	69	180					
1	116	1260	** K=	6	$\mathrm{L}=12$	2 **		0	98	120	0		6	109	104	0		1	79	63	0
2	43	29360																			
3	176	208180	3	107	133	180	**	$K=$	0	$\mathrm{L}=14$	**	**	$\mathrm{K}=$	4	$L=15$	**	**	$\mathrm{K}=$	8	$L=16$	**
5	56	52180																			
7	56	46180	* * K=	7	$L=12$	2 **		0	191	199	0		1	246	270	180		1	90	109	180
								2	182	159	0		2	131	152	180		3	55	51	180
* * $\mathrm{K}=$	5	$\mathrm{L}=11$ **	3	148	167	180							3	92	101	0					
							**	$K=$	1	$\mathrm{L}=14$	**		4	133	141	180	**	$\mathrm{K}=$	9	$L=16$	**

page 4 H/FO/ /FC/ PHI

The relative stereochemistry of 8a was assigned by comparaison with an authentic sample prepared from $2 a$ by performing a Birch reduction followed by reduction of the 1,4 -diene:

[^0]: 1. D.J. Watkin, J.R. Carruthers and P.W. Betteridge. CRYSTALS, An advanced Crystallographic Computer Program, Chemical Crystallography Laboratory, Oxford (1989).
 2. International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974.
 3. G.M. Sheldrick. SHELXS86, Program for Crystal Structure Solution, University of Göttingen. Göttingen.
 4. L.J. Pearce and D.J. Watkin. Chemical Crystallography Laboratory, Oxford
