The Journal of Organic Chemistry

J. Org. Chem., 1998, 63(17), 5728-5729, DOI:10.1021/jo9806815

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

Copyright © 1998 American Chemical Society

Supporting Information

Experimental Section

All glasswares were flame-dried under a stream of argon and experiments were run under an argon atmosphere. ¹H NMR and ¹³C NMR spectra were recorded at 300 MHz and 75 MHz respectively. Chemical shifts are reported in ppm relative to internal tetramethylsilane. Uncorrected melting points were recorded on a Kofler apparatus. Flash column chromatography were performed on Merck Kieselgel 60 (230-400 mesh). THF and ether were distilled from sodium benzophenone ketyl. Dichloromethane, 1,2-dichloroethane (DCE), toluene and DMF were distilled from CaH₂. Other reagents were obtained from commercial sources and used as received.

Preparation of compound 1

1,1-Dibromo-3-phenylbut-1-ene (13). To a solution of CBr₄ (94.9 g, 286.0 mmol) in dry CH₂Cl₂ (400 mL) at 0 °C, was added PPh₃ (150 g, 572 mmol). After 15 min, 2-phenylpropionaldehyde (19.2 g, 143.1 mmol) was added slowly. After 1 h at rt, the reaction mixture was diluted with pentane (1 L), the precipitated solids were filtered off through Celite and thoroughly washed with pentane. The filtrate was concentrated under reduced pressure and the crude product was taken up in pentane. The solids were filtered off again and the filtrate concentrated under reduced pressure. The crude material was purified by flash chromatography (petroleum ether) to give 35 g (85%) of **13** as a colorless oil; IR 3010, 1600, 1490, 810, 760, 700 cm⁻¹, ¹H NMR δ 7.37-7.24 (m, 5H), 6.53 (d, *J* = 9.6 Hz, 1H), 3.78 (dq, *J* = 9.6 and 7.0 Hz, 1H), 1.41 (d, *J* = 7.0 Hz, 3H); ¹³C NMR δ 142.9 (s), 142.7 (d), 128.6 (d), 126.8 (d), 126.7 (d), 88.4 (s), 43.3 (d), 20.0 (q); EI MS *m/z* (relative intensity) 292 (M⁺+4, 7), 290 (M⁺+2, 13), 288 (M⁺, 7), 211 (28), 209 (28), 195 (28), 193 (27), 130 (62), 129 (100), 128 (26), 115 (47), 105 (14), 77 (13), 51 (10).

4-Phenyipent-2-yn-1-ol (14). To a solution of **13** (18.1 g, 62.4 mmol) in dry THF (150 mL) at -100 °C, was added *n*-BuLi (50.1 mL, 2.5M in hexanes, 125.2 mmol) in 2 h. After the addition was complete, dry paraformaldehyde (3.75 g, 124.89 mmol of monomeric HCHO) was added in one portion and the cooling bath was removed immediately. The reaction mixture was allowed to

warm to rt (a slighlty exothermic reaction started causing an increase of temperature to 30 °C). After stirring overnight at rt, the reaction mixture was poured into a saturated aqueous NH4Cl solution and was extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO4, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 90/10). 9.5 g (95%) of 14 was obtained as a pale yellow liquid; IR 3340 (br), 2240, 1600, 1490, 1450, 1140, 1000, 760, 700 cm⁻¹, ¹H NMR δ 7.40-7.20 (m, 5H), 4.33 (d, J = 2.2 Hz, 2H), 3.81 (qt, J = 7.3 and 2.2 Hz, 1H), 1.68 (s, 1H, OH), 1.51 (d, J = 7.3 Hz, 3H); ¹³C NMR δ 142.8 (s), 128.4 (d), 126.7 (d), 126.6 (d), 88.8 (s), 80.1 (s), 51.2 (t), 31.7 (d), 24.0 (q); EI MS *m/z* (relative intensity) 160 (M⁺, 65), 145 (22), 142 (79), 141 (28), 129 (58), 128 (62), 127 (43), 117 (61), 116 (25), 115 (100), 91 (40), 77 (23), 51 (23). Anal. Calcd for C₁₁H₁₂O: C, 82.46; H, 7.55. Found: C, 82.39; H, 7.61.

(Z)-4-Phenylpent-2-en-1-ol (1). A solution of CuBr (11.0 g, 76.7 mmol) and LiBr (12 g, 138 mmol) in dry THF (20 mL), was added slowly to a refluxing activated zinc suspension [prepared from zinc dust (39.5 g, 604.1 mmol), 1,2-dibromoethane (4.85 mL, 56.28 mmol) in isopropanol (90 mL); reflux 10 min]. After 20 min, a solution of 14 (8.2 g, 51.2 mmol) in isopropanol (25 mL) was added slowly. After 2 h reflux, the reaction mixture was cooled to rt, diluted with ether (300 mL) and filtered through Celite. The filtrate was treated with a saturated aqueous NH₄Cl solution, and was extracted with AcOEt. The combined extracts were dried over MgSO₄ and concentrated under reduced pressure to give an oil, which was purified by flash chromatography (cyclohexane/AcOEt gradient: 80/20 to 70/30). 6.6 g (79%) of 1 was obtained as a clear yellow liquid; *Rf*: 0.34 (C₆H₆/AcOEt: 90/10); IR 3440 (br), 1665, 1600, 1490, 1450, 1010, 700 cm⁻¹; ¹H NMR δ 7.35-7.14 (m, 5H), 5.70-5.53 (m, 2H), 4.26 (ddd, *J* = 12.6, 6.5 and 1.2 Hz, 1H), 4.17 (ddd, *J* = 12.6, 6.1, 0.8 Hz, 1H), 3.76 (dq, *J* = 9.1 and 7.0 Hz, 1H), 1.81 (s, 1H, OH), 1.34 (d, *J* = 7.0 Hz, 3H); ¹³C NMR δ 145.7 (s), 137.6 (d), 128.4 (d), 127.2 (d), 126.7 (d), 126.0 (d), 58.6 (t), 37.4 (d), 22.2 (q); EI MS *m*/z (relative intensity) 144 (M⁺-H₂O, 76), 129 (100), 115 (23), 105 (26), 91 (44). Anal. Calcd for C₁₁H₁₄O: C, 81.44; H, 8.70. Found: C, 81.33; H, 8.78.

Et₂Zn/ICH₂Cl promoted cyclopropanation of 1.

To a solution of Et_2Zn (62 mL, 1M in hexanes, 62 mmol, 2 equiv.) in dry DCE (500 mL) at -23 °C, was added dropwise ICH₂Cl (9 mL, 124 mmol, 4 equiv.). After 20 min at -23 °C, a solution of **1** (5 g, 31 mmol) in dry DCE (60 mL) was added dropwise. After 1 h at -23 °C, the reaction mixture was poured into a saturated aqueous NH₄Cl solution (150 mL) and extracted with ether. The combined extracts were dried over MgSO₄ and concentrated under reduced pressure. After purification by flash chromatography (cyclohexane/AcOEt gradient: 95/5 to 90/10), 0.98 g (18%) of **2b** was obtained as a colorless oil and 3.47 g (64%) of **2a** as a crystalline white solid.

Sm(Hg)/ICH₂Cl promoted cyclopropanation of 1.

Dry HgCl₂ (0.67 g, 2.47 mmol, 0.80 equiv.), dry THF (80 mL) and 1 (0.50 g, 3.08 mmol) were added to samarium powder (2.27 g, 15.10 mmol, 5.00 equiv.). To the vigorously stirred mixture at -50 °C, was added dropwise ICH₂Cl (1.10 mL, 15.10 mmol, 5.00 equiv.). The reaction mixture was then allowed to warm to rt in 1 h. After 1 h stirring at rt, the reaction mixture was poured into a cold saturated aqueous K_2CO_3 solution (50 mL) overlaid with ether (50 mL). After 10 min stirring, the resulting mixture was filtered through Celite and the precipitate thoroughly washed with ether. The aqueous layer was extracted with ether and the combined extracts were washed with brine, dried over Na₂SO₄, concentrated under reduced pressure to give a residue which was purified through a short column of silica gel (cyclohexane/AcOEt: 95/5) to give 0.403 g (74%) of a diasteroisomeric mixture of **2a** and **2b**, in a 30/70 ratio.

(1*S**,2*S**)-2-(1(*R**)-1-phenylethyl)cyclopropanemethanol (2a). Crystallization from *n*-pentane, white solid, mp 63-64 °C; *Rf*: 0.30 (C₆H₆/AcOEt: 90/10); IR 3300 (br), 3050, 3020, 1490, 1450, 1015, 745, 700 cm⁻¹; ¹H NMR δ 7.34-7.18 (m, 5H), 3.77 (m, 2H), 2.30 (dq, *J* = 10.5 and 6.9 Hz 1H), 1.64 (s, 1H, OH), 1.39 (d, *J* = 6.9 Hz, 3H), 1.36-1.24 (m, 1H), 1.21-1.12 (m, 1H), 0.70 (m, 1H), 0.07 (m, 1H); ¹³C NMR δ 147.3 (s), 128.3 (d), 126.8 (d), 125.9 (d), 62.8 (t), 39.3 (d), 24.2 (d), 22.8 (q), 19.3 (d), 9.2 (t); EI MS *m/z* (relative intensity) 158 (M⁺-H₂O, 2), 143 (16), 132 (33), 118 (62), 117 (100), 105 (73), 91 (46), 77 (14). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.68; H, 9.18.

(1*R**,2*R**)-2-(1(*R**)-1-phenylethyl)cyclopropanemethanol (2b). *Rf*: 0.38 (C₆H₆/AcOEt: 90/10); IR 3350 (br), 3050, 3020, 1450, 1030, 700 cm⁻¹; ¹H NMR δ 7.34-7.17 (5H, m), 3.66 (dd, *J* = 11.8 and 5.7 Hz, 1H), 3.33 (dd, *J* = 11.8 and 8.5 Hz, 1H), 2.29 (dq, *J* = 10.1 and 6.9 Hz, 1H), 1.36 (d, *J* = 6.9 Hz, 3H), 1.13-1.26 (m, 2H), 0.85 (m, 1H), 0.82 (s, 1H, OH), 0.12 (m, 1H); ¹³C NMR δ 147.4 (s), 128.7 (d), 126.4 (d), 126.3 (d), 63.1 (t), 39.9 (d), 23.8 (q), 23.3 (d), 19.0 (d), 9.5 (t); EI MS *m*/*z* (relative intensity) 158 (M⁺-H₂O, 30), 143 (40), 129 (25), 128 (20), 118 (71), 117 (100), 115 (36), 105 (65), 106 (30), 105 (65), 103 (21), 91 (56), 79 (15), 78 (16), 77 (28), 51 (13). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.64; H, 9.22.

(Z)-4-Phenyl-1-tert-butyldimethylsilyloxypent-2-ene (3). To a solution of 1 (0.30 g, 1.85 mmol) in dry DMF (1 mL) were added imidazole (0.28 g, 4.11 mmol) and TBDMSC1 (0.31 g, 2.05 mmol). After 15 min at rt, the reaction was quenched with an aqueous NH₄Cl solution. The reaction mixture was extracted with petroleum ether/CH₂Cl₂: 90/10, and the combined extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/AcOEt: 100/0 to 95/5) to give 0.49 g (96%) of **3** as a colorless oil; IR 3020, 1655, 1600, 1250, 1080, 830, 775, 720 cm⁻¹; ¹H NMR δ 7.35-7.17 (m, 5H), 5.61-5.48 (m, 2H), 4.23 (dd, *J* = 12.9 and 4.0 Hz, 1H), 4.35 (dd, *J* = 12.9 and 3.3 Hz, 1H), 3.76-3.70 (m, 1H), 1.31 (d, *J* = 7.0 Hz, 3H), 0.09 (s, 9H), 0.06 (s, 6H); ¹³C NMR δ 145.9 (s), 135.6 (d), 128.6 (d), 128.5 (d), 126.8 (d), 126.6 (d), 59.5 (t), 37.6 (d), 26.0 (q), 22.2 (q), 18.35 (s), -5.0 (q); EI MS *m/z* (relative intensity) 219 (M⁺-C₄H₉, 100), 143 (47), 129 (31), 115 (20), 105 (71), 75 (75), 73 (19).

Cyclopropanation of 3. Compound **3** (0.20 g, 0.72 mmol) was cyclopropanated by using Et₂Zn (2.90 mL, 1M in hexanes, 2.90 mmol) and ICH₂Cl (0.42 mL, 5.77 mmol) in DCE (10 mL) at -23 °C for 2 h. The crude product was dissolved in dry THF (2 mL) and treated with *n*-Bu₄NF (1.10 mL, 1M in THF, 1.10 mmol). After 3 h between 0 °C and rt, the reaction mixture was quenched with a saturated aqueous NH₄Cl solution and extracted with ether. The combined extracts were washed with brine, dried over MgSO₄, concentrated under reduced pressure and the crude product was purified by filtration through silica gel (petroleum ether/AcOEt: 70/30) to give 0.058 g (45%) of a diastereoisomeric mixture of **2a** and **2b** in a 80/20 ratio.

Et₂Zn/ICH₂Cl promoted cyclopropanation of 4. Compound 4 (0.20 g, 1.23 mmol) was cyclopropanated by using Et₂Zn (4.90 mL, 1M in hexanes, 4.90 mmol), ICH₂Cl (0.72 mL, 9.84 mmol) in DCE (12 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 70/30) to give 0.204 g (94%) of a diastereoisomeric mixture of 7a and 7b in a 75/25 ratio.

Sm(Hg)/ICH₂Cl promoted cyclopropanation of 4. Compound 4 (0.20 g, 1.23 mmol) was cyclopropanated by using Sm (0.93 g, 6.18 mmol), ICH₂Cl (0.45 mL, 6.18 mmol), HgCl₂ (0.27 g, 0.99 mmol) in THF (16 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 85/15) to give 0.205 g (95%) of a diastereoisomeric mixture of 7a and 7b in a 50/50 ratio.

Preparation of authentic samples of 7a and 7b

(1*S**,2*S**)-2-(1(*R**)-1-phenylethyl)cyclopropanecarbaldehyde (15a). To a stirred suspension of 2a (0.15 g, 0.85 mmol), 4Å molecular sieves (0.70 g) in dry CH₂Cl₂ (10 mL) was added PCC (0.37 g, 1.70 mmol). After 2 h at rt, the reaction mixture was filtered through silica gel (CH₂Cl₂) to give 0.136 g (92%) of 15a as a colorless oil; IR 3020, 1710, 1600, 1490, 980, 950, 750, 700 cm⁻¹; ¹H NMR δ 9.59 (d, *J* = 4.8 Hz, 1H), 7.35-7.19 (m, 5H), 2.72-2.62 (m, 1H), 2.10-2.00 (m, 1H), 1.74-1.62 (m, 1H), 1.35-1.31 (m, 1H), 1.27 (d, *J* = 6.6 Hz, 3H), 1.20-1.13 (m, 1H); ¹³C NMR δ 201.0 (d), 145.6 (s), 128.4 (d), 126.7 (d), 126.3 (d), 37.9 (d), 32.8 (d), 28.3 (d), 22.0 (q), 14.9 (t); EI MS *m*/*z* (relative intensity) 174 (M⁺, 2), 156 (23), 145 (66), 143 (30), 130 (25), 129 (20), 128 (21), 118 (100), 117 (82), 115 (34), 106 (34), 105 (48), 103 (21), 91 (64), 77 (24), 69 (33). Anal. Calcd for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.72; H, 8.10.

(1*R**,2*R**)-2-(1(*R**)-1-phenylethyl)cyclopropanecarbaldehyde (15b). Compound 2b (0.50 g, 2.84 mmol) was oxidized with PCC (1.22 g, 5.68 mmol), 4Å molecular sieves (2.5 g) in dry CH₂Cl₂ (30 mL) at rt for 4 h. The reaction mixture was filtered through silica gel (CH₂Cl₂) to give 0.44 g (89%) of 15b as a colorless oil; IR 3020, 1700, 1600, 1490, 1170, 980, 950, 760, 700 cm⁻¹; ¹H NMR δ 9.37 (d, *J* = 4.5 Hz, 1H), 7.28-7.12 (m, 5H), 2.72-2.63 (m, 2H), 1.93 (m, 1H), 1.74 (m,

1H), 1.40 (d, J = 7.0 Hz, 3H), 1.26-1.36 (m, 1H); ¹³C NMR δ 201.0 (d), 146.0 (s), 128.4 (d), 126.5 (d), 126.2 (d), 38.2 (d), 32.1 (d), 28.3 (d), 22.7 (q), 14.7 (t); EI MS *m/z* (relative intensity) 174 (M⁺, 2), 145 (54), 143 (27), 131 (20), 130 (26), 118 (100), 117 (64), 115 (29), 105 (42), 91 (52), 77 (21). Anal. Calcd for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.64; H, 8.13.

(1*R**,2*S**)-2-(1(*R**)-1-phenylethyl)cyclopropanecarbaldehyde (16a). To a solution of 15a (0.30 g, 1.72 mmol) in MeOH (20 mL) was added MeONa (0.93 g, 17.21 mmol). After 6 h reflux, the reaction mixture was quenched by addition of a saturated aqueous NH₄Cl solution and extracted with ether. The combined extracts were dried over MgSO₄, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 90/10, 85/15) to give 0.23 g (77%) of 16a as a colorless oil, IR 3020, 1710, 1600, 1490, 1450, 860, 750, 700 cm⁻¹; ¹H NMR δ 9.05 (d, *J* = 5.5 Hz, 1H), 7.34-7.19 (m, 5H), 2.27 (m, 1H), 1.80-1.68 (m, 2H), 1.35 (d, *J* = 7.0 Hz, 3H), 1.26 (m, 1H), 1.00 (m, 1H); ¹³C NMR δ 200.5 (d), 144.9 (s), 128.4 (d), 126.8 (d), 126.3 (d), 42.6 (d), 30.3 (d), 29.3 (d), 21.1 (q), 14.1 (t). Anal. Calcd for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.72; H, 8.09.

(1*S**,2*R**)-2-(1(*R**)-1-phenylethyl)cyclopropanecarbaldehyde (16b). Compound 15b (0.30 g, 1.72 mmol) was epimerized with MeONa (0.93 g, 17.21 mmol) in refluxing MeOH (20 mL) for 6 h. Flash chromatography (cyclohexane/AcOEt: 90/10, 85/15) gave 0.24 g (80%) of 16b as a colorless oil; IR 3020, 1700, 1600, 1490, 1450, 1400, 1020, 860, 750, 700 cm⁻¹; ¹H NMR δ 9.01 (d, *J* = 4.9 Hz, 1H), 7.30-7.16 (m, 5H), 2.31 (m, 1H), 1.76-1.68 (m, 2H), 1.37 (m, 1H), 1.33 (d, *J* = 7.0 Hz, 3H), 1.00 (m, 1H); ¹³C NMR δ 200.5 (d), 144.9 (s), 128.4 (d), 126.8 (d), 126.2 (d), 42.3 (d), 29.4 (d), 29.3 (d), 21.2 (q), 14.5 (t); EI MS *m/z* (relative intensity) 174 (M⁺, 0.4), 129 (12), 128 (11), 118 (44), 117 (59), 115 (21), 106 (100), 105 (29), 91 (38), 77 (15), 69 (28). Anal. Calcd for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.83; H, 8.16.

 $(1R^*, 2S^*)-2-(1(R^*)-1-phenylethyl)cyclopropanemethanol (7a).$ NaBH₄ (0.06 g, 1.59 mmol) was added to a solution of 16a (0.21 g, 1.23 mmol) in MeOH (5 mL). After 20 min at rt, the reaction mixture was quenched with a 1M aqueous hydrochloric acid solution and extracted with AcOEt. The combined extracts were evaporated and the residue taken up in CH₂Cl₂, dried over

MgSO₄, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt gradient: 95/5 to 80/20) to give 0.15 g (70%) of 7a as a colorless oil; IR 3340 (br), 3050, 3020, 1600, 1490, 1450, 1050, 750, 700 cm⁻¹; ¹H NMR δ 7.26-7.10 (m, 5H), 3.42 (d, J = 7.0 Hz, 2H), 2.05 (m, 1H), 1.57 (s, 1H, OH), 1.28 (d, J = 7.0 Hz, 3H), 0.94 (m, 1H), 0.80 (m, 1H), 0.41-0.29 (m, 2H); ¹³C NMR δ 146.6 (s), 128.3 (d), 126.9 (d), 125.9 (d), 66.9 (t), 43.3 (d), 24.6 (d), 21.5 (q), 21.3 (d), 9.7 (t); EI MS *m/z* (relative intensity) 158 (M⁺-H₂O, 5), 143 (18), 132 (47), 118 (84), 117 (100), 115 (26), 106 (60), 105 (82), 104 (23), 103 (19), 91 (41), 78 (10), 77 (15). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.70; H, 9.20.

(1*S**,2*R**)-2-(1(*R**)-1-phenylethyl)cyclopropanemethanol (7b). Compound 16b (0.21 g, 1.23 mmol) was reduced with NaBH₄ (0.06 g, 1.59 mmol) in MeOH (5 mL). Purification by flash chromatography (cyclohexane/AcOEt gradient: 95/5 to 80/20) gave 0.17 g (79%) of 7b as a colorless oil; IR 3340 (br), 3050, 1600, 1490, 1450, 1050, 750, 700 cm⁻¹; ¹H NMR δ 7.22-7.05 (m, 5H), 3.20 (d, *J* = 7.0 Hz, 2H), 2.05-1.96 (m, 1H), 1.64 (s, 1H, OH), 1.22 (d, *J* = 7.3 Hz, 3H), 0.85-0.70 (m, 2H), 0.43-0.34 (m, 2H); ¹³C NMR δ 146.8 (s), 128.2 (d), 126.7 (d), 125.9 (d), 66.4 (t), 43.2 (d), 24.6 (d), 21.1 (q), 20.5 (d), 9.9 (t); EI MS *m/z* (relative intensity) 158 (M⁺-H₂O, 17), 143 (15), 118 (90), 117 (100), 115 (16), 106 (52), 105 (79), 91 (29). Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.72; H, 9.18.

Preparation of compound 5

3-Cyclohexyl-1,1-dibromobut-1-ene (17). To a solution of CBr₄ (9.75 g, 29.40 mmol) in dry CH₂Cl₂ (50 mL) at 0 °C, was added PPh₃ (15.4 g, 58.7 mmol). After 15 min, 2-cyclohexylpropionaldehyde (2.0 g, 14.7 mmol) was added slowly. After 1 h at rt, the reaction mixture was diluted with pentane (100 mL), the precipitate was filtered off through Celite and thoroughly washed with pentane. The filtrate was concentrated under reduced pressure and the crude product was taken up in pentane. The solids were filtered off again and the filtrate concentrated under reduced pressure. The crude material was purified by flash chromatography (pentane) to give 2.95 g (68%) of 17 as a colorless oil; IR 1615, 1445, 800, 770 cm⁻¹; ¹H NMR δ 6.22 (d, J = 9.9 Hz, 1H), 2.31-2.23 (m, 1H), 1.75-1.66 (m, 4H), 1.26-1.08 (m, 4H), 1.02-0.70 (m, 3H), 0.96 (d, J = 7.0 Hz, 3H); ¹³C NMR δ 143.4 (d), 87.2 (s), 43.8 (d), 42.7 (d), 30.4 (t), 30.3 (t),

26.5 (t), 26.4 (t), 26.3 (t), 16.3 (q); EI MS *m/z* (relative intensity) 298 (M⁺+4, 1), 296 (M⁺+2, 2), 294 (M⁺, 1), 135 (11), 110 (18), 83 (100), 82 (29), 67 (10), 55 (67).

4-Cyclohexylpent-2-yn-1-ol (18). To a solution of **17** (2.95 g, 9.96 mmol) in dry THF (30 mL) at -78 °C, was added *n*-BuLi (8 mL, 2.5M in hexanes, 20 mmol). After 10 min at -78 °C, dry paraformaldehyde (0.9 g, 30.0 mmol of monomeric HCHO) was added in one portion and the cooling bath was removed immediately. The reaction mixture was allowed to warm to rt. After 1 h, the reaction mixture was poured into a saturated aqueous NH₄Cl solution and extracted with ether. The combined extracts were washed with brine, dried over Na₂CO₃, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/ether: 80/20) to give 1.25 g (75%) of **18** as a pale yellow liquid; IR 3300 (br), 2230, 1450, 1020 cm⁻¹; ¹H NMR δ 4.27 (d, *J* = 2.0 Hz, 2H), 2.32 (m, 1H), 1.82-1.64 (m, 7H), 1.25-1.00 (m, 5H), 1.13 (d, *J* = 7.0 Hz, 3H); ¹³C NMR δ 90.0 (s), 79.3 (s), 51.4 (t), 42.6 (d), 31.9 (d), 30.9 (t), 29.5 (t), 26.5 (t), 26.4 (t), 26.3 (t), 18.2 (q); EI MS *m/z* (relative intensity) 148 (M⁺-H₂O, 6), 135 (22), 119 (15), 91 (17), 83 (34), 81 (22), 79 (17), 66 (100), 55 (70), 53 (14). Anal. Calcd for C₁₁H₁₈O: C, 79.46; H, 10.91. Found: C, 79.52; H, 11.01.

(Z)-4-Cyclohexylpent-2-en-1-ol (5). A solution of CuBr (0.91 g, 6.34 mmol) and LiBr (0.99 g, 11.40 mmol) in dry THF (6 mL), was added slowly to a refluxing activated zinc suspension [prepared from zinc dust (3.26 g, 50.60 mmol) and 1,2-dibromoethane (0.40 mL, 4.64 mmol) in isopropanol (15 mL); reflux 10 min]. After 20 min, a solution of **18** (0.70 g, 4.21 mmol) in isopropanol (5 mL) was added slowly. After 5 h reflux, the reaction mixture was cooled to rt, diluted with ether (100 mL) and filtered through Celite. The filtrate was treated with a saturated aqueous NH₄Cl solution and was extracted with AcOEt. The combined extracts were dried over MgSO₄, concentrated under reduced pressure, to give an oil which was purified by flash chromatography (cyclohexane/AcOEt: 70/30, 60/40). 0.56 g (79%) of **5** was obtained as a clear yellow liquid; IR 3320 (br), 1450, 1030, 1010 cm⁻¹; ¹H NMR δ 5.55 (dtd, *J* = 11.0, 7.0 and 0.7 Hz, 1H), 5.35 (m, 1H), 4.24-4.09 (m, 2H), 2.23 (m, 1H), 1.72-1.61 (m, 5H), 1.60 (s, 1H, OH), 1.25-1.00 (m, 4H), 0.95-0.82 (m, 2H), 0.93 (d, *J* = 6.6 Hz, 3H); ¹³C NMR δ 138.0 (d), 127.1 (d), 58.8 (t), 43.1 (d), 37.4 (d), 30.6 (t), 30.3 (t), 26.6 (t), 26.5 (t), 26.4 (t), 18.4 (q); EI MS *m/z* (relative

© 1998 American Chemical Society, J. Org. Chem., Cossy jo9806815 Supporting Info Page 9 intensity) 168 (M⁺, 0.3), 150 (M⁺-H₂O, 21), 110 (23), 83 (23), 81 (25), 69 (17), 68 (100), 67 (42), 55 (59), 53 (15). Anal. Calcd for C₁₁H₂₀O: C, 78.51; H, 11.98. Found: C, 78.44; H, 11.97.

Et₂Zn/ICH₂Cl promoted cyclopropanation of 5. 5 (0.10 g, 0.59 mmol) was cyclopropanated by using Et₂Zn (2.40 mL, 1M in hexanes, 2.40 mmol), ICH₂Cl (0.35 mL, 4.81 mmol) in DCE (12 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 80/20) to give 0.087 g (80%) of a diastereoisomeric mixture of **8a** and **8b** in a 20/80 ratio.

Sm(Hg)/ICH₂Cl promoted cyclopropanation of 5. 5 (0.10 g, 0.59 mmol) was cyclopropanated by using Sm (0.45 g, 2.99 mmol), ICH₂Cl (0.22 mL, 3.02 mmol), HgCl₂ (0.13 g, 0.48 mmol) in THF (16 mL). The crude material was purified by filtration through silica gel (cyclohexane/AcOEt: 80/20) to give 0.083 g (76%) of a diastereoisomeric mixture of **8a** and **8b** in a 15/85 ratio.

(1*S**,2*S**)-2-((1*S**)-1-cyclohexylethyl)cyclopropanemethanol (8a). IR 3320 (br), 3050, 1450, 1020 cm⁻¹; ¹H NMR δ 3.75 (dd, *J* = 11.0 and 7.0 Hz, 1H), 3.49 (dd, *J* = 11.0 and 7.7 Hz, 1H), 1.74-1.64 (m, 6H), 1.24-0.68 (m, 13H), 0.05 (m, 1H); ¹³C NMR δ 63.1 (t), 44.1 (d), 38.5 (d), 31.0 (t), 29.6 (t), 26.9 (t), 26.8 (t), 26.7 (t), 21.7 (d), 17.8 (q), 17.3 (d), 10.0 (t), EI MS *m/z* (relative intensity) 164 (M⁺-H₂O, 1), 124 (39), 123 (25), 110 (32), 109 (28), 95 (28), 83 (30), 82 (70), 81 (87), 69 (31), 67 (66), 55 (100). Anal. Calcd for C₁₂H₂₂O: C, 79.06; H, 12.16. Found: C, 79.00; H, 12.30.

 $(1R^*, 2R^*)$ -2- $((1S^*)$ -1-cyclohexylethyl)cyclopropanemethanol (8b). IR 3320 (br), 3050, 1450, 1020 cm⁻¹; ¹H NMR δ 3.82 (dd, J = 11.0 and 6.2 Hz, 1H), 3.37 (dd, J = 11.0, 8.5 Hz, 1H), 1.74-1.64 (m, 6H), 1.24-0.68 (m, 13H), -0.08 (m, 1H); ¹³C NMR δ 63.6 (t), 43.8 (d), 38.1 (d), 31.3 (t), 29.1 (t), 26.9 (t), 26.8 (t), 26.7 (t), 22.1 (d), 20.0 (d), 17.1 (q), 8.4 (t) ; EI MS m/z (relative intensity) 164 (M⁺-H₂O, 1), 124 (47), 123 (35), 110 (24), 109 (28), 96 (18), 95 (38), 83 (29), 82 (68), 81 (87), 79 (26), 69 (29), 68 (20), 55 (100), 53 (28). Anal. Calcd for C₁₂H₂₂O: C, 79.06; H, 12.16. Found: C, 79.00; H, 12.30.

Correlation for the determination of the relative stereochemistry of 8a

(15*,25*)-2-[1(R^*)-1-(cyclohexa-1,4-dien-1-yl)ethyl]cyclopropanemethanol (10a). Compound 2a (0.53 g, 3.00 mmol) in dry *t*-BuOH (3.0 g, 40.5 mmol) and dry THF (10 mL) was added slowly to dry liquid ammonia (20 mL). Lithium (0.10 g, 14.41 mmol, 4.80 equiv.), freshly cut into four pieces, was then added to the refluxing reaction mixture, at such a rate that the initially observed blue colour has discharged. Once the addition was complete, solid NH4Cl (2 g) was added in one portion and the ammonia was allowed to evaporate. Ether was then added followed by the addition of a saturated aqueous NH4Cl solution. The layers were separated and the aqueous one was extracted with ether. The combined extracts were dried over MgSO4, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 80/20) to give 0.38 g (72%) of 10a as a colorless oil; ¹H NMR δ 5.73 (m, 2H), 5.47 (s, 1H), 3.65 (dd, J =7.7 and 7.0 Hz, 2H), 2.69 (m, 4H), 1.81 (s, 1H, OH), 1.60 (m, 1H), 1.2-1.07 (m, 1H), 1.14 (d, J =7.0 Hz, 3H), 0.95-0.83 (m, 1H), 0.72 (m, 1H), 0.10 (m, 1H); ¹³C NMR δ 139.2 (s), 124.5 (d), 124.1 (d), 117.2 (d), 62.8 (t), 40.2 (d), 26.6 (t), 26.5 (t), 21.7 (d), 19.8 (q), 18.3 (d), 9.2 (t); EI MS *m/z* (relative intensity) 178 (M⁺, 0.5), 160 (M⁺-H₂O, 2), 145 (13), 131 (23), 119 (37), 118 (27), 117 (19), 106 (14), 105 (57), 92 (17), 91 (100), 79 (49), 78 (25), 77 (38), 67 (17), 65 (12), 55 (16).

Reduction of 10a with diimide. To a stirred mixture of potassium azodicarboxylate (1.98 g, 5.04 mmol) and **10a** (0.30 g, 1.68 mmol) in EtOH (20 mL), was added dropwise AcOH (1.2 mL, 10.1 mmol). After 24 h at 70 °C, the reaction mixture was filtered, evaporated under reduced pressure and the reduction process was repeated with the crude material. After the second reduction, a crude mixture of **11a** and **8a** was obtained in a 70/30 ratio, observed by ¹H NMR and GC/MS analysis.

(1S*,2S*)-2-[1(R*)-(cyclohex-1-en-1-yl)ethyl]cyclopropanemethanol (11a). ¹H NMR δ 5.43 (m, 1H), 3.73 (m, 1H), 3.51 (m, 1H), 2.00 (m, 5H), 1.38-1.03 (m, 5H), 1.11 (d, J = 7.0 Hz, 3H), 0.96-0.82 (m, 1H), 0.76-0.67 (m, 1H), 0.02 (m, 1H); EI MS m/z (relative intensity) 180 (M⁺, 0.6), 162 (M⁺-H₂O, 5), 149 (62), 147 (22), 133 (24), 121 (26), 109 (27), 107 (73), 105 (40), 94 (20), 93 (62), 91 (62), 81 (51), 79 (100), 77 (45), 67 (44), 55 (25), 53 (20).

Preparation of compound 6

1,1-Dibromo-4-[4-(methoxybenzyl)oxy]-3-methylbut-1-ene (19). To a solution of CBr₄ (15.0 g, 45.2 mmol) in dry CH₂Cl₂ (100 mL) at 0 °C, was added PPh₃ (22.5 g, 85.8 mmol). After 30 min, 3-[4-(methoxybenzyl)oxy]-2-methylpropionaldehyde (8.9 g, 42.7 mmol) was added slowly. After 1 h at rt, the reaction mixture was diluted with cyclohexane (300 mL), the precipitated solids were filtered off through Celite and thoroughly washed with cyclohexane. The filtrate was concentrated under reduced pressure and the crude product was taken up in cyclohexane. The solids were filtered off again and the filtrate concentrated under reduced pressure. The crude material was purified by flash chromatography (toluene/ether: 90/10) to give 12.3 g (79%) of 19 as a colorless oil, IR 1610, 1585, 1510, 1250, 1090, 1030, 845, 820, 785 cm⁻¹; ¹H NMR δ 7.28-7.25 (m, 2H), 6.92-6.88 (m, 2H), 6.31 (d, *J* = 8.8 Hz, 1H), 4.48 (d, *J* = 11.8 Hz, 1H), 4.44 (d, *J* = 11.8 Hz, 1H), 3.83 (s, 3H), 3.38-3.34 (m, 2H), 2.83-2.74 (m, 1H), 1.06 (d, *J* = 7.0 Hz, 3H); ¹³C NMR δ 159.1 (s), 141.1 (d), 130.2 (s), 129.0 (d), 113.7 (d), 88.7 (s), 72.6 (t), 72.5 (t), 55.1 (q), 38.6 (d), 15.8 (q); EI MS *m/z* (relative intensity) 366 (M⁺⁺4, 1), 364 (M⁺⁺2, 2), 362 (M⁺, 1), 136 (17), 121 (100), 91 (3), 78 (6).

5-[4-(methoxybenzyl)oxy]-4-methyl-pent-2-yn-1-ol (20). To a solution of 19 (12.3 g, 33.8 mmol) in dry THF (100 mL) at -78 °C, was added *n*-BuLi (30 mL, 2.5M in hexanes, 75 mmol). After 10 min at -78 °C, dry paraformaldehyde (3 g, 100 mmol of monomeric HCHO) was added in one portion and the cooling bath was removed immediately. After stirring overnight at rt, the reaction mixture was poured into a saturated aqueous NH₄Cl solution and extracted with ether. The combined extracts were washed with brine, dried over MgSO₄, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 90/10) to give 6.4 g (82%) of **20** as colorless oil; IR 3400 (br), 2240, 1610, 1585, 1510, 1250, 1080, 1030, 820 cm⁻¹; ¹H NMR δ 7.29-7.25 (m, 2H), 6.91-6.86 (m, 2H), 4.52 (d, *J* = 12.0 Hz, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.26 (m, 2H), 3.82 (s, 3H), 3.48 (dd, *J* = 9.0 and 6.4 Hz, 1H), 3.34 (dd, *J* = 9.0 and 7.1 Hz, 1H), 2.75 (m, 1H), 1.65 (s, 1H, OH), 1.19 (d, *J* = 7.0 Hz, 3H); ¹³C NMR δ 158.9 (s), 129.2 (d), 113.5 (d), 87.3 (s), 79.4 (s), 73.3 (t), 72.3 (t), 54.9 (q), 50.6 (t), 26.5 (d), 17.4

(q); EI MS *m/z* (relative intensity) 234 (M⁺, 1), 203 (21), 122 (9), 121 (100). Anal. Calcd for C₁₄H₁₈O₃: C, 71.77; H, 7.74. Found: C, 71.54; H, 7.86.

(Z)-5-[4-(methoxybenzyl)oxy]-4-methylpent-2-en-1-ol (6). A solution of CuBr (4.6 g, 32.1 mmol) and LiBr (5.0 g, 57.6 mmol) in dry THF (25 mL), was added slowly to a refluxing activated zinc suspension [prepared from zinc dust (16.8 g, 256.9 mmol) and 1,2-dibromoethane (2.0 mL, 23.2 mmol) in isopropanol (80 mL); reflux 10 min]. After 20 min, a solution of 20 (5.0 g, 21.3 mmol) in isopropanol (20 mL) was added slowly. After 2 h reflux and stirring overnight at rt, the reaction mixture was diluted with ether (400 mL) and filtered through Celite. The filtrate was then treated with a saturated aqueous NH4Cl solution, the organic phase was separated and the aqueous layer was extrated with AcOEt. The combined extracts were washed with brine, dried over Na₂CO₃, concentrated under reduced pressure to give an oil which was purified by flash chromatography (cyclohexane/AcOEt: 80/20, 70/30) to give 4.1 g (82%) of 6 as a colorless liquid; IR 3400 (br), 3000, 1610, 1585, 1510, 1250, 1080, 1030, 820, 755 cm⁻¹; ¹H NMR δ 7.27-7.22 (m, 2H), 6.91-6.86 (m, 2H), 5.82 (dddd, J = 11.0, 7.9, 6.6 and 1.1 Hz, 1H), 5.35 (m, 1H), 4.45 (s, 2H), 4.20 (ddd, J = 12.1, 7.9 and 1.1 Hz, 1H), 3.93 (dd, J = 12.1 and 6.6 Hz, 1H), 3.81 (s, 3H), 3.38 (dd, J = 8.8 and 4.8 Hz, 1H), 3.13 (t, J = 8.8 Hz, 1H), 2.93-2.83 (m, 1H), 2.15 (s, 1H, OH), 0.96 (d, J = 1.006.6 Hz, 3H); ¹³C NMR δ 159.1 (s), 136.7 (d), 129.6 (s), 129.3 (d, 2 C), 113.7 (d), 74.1 (t), 72.8 (t), 57.7 (t), 55.1 (q), 32.3 (d), 17.2 (q); EI MS m/z (relative intensity) 236 (M⁺, 2), 150 (10), 122 (10), 121 (100). Anal Calcd for C₁₄H₂₀O₃: C, 71.16; H, 8.53. Found: C, 70.99; H, 8.63.

Et₂Zn/ICH₂Cl promoted cyclopropanation of 6. 6 (0.40 g, 1.69 mmol) was cyclopropanated by using Et₂Zn (6.8 mL, 1M in hexanes, 6.80 mmol), ICH₂Cl (1.0 mL, 13.7 mmol) in DCE (20 mL). The crude material was filtered through silica gel (cyclohexane/AcOEt: 70/30) to give 0.34 g (81%) of a pure diastereoisomeric mixture of 9a and 9b in a 70/30 ratio. Purification by flash chromatography (toluene/ether: 80/20) gave 0.084 g of 9b (20%) and 0.20 g (47%) of 9a as colorless oils.

Sm(Hg)/ICH₂Cl promoted cyclopropanation of 6. 6 (0.40 g, 1.69 mmol) was cyclopropanated by using Sm (1.30 g, 8.64 mmol), ICH₂Cl (0.62 mL, 8.51 mmol), HgCl₂ (0.37 g, 1.36 mmol) in

THF (50 mL). Purification by flash chromatography (toluene/ether: 80/20) gave 0.23 g (54 %) of **9b** and 0.15 g (36%) of **9a** as colorless oils.

$(1S^*, 2R^*)$ -2-{2-[4-methoxybenzyl)oxy]-1(R^*)-1-methylethyl}cyclopropanemethanol (9a).

IR 3440 (br), 3050, 1610, 1585, 1510, 845, 820, 735 cm⁻¹; ¹H NMR δ 7.29-7.24 (m, 2H), 6.90-6.85 (m, 2H), 4.48 (d, J = 11.6 Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 3.81 (s, 3H), 3.68 (dd, J = 11.4and 7.3 Hz, 1H), 3.58 (dd, J = 11.4 and 7.3 Hz, 1H), 3.51 (dd, J = 9.0 and 4.6 Hz, 1H), 3.30 (dd, J = 9.0 and 7.5 Hz, 1H), 1.43 (s, 1H, OH), 1.43-1.25 (m, 1H), 1.20-1.08 (m, 1H), 1.08 (d, J = 6.6 Hz, 3H), 0.75-0.65 (m, 2H), 0.10-0.06 (m, 1H); ¹³C NMR δ 158.9 (s), 130.7 (s), 128.9 (d), 113.6 (d), 75.8 (t), 72.6 (t), 62.7 (t), 55.1 (q), 33.9 (d), 20.3 (d), 18.2 (d), 17.4 (q), 8.5 (t); EI MS *m/z* (relative intensity) 250 (M⁺, 2), 137 (7), 121 (100), 78 (7), 77 (7); Anal. Calcd. for C₁₅H₂₂O₃: C, 71.97; H, 8.86. Found: C, 71.80; H, 8.93.

(1*R**,2*S**)-2-{2-[4-methoxybenzyl)oxy]-1(*R**)-1-methylethyl}cyclopropane methanol (9b). IR 3420 (br), 3050, 1610, 1585, 1510, 845, 820, 740 cm⁻¹; ¹H NMR δ 7.31-7.28 (m, 2H), 6.91-6.87 (m, 2H), 4.52 (d, *J* = 12.0 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 3.90 (dd, *J* = 11.8 and 4.6 Hz, 1H), 3.80 (s, 3H), 3.48 (dd, *J* = 8.8 and 4.0 Hz, 1H), 3.22 (dd, *J* = 10.3 and 8.8 Hz, 1H), 3.09 (t, *J* = 11.8 Hz, 1H), 1.48-1.44 (m, 1H), 1.30-1.26 (m, 1H), 0.95 (d, *J* = 7.0 Hz, 3H), 0.65-0.53 (m, 2H), -0.16- -0.21(m, 1H); ¹³C NMR δ 159.3 (s), 129.6 (d), 129.1 (s), 113.7 (d), 76.2 (t), 73.0 (t), 62.5 (t), 55.0 (q), 32.2 (d), 21.6 (d), 19.4 (d), 17.7 (q), 5.7 (t); EI MS *m/z* (relative intensity) 250 (M⁺, 2), 137 (19), 121 (100), 78 (8), 77 (8); Anal. Calcd. for C₁₅H₂₂O₃:C, 71.97; H, 8.86. Found: C, 71.78; H, 8.95.

Correlation for the determination of the relative stereochemistry of 9a and 9b

2(R*)-2-[(1R*,2S*)-2-(acetoxymethyl)cyclopropyl]propanoic acid (12a).

Preparation from 2a. To a solution of **2a** (0.20 g, 1.13 mmol) in dry CH_2Cl_2 (10 mL) containing DMAP (0.0075 g, 0.0614 mmol) was added Ac₂O (0.35 mL, 3.71 mmol). After 1 h at rt, MeOH (2 mL) was added dropwise, followed by the addition of a saturated aqueous NaHCO₃ solution. The organic phase was separated and the aqueous layer was extracted with ether. The combined extracts were dried over MgSO₄, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 9/1) to give 0.24 g (98%) of the

corresponding acetate, which was dissolved in a mixture of CCl₄ (3.8 mL), MeCN (3.8 mL), H₂O (5.6 mL). RuCl₃xH₂O (0.0043 g, 0.0207 mmol) and NaIO₄ (2.9 g, 13.7 mmol) were added to the vigorously stirred reaction mixture. After 16 h at rt, CH₂Cl₂ (10 mL) and water (10 mL) were added. The organic layer was separated and the aqueous one was extracted with CH₂Cl₂. The combined extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give a crude material which was taken up in ether. After 24 h stirring, the mixture was filtered through Celite, and the crude carboxylic acid was purified by flash chromatography (cyclohexane/AcOEt: 70/30) to give 0.09 g (52%) of **12a** as a waxy solid.

Preparation from 9a. To a solution of 9a (0.12 g, 0.45 mmol) in dry CH₂Cl₂ (5 mL) containing a catalytic amount of DMAP, was added Ac₂O (0.40 mL, 4.24 mmol). After 1 h at rt, the reaction mixture was quenched with MeOH (1 mL). After addition of ether and water, the organic phase was separated and the aqueous layer was extracted with ether. The combined extracts were neutralized with saturated aqueous NaHCO3 solution, dried over MgSO4, concentrated under reduced pressure and the crude acetate was dissolved in a mixture of CH₂Cl₂ (5 mL) and H₂O (0.5 mL). DDQ (0.11 g, 0.48 mmol) was then added in one portion at 0 °C and after 1 h at rt, the reaction mixture was diluted with water and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO₄, concentrated under reduced pressure and the crude material was purified by rapid filtration on silica gel (CH₂Cl₂/ether: 100/0, 70/30) to give an alcohol which was dissolved in dry DMF (3 mL). PDC (1.00 g, 2.66 mmol) was added in one portion and after 24 h at rt, water was added. The resulting mixture was extracted with AcOEt, the combined extracts were washed with brine, dried over Na₂SO₄, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 70/30 to 60/40) to give 0.047 g (54%) of 12a as a waxy solid; mp 36-38 °C; IR 3500-2500 (br), 1735, 1710 cm⁻¹; ¹H NMR δ 8.40 (br s, 1H, OH), 4.30 (dd, J = 11.9 and 6.4 Hz, 1H), 3.87 (dd, J= 11.9 and 9.0 Hz, 1H), 2.08 (s, 3H), 2.07-1.99 (m, 1H), 1.33-1.25 (m, 1H), 1.32 (d, J = 6.9 Hz, 3H), 1.15-1.09 (m, 1H), 0.91-0.83 (m, 1H), 0.34 (dd, J = 11.2 and 5.6 Hz, 1H), ¹³C NMR δ 182.1 (s), 171.1 (s), 64.5 (t), 39.4 (d), 21.0 (q), 20.1 (d), 17.4 (q), 14.3 (d), 8.9 (t). Anal. Calcd. for C₉H₁₄O₄: C, 58.05; H 7.58. Found: C, 57.89; H, 7.72.

2(R*)-2-[(1S*,2R*)-2-(acetoxymethyl)cyclopropyl]propanoic acid (12b). To a solution of 9b (0.15 g, 0.60 mmol) in dry CH₂Cl₂ (5 mL) containing a catalytic amount of DMAP, was added Ac₂O (0.40 mL, 4.24 mmol). After 1 h at rt, the reaction mixture was guenched with MeOH (1 mL). After addition of ether and water, the organic phase was separated and the aqueous laver was extracted with ether. The combined extracts were neutralized with saturated aqueous NaHCO₃ solution, dried over MgSO₄, concentrated under reduced pressure and the crude acetate was dissolved in a mixture of CH₂Cl₂ (5 mL) and H₂O (0.5 mL). DDQ (0.15 g, 0.66 mmol) was then added in one portion at 0 °C and after 1 h at rt, the reaction mixture was diluted with water and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO4, concentrated under reduced pressure and the crude material was purified by rapid filtration through silica gel (CH₂Cl₂/ether: 100/0, 70/30) to give an alcohol which was dissolved in dry DMF (3 mL). PDC (1.00 g, 2.66 mmol) was added in one portion and after 24 h at rt, water was added. The resulting mixture was extracted with AcOEt, the combined extracts were washed with brine, dried over Na₂SO₄, concentrated under reduced pressure and the crude material was purified by flash chromatography (cyclohexane/AcOEt: 60/40) to give 0.064 g (56%) of 12b as a white solid: mp 63-64 °C; IR 3500-2500 (br), 1740, 1710 cm⁻¹; ¹H NMR δ 4.27 (dd, J = 12.0 and 7.1 Hz, 1H), 3.94 (dd, J = 12.0 and 8.7 Hz, 1H), 2.07-1.96 (m, 1H), 2.02 (s, 3H), 1.35-1.25 (m, 1H), 1.33 (d, J = 7.0 Hz, 3H), 1.23-1.12 (m, 1H), 0.92-0.85 (td, J = 8.4 and 5.2 Hz, 1H), 0.14 (dd, J = 11.0 and 5.5

Hz, 1H); ¹³C NMR δ 182.4 (s), 171.7 (s), 65.2 (t), 39.4 (d), 20.9 (q), 19.7 (d), 18.0 (q), 15.1 (d), 9.0 (t). Anal. Calcd. for C₉H₁₄O₄: C, 58.05; H, 7.58. Found: C, 58.02; H, 7.61.

Crystal Data

A selected crystal was set up on an automatic diffractometer. Unit cell dimensions with estimated standard deviations were obtained from least-squares refinements of the setting angles of 25 well centered reflections. Two standard reflections were monitored periodically; they showed no change during data collection. Crystallographic data and other information are summarized in Table I. Corrections were made for Lorentz and polarisation effects. An extinction correction was necessary.

Computations were performed by using the PC version of CRYSTALS.¹ Atomic form factors for neutral O, C and H were taken from ref. 2. Real and imaginary parts of anomalous dispersion were taken into account. The structure was solved by direct methods using the SHELXS86³ program and succesive fourrier maps. All hydrogens atoms have been located on difference maps, their position were not refined and they were given an overall thermal parameter.

Oxygen atom was anisotropically refined, other atoms were isotropically refined. Full matrix least-squares refinements were carried out by minimising the function

$$\sum w(F_0 - |F_c|)^2$$

where Fo and Fc are the observed and calculated structure factors. Models reached convergence with

$$R = \sum (|F_o - |F_c||) / \sum wF_o \text{ and } Rw = \left[\sum w(F_o - |F_c|^2) / \sum (F_o)^2\right]^{1/2}$$

having value listed in table I.

In the last stages of the refinement, each reflection was assigned a weight:unity. Criteria for a satisfactory complete analysis were the ratio of rms shift to standard deviations being less than 0.2 and no significant features in the difference map. There are hydrogens bonds between molecules building infinite chains parallel to axis a.

Atomic coordinates are given in table II. Interatomic distances and bond angles in Table III. Supplementary material available: Table of atomic parameters for hydrogen atoms, observed and calculated strucure factors. The figure represents a view of the molecule using CAMERON.⁴

^{1.} D.J. Watkin, J.R. Carruthers and P.W. Betteridge. CRYSTALS, An advanced Crystallographic Computer Program, Chemical Crystallography Laboratory, Oxford (1989).

International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974.
 G.M. Sheldrick. SHELXS86, Program for Crystal Structure Solution, University of Göttingen.

^{4.} L.J. Pearce and D.J. Watkin. Chemical Crystallography Laboratory, Oxford

NUMBER OF REFLECTIONS WITH I > nSIGMA(I)

CONDITIONS <1S <2S <3S <4S <5S <6S <7S <8S <9S<10S >10S N AVINT AVSIG

00L: L = 2N+1*32000100039.1266.3 162.7 0K0 : K = 2N+1 * 0 0 00 0 0 0 0 0 0 0 0. 0.0 0.0 H00 : H = 2N+1 * 00 0 0 0 0 0 0 0 0 0 0. 0.0 0.0 0KL : K = 2N+1 * 0 0 0 0 0 0 0 0 0 0 0 0 0 00.0 0.0 0KL: L = 2N+1 * 41 16 0 2 2 1 3 0 2 3 13 83.598.0 130.3 0KL: K+L = 2N+1 * 41 16 0 2 2 1 3 02 3 13 83. 598.0 130.3 HOL: H = 2N+1 * 0 0 0 0 0 0 0 0 0 0 0 0 00.0 0.0 HOL: L = 2N+1 * 86 26 2 2 1 3 5 4 5 13 39 186. 2413.8 143.2 HOL: H+L = 2N+1 * 86 26 2 2 1 3 5 4 5 13 39 186. 2413.8 143.2 HK0: H = 2N+1 * 94 40 2 7 3 7 5 11 16 7 80 272. 3438.8 148.8 HK0: K = 2N+1 * 94 40 2 7 3 7 5 11 16 7 80 272. 3438.8 148.8 HK0: H+K = 2N+1 * 0 0 0 0 00 0 0 0 0 0 0. 0.0 0.0 ALL: H+K = 2N+1 * 0 0 0 0 0 00 0 0 0 0 0. 0.0 0.0 ALL : H+L = 2N+1 * 1850 661 41 57 35 56 50 75 109 112 533 3579. 969.8 125.3 ALL: $K+L = 2N+1 * 1850 \ 661 \ 41 \ 57 \ 35 \ 56 \ 50 \ 75 \ 109 \ 112 \ 533 \ 3579.$ 969.8 125.3 ALL : H+K+L = 2N+1 * 1799 665 32 41 36 44 58 71 94 115 496 3451. 903.3 125.3 ALL :-H+K+L = 3N+1 * 2486 887 51 59 60 74 79 106 125 142 709 4778. 1068.2 126.9 ALL : H-K+L = 3N+1 * 2453 923 51 60 51 61 68 97 137 170 714 4785. 1047.0 126.5 HHL: L = 2N+1 * 58 25 0 1 1 3 1 2 1 3 25 120. 1381.7 137.4 H-HL: L = 2N+1 * 66 30 1 0 0 2 33 4 6 39 154. 4474.2 164.1 00L: L = 3N+1 *6 2 0 0 0 0 0 0 0 0 4 12. 1574.0 174.7 00L: L = 4N+1*5 2 0 0 0 1 0 0 0 1 4 13. 1713.6 168.2 00L: L = 6N+1* 6 3 0 0 0 1 0 0 0 5 15.1579.0 172.0

NUMBER OF REFLECTIONS WITH I > nSIGMA(I)

THETA <1S <2S <3S <4S <5S <6S <7S <8S <9S <10S >10S N

0 0 0 0 0 0 0 0 0 0 9 9 0.0 - 2.0 : 2.0 - 4.0 : 7 4 0 0 0 0 1 1 1 1 23 38 4.0 - 6.0 : 16 4 0 1 0 1 0 4 2 3 59 90 6.0 - 8.0 : 22 12 0 1 1 1 0 1 7 7 114 166 8.0 - 10.0 : 43 23 0 0 4 1 2 5 11 14 148 251 10.0 - 12.0 : 90 34 1 4 5 5 6 11 16 27 181 380 12.0 - 14.0 : 129 63 2 5 7 8 11 23 33 36 184 501 14.0 - 16.0 : 242 121 8 3 6 13 21 19 34 40 156 663 16.0 - 18.0 : 338 160 13 14 17 16 26 28 38 38 120 808 18.0 - 20.0 : 519 254 10 17 15 18 23 23 35 31 45 990 20.0 - 22.0 : 751 245 19 21 13 25 18 23 20 26 25 1186 22.0 - 24.0 : 991 295 15 23 14 16 5 14 4 7 3 1387 24.0 - 26.0 : 535 152 7 3 0 2 0 0 0 0 0 699

TOTAL : 3683 1367 75 92 82 106 113 152 201 230 1067 7168

TABLE I

CRYSTAL DATA: $C_{12}H_{16}O$ Formula Fw = Crystal System a (Å) = b (Å) = c (Å) = V (Å³) = Z = Space group Crystal shape Crystal colour Crystal dimensions (mm)

Linear absorption coefficient μ (cm⁻¹) Density ρ (g cm³)

Diffractometer Radiation Scan type Scan range (°) θ Limits (°) Temperature of measurement Octants collected Nb of data collected Nb of unique data collected

Nb of unique data used for refinement

Decay of standards reflections %none $R = \Sigma | Fo - | Fc || / \Sigma Fo$ 0.072 $Rw = [\Sigmaw(Fo - | Fc |)^2 / \SigmawFo^2]^{1/2}$ 0.063Secondary extinction coefficient135Nb of variables60 $\Delta pmin (e/Å^3)$ -0.21 $\Delta pmax (e/Å^3)$ 0.29

C₁₂H₁₆O 176.25 Orthorhombic 8.119(2) 10.356(2) 25.363(7) 2132(1) 8 P n a b parallelepiped colourless 0.2,0.4,0.5

0.63 1.09

MACH3 MoK α (λ = 0.71069 Å) ω /2 θ 0.8 + 0.345 tg θ 1 - 25 Room temperature h:0, 9; k: 0, 12; l:0, 30 2194 1880

 $709(Fo)^2 > 3\sigma(Fo)^2$

Table II:

Fractional atomic coordinates for :

Atom	x/a	y/b	z/c	U(iso)	Ū(eqv)
0(1)	0.0868(5)	0.3901(4)	0.5068(2)		0 0700
C(1)	0.0148(9)	0.2835(6)	0.4795(2)	0.069(2)	0.0729
C(2)	0.0462(8)	0.2849(6)	0.4219(2)	0.058(2)	
C(3)	-0.0485(8)	0.3724(7)	0.3869(3)	0.030(2) 0.071(2)	
C(4)	-0.0736(8)	0.2299(6)	0.3825(2)	0.071(2)	
C(5)	-0.2368(7)	0.1717(6)	0.3991(2)	0 052(2)	
C(6)	-0.2116(9)	0.0341(7)	0.4203(3)	0.052(2)	
C(7)	-0.3589(7)	0.1750(5)	0.3540(2)	0.070(2)	
C(8)	-0.3506(8)	0.0880(6)	0.3123(2)	0.045(2)	
C(9)	-0.4635(9)	0.0958(7)	0.2700(3)	0.000(2)	
C(10)	-0.5779(9)	0.1891(7)	0 2699(3)	0.070(2)	
C(11)	-0.5910(9)	0.2743(7)	0.3096(3)	0.082(2)	
C(12)	-0.4806(9)	0.2674(6)	0.3521(3)	0.069(2)	

Table III: Interatomic distances (Å) and bond angles (°):

0(1)	-	C(1)			1.429(7)	C(1)	-	C(2)			1.482((8)	
C(2)		C(3)			1.484(8)	C(2)	-	C(4)			1.507	(8)	
C(3)	-	C(4)			1.494(8)	C(4)	-	C(5)			1.516	(8)	
C(5)	-	C(6)			1.537(8)	C(5)		C(7)			1.513	···/	
C(7)	-	C(8)			1.392(7)	C(7)	_	C(12)		,	1.376	(8)	
C(8)	_	C(9)			1.414 (8)	C(9)	-	C(10)			1.341((9) (9)	
C(10)	-	C(11)			1.343(9)	C(11)	-	C(12)			1.402	(9)	
0(1)	-	C(1)	-	C(2)		113.6(6)	C(1)	-	C(2)	_	C(3)	-	120.4(6١
C(1)	-	C(2)	-	C(4)		122.6(6)	C(3)	_	C(2)	-	C(4)		60.0(<u>4</u> 1
C(2)	-	C(3)	-	C(4)		60.8(4)	C(2)	_	C(4)	_	C(3)	1	59.3(<u>a</u> 5
C(2)	-	C(4)	_	C(5)		122.0(5)	C(3)	_	C(4)	_	C(5)		119.4(-/ 5)
C(4)	-	C(5)	-	C(6)		110.4(5)	C(4)	-	C(5)	_	C(7)		110.70	5) 5)
C(6)	-	C(5)	-	C(7)		111.9(5)	C(5)	_	C(7)	_	C(8)		121.9(6 \
C(5)	_	C(7)	-	C(12)		120.9(6)	C(8)	_	C(7)	_	C(12)	117.2((6) 6)
C(7)	-	C(8)	-	C(9)		120.6(6)	C(8)	_	C(9)	_	C(10	,)	119.4(7)
C(9)	-	C(10)	-	C(11)		121.9(7)	C(10)	_	C(11)	_	C(12))	119 4 (· / 7 \
C(7)	-	C(12)	-	C(11)		121.5(7)	- ()		-()			,		,,

Table:	Hydrogen	atoms i	nteratomic d	listances	s (Å) a	nd bond	angles (°)	
		•	for C ₁₂ H ₁₆ C)				
0(1)	- H(1)		1.339(4)	0(1) -	- H(2)		1.350(4)	•
C(1)	- H(11)		1.089(7)	C(1) -	- H(12)		0.959(7)	
C(2)	- H(21)		0.976(6)	C(3) -	- H(31)		0.963(7)	
C(3)	- H(32)		0.955(7)	C(4) -	- H(41)		1.017(6)	
C(5)	- H(51)		1.068(6)	C(6) -	- H(61)		1.158(7)	
C(6)	- H(62)		0.897(7)	C(6) -	- H(63)		1.006(7)	
C(8)	- H(81)		0.974(6)	C(9) -	- H(91)		1.021(7)	
C(10) - H(101))	0.992(7)	C(11) -	- H(111	.)	0.967(8)	
C(12) - H(121))	0.879(7)					
	- 1-1						:	
C(1)	- 0(1)	- H(1)	113.0	(4) (2(1) -	0(1)	- H(2)	112.1(4)
H(1)	-0(1)	- H(2)	116.6	(3)			· · · · ·	
0(1)	- C(1)	- H(11)	112.6	(5) (2(2) -	C(1)	- H(11)	102.4(5)
0(1)	- C(1)	- H(12)	105.0	(6) (- (2)	• C(1)	- H(12)	111.1(6)
H(11) - C(1)	- H(12)	112.4	(6) (2(1) -	C(2)	- H(21)	98.3(5)
C(3)	-C(2)	- H(21)	128.7	(6) (C(4) -	· C(2)	- H(21)	126.3(6)
C(2)	- C(3)	- H(31)	117.4	(6) (2(4) -	- C(3)	- H(31)	111.7(6)
C(2)	- C(3)	- H(32)	119.8	(6) (C(4) -	- C(3)	- Н(32)	115.5(6)
H(31) - C(3)	- H(32)	117.9	(7) (2(2) -	· C(4)	- H(41)	117.7(5)
C(3)	- C(4)	- H(41)	121.9	(6) (2(5) -	• C(4)	- H(41)	109.2(5)
C(4)	- C(5)	- H(51)	108.0	(5) (C(6) -	- C(5)	- H(51)	105.2(5)
C(7)	- ℃(5)	- H(51)	110.5	(5) (2(5) -	- C(6)	- H(61)	111.4(5)
C(5)	- C(6)	- H(62)	104.5	(6) 1	H(61) -	· C(6)	- H(62)	111.3(7)
C(5)	- C(6)	- H(63)	108.4	(6) 1	H(61) -	- C(6)	- Н(63)	106.3(6)
H(62) - C(6)	- Н(63)	115.0	(7) (2(7) -	- C(8)	- H(81)	120.6(6)
C(9)	- C(8)	- H(81)	118.8	(6) (2(8) -	- C(9)	- H(91)	107.4(6)
C(10) - C(9)	- H(91)	133.2	(7) (C(9) -	- C(10)	- H(101)	117.9(7)
C(11) - C(10)	- H(101	.) 120.1	(8) (2(10) -	- C(11)	- H(111)	129.6(8)
C(12) - C(11)	- H(111	.) 110.9	(7) (C(7) -	- C(12)	- H(121)	113.7(7)
C (11	1 0(10)	77/101	1 1 1 1 1	(0)				

Table : Hydrogen atoms fractional atomic coordinates for $C_{12}H_{16}O$

H(1)	0.2500	0.3981	0.5000	0.112(6)
H(2)	0.0000	0.5000	0.5000	0.112(6)
H(11)	0.0671	0.1912	0.4913	0.112(6)
H(12)	-0.1009	0.2891	0.4869	0.112(6)
H(21)	0.1647	0.2696	0.4229	0.112(6)
H(31)	-0.1434	0.4147	0.4017	0.112(6)
H(32)	0.0046	0.4124	0.3576	0.112(6)
H(41)	-0.0267	0.1780	0.3519	0.112(6)
H(51)	-0.2822	0.2260	0.4318	0.112(6)
H(61)	-0.1254	0.0334	0.4567	0.112(6)
H(62)	-0.1671	-0.0092	0.3932	0.112(6)
H(63)	-0.3210	0.0002	0.4328	0.112(6)
H(81)	-0.2690	0.0190	0.3123	0.112(6)
H(91)	-0.4371	0.0219	0.2447	0.112(6)
H(101)	-0.6596	0.1896	0.2409	0.112(6)
H(111)	-0.6634	0.3479	0.3133	0.112(6)
H(121)	-0.4850	0.3166	0.3803	0.112(6)

Table :	Anisotr	Anisotropic thermal parameters for :								
					•					
Atom	Ū(11)	U(22)	U(33)	U(23)	U(13)	U(12)				
0(1)	0.069(3)	0.075(3)	0.085(3)	-0.019(3)	-0.017(3)	0.008(3)				

Tabl	e H	: Fo/ /F0/	Fc for C /FC/ PHI	12 ^H 1	60 H /	'F0/	/FC/ PHI		н /	FO/	/FC/ PHI		н /	F0/	/FC/ PHI		page H /	e 1 F0/	/FC/ PHI
**	K=	0	L= 0 **		8	54	64 0		7	65	87 180		7	102	84 0		3	68 209	73 0
	2 4 6	1467 94 168	1452 0 120 0 182 180	**	к= 1	4 157	L= 1 ** 131 0	**	K= 2	3 284	L= 2 ** 287 180	**	К= 1	2 182	L= 3 ** 192 180	**	K=	2	L= 4 **
**	K=	2	L= 0 [.] **		2 3	280 116	260 0 107 0		3 4 5	82 160 95	92 0 136 0 97 0		2 · 3 4	639 77 78	645 0 86 0 86 0		0 1 2	652 167 229	626 0 187 180 250 0
	0 1 2	1659 1213 1166	1661 180 1206 0 1144 180	**	K= 0	5 315	L= 1.** 305 180		6 9	116 67	96 0 43 0		5 6 7	40 127 80	35 180 113 0 66 0		3 5 · 6	472 146 73	469 0 177 0 63 180
	3 4 6	179 135 82	196 0 128 180 96 0		2 4 6	247 167 153	254 0 148 0 165 0	**`	K=	4 78	L= 2 ** 94 360	**	K=	3	L= 3 **	**	7 K=	81 3	81 0 L= 4 **
**	K=	4	L= 0 **	**	K=	6	L= 1 **		1 3. 4	90 121 180	101 180 116 180 169 0		0 1 3	572 420 314	591 180 434 0 310 0		1 2	390 127	408 180 133 0
÷	0 2 3	197 110 100	183 360 132 0 107 0		1 3 6	160 92 97	152 180 58 180 91 0		5. 6 7	121 160 76	124 180 167 0 77 180		4 5	114 79	122 0 68 180		3 5	371 89	380 180 85 0
**	4 K=	153 6.	193 0 L= 0 **	**	К= 0	7	L= 1 **	**	K=	5	L= 2 **	**	K=	4 198	L= 3 ** 209 180	**	K= 0	4 402	380 180 543 0
	0 1 2	250 201 424	238 180 188 0 426 180		1 2 4	227 65 98	231 180 74 180 105 180		2 3 4 5	185 173 64	166 180 171 180 60 180		2 4 5 6	201 109 91	216 180 94 180 102 180		2 3 4	208 310 73	198 180 310 0 72 0
**	5 K=	151 8	111 0 L= 0 **	**	K=	8	L= 1 **	**	6 K=	166 6	178 180 L= 2 **	**	K=	5	L= 3 **		5 6	70	96 0
	2 3	181 310	178 0 301 180	**	2 • K=	93	66 U L= 1 **		3 6	53 48	44 180 47 0		1 4	142 131 129	132 180 130 180 139 0		κ= 1 2	5 296	296 0
**	K=	: 10	L= 0 **	•	0 2 5	306 59	290 0 70 0 63 180	**	K=	7 41	L= 2 **	**	K= 2	6 127	L= 3 **		4 6	94 80	83 180 67 180
	0 2 3	91 76 71	111 0 79 0 86 0	**	К=	10	L= 1 **		2 4 5	83 170 132	86 0 170 0 108 0		2 3 4 7	79 96	75 0 88 180 62 0	**	К= 0	6 226	L= 4 ** 211 180
**	K=	• 0	L= 1 **		1 3	104 59	100 180 50 0	**	6 K=	95 8	90 0 L= 2 **	**	K=	7	L= 3 **		1 2 3	282 150 261	292 180 152 0 275 180
	2 4 6	188 233 63	192 0 228 0 66 0	**	к= 2	12 59	L= 1 ** 46 180		0	90 44	$ \begin{array}{ccc} 110 & 0 \\ 45 & 0 \\ 62 & 100 \end{array} $		0 1 3	83 54 170	105 180 49 180 173 180	**	5 8	111 57	132 180 54 180
**	8 K	= 1	L= 1 **	**	К= 0	0 168	L= 2 **		3 5 6	68 48 51	30 180 29 180	**	с К=	8	91 180 L= 3 **		κ= 1 2	62 152	62 180 164 0
	1 2 3	429 905 3 <u>68</u>	449 180 908 0 351 0		2 4	85 274	78 180 255 0	**	K=	9 76	L= 2 ** 64 0		2 4	108 87	108 0 112 0		3	95 99	94 180 96 0
**	4 K	91 = 2	66 180 L= 1.**	**	K=	1 65	L= 2 **	**	2 K=	72 12	59 180 L= 2 **	**	K= 1	9 62	L= 3 ** 62 180	**	K= 1	8 123	L= 4 ** 120 180
	1 2	888 424	914 0 435 180		2 3 4	301 306 92	308 0 304 0 101 0		0	79	68 180	**	5 . K=	68 11	63 0 L= 3 **	* *	2 K=	127 10	138 180 L= 4 **
	3 4 5	61 258 56	18 180 250 180 41 180		5 6 7	49 113 190	41 0 105 180 208 180	* *	^к К=	0 154	L= 3 ** 151 0		0	113	107 0	•.	0 1	120 76	141 0 77 0
	7 8	82 87	79 0 77 0	* *	8 K=	86 = 2.	L= 2 **		4 6 8	123 121 76	114 180 146 0 59 180	**	К= 0	0	L= 4 ** 492 180	**	K=	• 0	L= 5 **
**	к О	= 3 612	L= 1 **		01	52 197	36 0 204 0	* *	* K=	1	L= 3 **		2 4 6	499 234 71	495 0 216 180 55 180		2 4 6	275 348 178	2/4 0 326 180 167 180
	1 2 3 4	90 464 162 97	, 72 180 459 180 2 143 0 7 93 180		∠ -3 4 5	269 137 273 194	256 180 264 180 180 0		1 3 4	988 648 426 227	5 582 0 8 673 0 5 422 0 7 209 180	**	K=	1 1523	L= 4 ** 1521 0	**	- К= 0	1 196	L= 5 ** 221 0
	7	.96	b 108 180		6	116	s 116 180		5	127	128 0		2	504	4/8 180		Τ.	813	υ στα

.

Table H	: Fo/ /FO/	Fc for C /FC/ PHI	12 ^H 1	50 H /FO/	/FC/ PHI		н /	FO/	/FC/	РНІ		н /	FO/	/FC/ P	ні	ра Н	age 2 /FO/	/FC/ PHI
2 3 4 5 6 7	393 416 49 336 146 122	400 180 424 0 42 360 315 0 148 180 120 180		1 502 2 115 3 109 5 279 7 215	2 487 180 5 108 0 9 88 0 9 244 0 5 208 0	**	K= 0 1 2 3	1 989 189 103 474	L= 7 1012 190 86 439	0 180 0 180	**	4 8 K= 0	139 67 2 466	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 80 ** 80	1 2 3 4 6 7	197 146 96 111 97 66	205 0 144 180 114 0 116 0 91 180 94 180
** K=	= 2	L= 5 **	**]	K= 2 0 291	L= 6 ** L 280 180	**	4 K=	106 2	109 L= 7	0 ·		1 2 4	103 91 88	86 1 96 63 1	80 0 80	** K	= 4	L= 9 **
1 3 5 6 7	258 425 54 83 52	251 0 398 0 51 0 74 0 54 180		1 279 2 120 3 567 4 79 5 198 6 142	288 0 108 180 7 548 0 9 97 180 3 184 180 3 145 180		1 3 4 5 6	428 299 212 98 72	428 295 192 102 80	180 180 0 0 0	**	K≓ 1 2 3	3 131 287 132	L= 8 141 265 1 141	** 0 80 0	1 2 3 5 7	131 118 190 84 85	118 180 124 180 230 0 86 0 87 180
** K=	= 3	L= 5 **	**	к= 3	L= 6 **	**	7 V-	88	75 1 - 7	0	**	K=	4	L= 8	** .	** K	= 5	L= 9 **
1 2 3 5 6 8	114 88 200 90 74 99 69	103 180 66 180 217 0 79 180 74 0 88 0 70 180		1 40 2 9 3 22 5 20 7 11 8 6	5 429 180 0 83 0 3 210 180 2 201 180 4 118 180 5 61 0		N= 0 1 2 3 4	90 576 270 518 109	106 591 280 511 111	360 0 180 0 180		0 1 2 3 5 6	443 136 74 233 136 107	418 1 117 1 59 1 239 132 112	80 80 80 0 0 0	2 3 4 6 ** K	65 192 91 163	336 180 72 180 178 180 81 0 148 0 L= 9 **
** K:	= 4	L= 5 **	**	K= 4	L= 6 **	**	5 K=	4	L= 7	. **	**	K=	5	L= 8	**	2	121 113	136 180 115 180
1 2 3 5	380 172 156 62	388 180 160 180 157 180 44 180		0 20 1 4 2 22 3 4	9 219 180 3 23 0 0 214 0 2 53 180		2 3	58 146	58 157	0 180	**	2 3 K=	255 79 6	240 72 1 L= 8	0 80.	** K	126 = 7	116 0 L= 9 **
7 ** K	76 = 5	78 0 L= 5 **		4 24 5 6 6 7	6 238 0 3 69 0 1 71 0	**	K= 0 1	5 379 105	L= 7 373 103	180 0		0 1 2	55 138 143	51 3 128 1 133 1	860 80 80	0 2 3 6	166 172 107 64	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 1 2 4	403 91 91 97	379 0 99 180 92 180 106 0	**	K= 5 1 5 2 9 3 18	L= 6 ** 5 58 0 8 108 180 5 172 0		2 3 4 5	196 126 173 96	186 121 191 120	180 180 0 180	**	5 K= 3	49 7 122	43 1 L= 8 125	180 ** 0	** k 1 3	(= 8 . 102 8 86	L= 9 ** 2 84 0 5 86 180
** K 1	= 6 336	L= 5 **		5 13 6 6	8 121 0 0 38 0	**	K=	6 166	L= 163	7 **	**	4 K=	53 . 8	42 1 L= 8	**	** F	(= 10	L= 9 **
2 3	187 178	180 0 198 0	**	K= 6 0 27	L= 6 ** 3 266 180		3 5	118 68	102 52	0		0 2	91 85	75 90	0 0	** F	. 50 (= 0) 52 180 L= 10 **
** K 1 2	= 7 97 126	L= 5 ** 110 0 110 180		1 18 3 6 5 12	1 186 180 5 55 180 7 112 180	**	' K= 3 5	7 164 75	L= 187 68	7 ** 180 0	**	K= 1	9 81	L= 8 92	**	() 754 2 141 1 4'	1 769 0 3 145 180 7 32 180
3	239	227 180	* *	K= 7	L= 6 **	* *	- * K=	8	L= .	7 **	* *	К=	0	L= 9	**	(i 214	1 247 180
** K 1	:= 8 . 220	L= 5 ** 238 180		1 19 2 10 4 8	8 181 0 9 129 180 2 65 180		1	42	22	180		4	156	150	0	**]	(= 1 2 7+	L = 10 ** 5 67 0
2 3	113 58	113 180 80 180	**	5 б К= 8	i8 56 180 3 L= 6 **	. **	* К= 0	9 93	L= 91	7 **	**	K=	1 309	L= 9 316	**	4	1 121 5 143	1 98 0 3 135 0
** К 2 3 4	(= 9 94 46 65	L= 5 ** 106 0 46 0 84 180		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 113 180 88 76 0 53 51 0 53 57 0	*	2 6 * K=	54 65 0	54 48 L=	0		1 3 4 5	73 98 173 187	76 92 169 187	180 0 180 180	**]	x = 2 1 31: 4 6: 5 11: 6	L = 10 ** 3 317 0 1 44 180 7 95 0 1 120
. ** K	K= 0	L= 6 **	**	K= 9) L= 6 **		0 2 4	841 844 88	867 859 101	U 0 0	**	к= 1	2 	ட= 9 64	360	**	5 123 K= 3	L= 10 **
0 2 4) 75 2 449 1 459	51 180 462 0 425 180	**	2 10 K= 0	108 (0) $L = 7 * 7$) · *	6 * K=	118	138 L=	180 8 **		5 6 8	55 99 58	57 114 42	0 180 0		1 19 3 10	6 197 180 8 109 180
6	5 143 3 104	99 0		2 42	25 443 180 77 85 ()	1 2	248 172	8 243 2 173	180 0	**	K=	3	L= 9	**	**	K≈ 4	L= 10 **
** ŀ	<= 1	L= 6 **		6 9	91 88 180)	3	169) 155	0		0	148	152	0		0 23	0 240 180

Tab	le	: Fo	/Fc	for (Ci o H	0														D a c			
	н.	/F0/	/FC/	PHI	12 .	H.	/F0/	/FC/ PHI		н.	/F0/	/FC/	PHI		н	/FO/	/FC/	PHI		рац Н /	FO/	/FC/ 1	рні
	2	63	68	180		4	156	152 180	**	К=	9	L= 12) **		1	94	. 84	180	**	v -	5	1	
	3	76	78	0		5	126	133 0							2	55	59	180		N -	J	ц~ 15	~ •
	5	215	209	180	**	v -	ć	T_ 11 ++		2	86	80	0		4	118	101	0		1	71	66	180
* *	K=	5	L= 1	0 **		V =	0	$\Gamma = 11$	**	к=	0	L= 13	**		5	148	106	0		2	61	60 3	180
				-		1	72	72 180		m -	v	D- 1.	,	* *	K=	2	L= 14	**		2	90	92	0
	1	98	107	0		4	118	121 180		2	185	195	0						* *	K=	6	L= 15	**
	2 4	206	219	180		5	77	84 0	**	¥-	1	T = 17	**		0	63	38	180		2	201		
	-	200		100	* *	K=	7	L= 11 **		K-	T	D- 13)		2	149	154	180		1 J	221	242	0
**	K=	6	L= 1	0 **						0	107	86	180		3	240	229	0		4	80	110	ŏ
	0	121	120	100		0	102	92 180		1	160	148	0		6	109	115	180		5	84	69	180
	2	67	52	180		5	129	166 180		23	256	45 228	180	**	к-	. 7	L - 14	* *		6	67	78	0
	4	251	261	0		•	107	100 100		4	133	132	180		N -	J	D- 14		**	K=	7	L= 15	* *
	5	106	103	0	* *	K=	8	L= 11 **		5	193	181	0		1	199	184	180					
* *	K =	7	L- 1	n **		ົ່	67	62 0	**	v -	h	r _ 13			3	203	194	180		2	68	70	180
	N -	,	n- 1	0		4	96	91 0		K=	2	D= 13)		4	11	78	0		3	110	136	180
	1	72	82	180		5	61	50 180		3	92	85	0	* *	K=	4	L= 14	**	**	K=	8	L= 15	* *
	2	111	106	0		••				4	55	51	0		_								
	3	93	/6	0	**	К=	9	L= 11 **	**	¥-	3	1- 13	**		0	92	85	0		1	77	70 :	180
* *	K=	8	L= 1	0 **		0	84	98 0		N -	2	U- 13)		4	141	158	0	**	к=	0	L= 16	**
										0	74	59	360		5	136	139	Ō			č		
	0	88	177	0	**	K=	0	L= 12 **		1	91	87	0			-				0	117	127	0
	4	104	102	180		0	466	470 0		∠ २	144 73	134	0	**	K=	5	L= 14	**		4	200	236 :	180
						2	84	103 180		4	108	126	180		1	109	111	0	**	K=	1	L= 16	* *
* *	K=	10	L= 1	0 **		4	66	59 0		5	121	131	180		2	75	88	180					
	0	53	35	O,	**	к-	1	T 10 **	**	v_		T = 12			4	117	128	180		2	47	31	0
	3	66	81	ŏ		.R-	T	D- 12		к=	4	P= 13	,		0	97	86	180		3	152	135	0
	•	_				1	525	491 0		1	50	53	180	* *	K=	6	L= 14	**		Ŷ	0,		100
**	K=	0	L= 1	1 **		2	187	182 0		2	95	82	180		_				**	K=	2	L= 16	**
	2	526	551	0		د ۵	233	229 0		3	190	174	180		0	47	9	180		0	102	107	~
	4	366	384	õ		5	141	131 0		5	57	37	180		4	138	142	180		3	135	148	0
															6	58	48	0		5	71	62	180
. * *	K=	1	L= 1	1 **	**	K=	2	L= 12 **	**	K=	5	L= 13	} **							6	68	69	0
	0	201	212	0		0	104	130 0		0	84	75	180		K=	. 0	L= 15	**	**	v –	2	1 - 16	* *
	1	108	99	ō		ĩ	219	218 0		2	129	162	0		2	219	222	180		<u>к</u> -	د	ц- 10	
	2	458	431	0		2	84	80 180		4	199	219	0		4	255	277	180		1	63	54	180
	د 4	451 119	425	180		35	114	130 0		5	109	97	180		8	83	72	180		2	136	138	
	-			100		5	**1		**	K=	6	L = 13	; **	**	K=	1	L= 15	**		د	. 40		100
* *	K=	2	L= 1	1 **	* *	K=	3	L= 12 **											* *	K=	4	L= 16	* *
	1	54	58	180		1	222	214 190		1	82	119	. 0		0	201	190	0		•		42	
	2	349	333	180		2	67	64 180		2	89	93	0		2	126	113	0		1	121	43	180
	3	65	92	0		4	213	211 180		-			-		5	130	123	ō		-		100	•
	4	108	85	180		7	49	52 180	**	K=	7	L= 13	} **		6	78	79	180	* *	K=	5	L= 16	* *
	5	100	101	0	**	K=	4	L= 12 **		0	141	151	180	**	¥ =	2	I.= 15	**		1	52	81	0
* *	K=	3	L= 1	1 **			-	2- 10		1	107	114	180		<u>n</u> =	2	D- 13			Т	26	01	U
	^			1		4	138	130 0		2	91	79	180		2	365	356	0	* *	K=	6	L= 16	* *
	1	400	469	180		6	79	77 0	**	¥ -	0	T_ 17			4	108	115	0		•	170	100	100
	2	165	181	180	* *	K=	5	L= 12 **		К-	0	U- 13			o	102	04	0		2	1/6	71	180
	4	156	170	0						1	54	7.8	180	* *	K=	3	L= 15	**		4	84	85	Ō
	5	67	65	0		2	96	102 180		5	56	40	180		^	241	240	100		6	51	48	0
**	K=	4	L= 1	1 **		4	115	116 0	* *	K=	9	L= 13	} **		3	133	248 124	180	* *	K=	7	L= 16	* *
															4	86	69	180					
	1	116	126	0	* *	K≃	6	L= 12 **		0	98	120	0		6	109	104	0		1	79	63	0
	3	176	208	180		3	107	133 180	* *	K=	0	L= 14	1 **	* *	K=	4	.L= 15	**	* *	К=	8	L= 16	* *
	5	56	52	180						-	-					-					-	0	
	7	56	46	180	* *	К=	7	L= 12 **		0	191	199	0		1	246	270	180		1	90	109	180
* *	K=	5	L= 1	1 **		3	148	167 180		2	102	TDA	U		∠ 3	131 92	101	180 0		د	22	10	100
			•				-		**	K=	1	L= 14	1 **		4	133	141	180	**	K=	9	L= 16	**

	,																			
Tab	le H	: Fo, /FO/	/Fc f /FC/	or C PHI	12 ^H	16 ⁰ H	/F0/	/FC/ PHI		н	FO/	/FC/ PHI		Н	/F0/	/FC/	PHI	page 4 H /FO/	/FC/	PHI
	1	76	80	180	* *	K=	4	L= 18 **		3	68	72 0		0	66	50	180			
* *	K=	= 0	L= 17	* *		0	216	223 180	**	K=	6	L= 20 **	**	K=	3	L= 23	3 .**			
	2	59	64	180		2 3 4	109 134 98	118 180 153 0 87 180		0	80	75 0		0	62	35	180			
* *	K=	- 1	L= 17	* *	**		-		**	K=	7	L= 20 **	* *	K=	0	L≃ 24	1 **			
	0	82	91	0	• •	К=	5	T= 18 **		2	68	63 0		0	238	228	180			
	1 2 5	84 75 98	77 72 101	0 180 180		1 2 3	114 123 84	90 0 152 180 75 0	.**	K=	0	L= 21 **	**	K=	1	L= 24	1 **			
**	K=	= 2	L= 17	**	**	K=	9	L= 18 **		4 6	99 65	94 0 44 0		1	78	84	180			
	3	82	71	180		1	45	29 0	**	K=	1	L= 21 **	**	K=	2	L= 24	4 **			
	5 6	76 105	61 98	0 0	**	K=	0	L= 19 **		0	102	97 180		0 1	124 80	131 70	0 180			
* *	K=	= 3	L= 17	**		2	203	220 0	**	3	96	87 0	* *	K=	4	L= 24	4 **		·	
	2	87	84	0		** 	110	101 0		K=	4	L= 21 ***		3	55	57	180			
	4	104	87	0	**	K=	1	L= 19 **		1	106	87 180	* *	К=	2	L= 25	5 **			
**	- K=	= 4	L= 17	* *		0 1	190 78	185 0 93 180	**	K=	3	L= 21 **		1	151	121	180			
	_3 _4	71 93	71 81	180 180		5	134	133 180		0	177	170 0	**	K=	3	L= 25	5 **			
	5	82	84	180	**	K=	2	L= 19 **	**	K=	4	L= 21 **		2	60	66	0			
**	K:	= 5	L= 17	**		2 3	129 134	90 180 129 0		2	70	60 180	. * *	K=	4	L= 2	5 **			•
	0 1	95 66	111 58	180 180		5	71	62 0	**	K=	6	L= 21 **		2	62	52	180			
	2 3	134 68	154 65	180 180	**	K=	3	L= 19 **		2	64	57 180	**	К=	6	L= 2	5 **			
**	K	= 6	L= 17	**		0 1	124 156	128 0 173 0	**	K=	7	L= 21 **		1	66	45	0			
	1	104	111	0		23	90 119	89 180 126 0		0	55	17 180	**	- -	0	2	с к **			
	3	105	. 96	0		4	84	86 0	**	K=	8	L= 21 **		n-	206		۰ ۵			•
**	K	= 7	L= 17	**	**	K=	5	L= 19 **		1	57	63 0	~	2	82	103	0			
	0 1	189 75	184 95	0		0 2	251 80	234 180 78 180	**	K=	0	L= 22 **	**	K=	. 2	L= 2	6 **			
	2	83	110	0		3	74	75 180		0	59 72	36 C		2	60	77	180			
**	K	- 9	L= 17	**	* *	K=	7	L= 19 **	**	ч У-	1	T - 22 **	**	K=	0	L= 3	0 **			
	0	74	101	180		2	75	69 0		л= 1	1			0	80	80	180			
* *	K	= 0	L= 18	**	**	K=	0	L= 20 **		2	106	115 C	Р Н							
	6	136	133	180		4	50	67 180	**	K=	2	L= 22 **	• .							
**	K	- 1	L= 18	**	**	K=	1	L= 20 **		0 2	113 82	97 C 75 C)							
	1 2	98 86	107 64	0 0		1	221	211 0	**	K=	3	L= 22 **								
	3	99	96	0	* *	K=	2	L= 20 **		2	84	83 180	1							
**	K	= 2	L= 18	**		1 2	112 137	107 0 142 0	* *		4	L= 22 **	· .							
	026	89 168	88 177	0	* *	K=	3	L= 20 **		0	94	98 180)							
		<i>ا</i> د د	2L	U 		4	98	68 180		1	44) ور	,							
.,	K	= 3	ь= 18	, ××	**	K=	4	L= 20 **	**	K=	6	L= 22 **								
	1 3	283 96	263 87	180 180		0	115	117 180		3	68	70 180)							
						1	120	113 180	**	K=	8	L= 22 *	*							

.

The relative stereochemistry of 8a was assigned by comparaison with an authentic sample prepared from 2a by performing a Birch reduction followed by reduction of the 1,4-diene:

Me

120

54%

9b