$$
J \bigcup \bigodot_{\text {The Journal of Organic Chemistry }}
$$

J. Org. Chem., 1998, 63(12), 3802-3803, DOI:10.1021/j0980406i

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.htm|

ACS Publications

Cooperative Control of Ion and Molecular Recognition by Molecular Assembling

Tatsuya Nabeshima et al.

Supporting Information

5: A mixture of the tosylate $4(6.887 \mathrm{~g}, 14.57 \mathrm{mmol})$ and thiourea $(1.221 \mathrm{~g}, 16.04 \mathrm{mmol})$ in 36 mL of $95 \% \mathrm{EtOH}$ was heated at $90^{\circ} \mathrm{C}$ for 20 h. After the solvent was removed and dried in vacuo, the residue was mixed with a solution of $\mathrm{KOH}(6.140 \mathrm{~g}, 93.01 \mathrm{mmol})$ in 35 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was refluxed for 24 h under N_{2}. After cooling, the reaction mixture was acidified with 20 mL of $12 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted with CHCl_{3} ($50 \mathrm{~mL} \times 3$). The organic layer was dried over anhydrous MgSO 4 and then concentrated in vacuo. The crude product thus obtained was purified by silica gel column chromatography using $\mathrm{CHCl}_{3} / \mathrm{AcOEt}$ (20:1) as an eluent to afford $5(3.611 \mathrm{~g}, 74 \%)$ as a colorless oil. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 14.15,22.70,24.28,26.10,29.36$, $29.51,29.63,29.68,31.93,70.07,70.25,70.55,70.70,71.58,72.89$.

6: To a suspension of $\mathrm{NaH}(0.104 \mathrm{~g}, 2.383 \mathrm{mmol})$ in 2 mL of THF was added a solution of $5(0.761 \mathrm{~g}, 2.275 \mathrm{mmol})$ in 2 mL of THF. After the mixture was stirred for a few minutes, ethyl 4-bromobutyrate $(0.400 \mathrm{~g}$, 2.05 mmol) in 2.5 mL of THF was added to the reaction mixture, which was stirred for 5 h at room temperature and then the solvent was removed under reduced pressure. The residue was mixed with 30 mL of $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3} ($30 \mathrm{~mL} \times 5$), and dried over anhydrous MgSO , and then concentrated in vacuo. The crude product was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}(20: 1)$ as an eluent to afford $6(0.775 \mathrm{~g}, 84 \%)$ as a pale yellow oil. ${ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.15,14.24,22.70,24.81,26.10,29.37,29.51$, 29.63, 29.65, 29.68, 31.20, 31.73, 31.93, 33.01, 60.40, 70.06, 70.35, 70.59, 70.68, 70.93, 71.58, 173.11.

7: A solution of $6(1.000 \mathrm{~g}, 2.229 \mathrm{mmol})$ in 11 mL of EtOH was treated with a solution of $\mathrm{NaOH}(0.462 \mathrm{~g}, 11.55 \mathrm{mmol})$ in 2 mL of $\mathrm{H}_{2} \mathrm{O}$ at $80 \sim 90^{\circ} \mathrm{C}$ for 2 h , and then the solvent was removed in vacuo. The residue was mixed with 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5 mL of 3 N HCl , extracted with CHCl_{3} ($30 \mathrm{~mL} \times 3$), and dried over anhydrous MgSO 4 , and then concentrated in vacuo. The crude product was used without purification, because ${ }^{1} \mathrm{H}$ NMR spectrum of the crude 7 indicates exclusive formation of 7. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 14.15,22.70,24.58,26.06$, 29.37, 29.49, 29.52, 29.62, 29.65, 29.68, 31.12, 31.53, 31.93, 32.64, $70.02,70.35,70.58,70.61,71.19,71.59,177.94$.

8: To a solution of $7(1.00 \mathrm{~g}, 2.38 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.4 mL of DMF was added oxalyl chloride ($0.42 \mathrm{~mL}, 4.8 \mathrm{mmol}$) in one portion. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 4 h . After evaporation of the solvent in vacuo, formation of $\mathbf{8}$ was ascertained by ${ }^{1} \mathrm{H}$ NMR ($\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 3.69-3.55(\mathrm{~m}, 10 \mathrm{H}), 3.42(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.80 \mathrm{~Hz}), 3.02(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.08 \mathrm{~Hz}), 2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.48 \mathrm{~Hz}), 2.60(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=6.96 \mathrm{~Hz}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H})) . \mathrm{A}$ solution of the crude 8 (ca. 90% purity by ${ }^{1} \mathrm{H}$ NMR) solution in 15 mL of THF was added slowly to a mixture of 2,6-diaminopyridine (1.307 g , $11.98 \mathrm{mmol})$ and $\mathrm{Et} 3 \mathrm{~N}(0.65 \mathrm{~mL}, 4.689 \mathrm{mmol})$, and then the mixture was stirred for 3 h at room temperature. The solvent was removed in vacuo and the residue was mixed with 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3} ($30 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO 4 and concentrated in vacuo. The crude product was purified by
silica gel column chromatography using $\mathrm{CHCl}_{3} / \mathrm{MeOH}(15: 1)$ as an eluent to give $8(1.01 \mathrm{~g}, 83 \%)$ as a pale yellow oil. ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) δ (ppm) 14.14, 22.69, 24.85, 26.07, 29.35, 29.20, 29.62, 29.67, $31.23,31.72,31.92,35.93,70.03,70.31,70.56,70.63,70.91,71.56$, $103.19,104.23,140.11,149.71,157.08,170.67$.

1: Amide 8 ($2.40 \mathrm{~g}, 4.69 \mathrm{mmol}$) and $\mathrm{Et} 3 \mathrm{~N}(0.97 \mathrm{~mL}, 7.0 \mathrm{mmol})$ were dissolved in THF (40 mL). Glutaryl chloride ($0.40 \mathrm{~mL}, 3.1 \mathrm{mmol}$) was added dropwise to the mixture and it was stirred for 19 h at room temperature. After evaporation of the solvent, the residue was mixed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(40 \mathrm{~mL} \times 3)$. The organic layers were combined and dried over anhydrous MgSO 4 . After concentration in vacuo, chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.=3: 1\right)$ gave 1 ($1.98 \mathrm{~g}, 76 \%$). M.p. $99.2-102.4^{\circ} \mathrm{C}$ (acetone); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.15,20.98,22.69,24.69,26.08,29.36,29.50$, 29.62, 29.64, 29.67, 31.26, 31.72, 31.92, 35.78, 36.05, 70.01, 70.30, $70.56,70.62,70.86,71.57,109.43,109.56,140.68,149.35,149.56$, 171.07, 171.20; IR (KBr): $\mathrm{n}=3306,1671 \mathrm{~cm}^{-1}$; FABMS: $\mathrm{m} / \mathrm{z}=1119$ $\left([\mathrm{M}]^{+}\right)$; elemental analysis for $\mathrm{C} 59 \mathrm{H}_{102} \mathrm{~N}_{6} \mathrm{O} 10 \mathrm{~S}_{2}$: calcd C 63.29, H 9.18, N 7.51; found C 63.00, H 9.30, N 7.42.

Isotope Patterns of Observed and Calculated ESIMS Spectra for a Mixture of $\mathbf{1 , 2}$ and NaNO_{3}

