J. Org. Chem., 1998, 63(15), 5076-5079, DOI:10.1021/jo980249n

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

2-(4-Methoxyphenyl)-3-(trimethylsilyl)-1-propene (3a). ${ }^{5 \mathrm{c}}$ Compound $\mathbf{3 a + 1 a}$ (ratio $97 / 3$) was obtained in 42% yield at $60^{\circ} \mathrm{C}$. The eluent was isohexane/diethyl ether $19: 1$ and the products were further purified by bulb-to-bulb distillation $\left(\sim 100^{\circ} \mathrm{C}\right.$ at 10 mm $\mathrm{Hg})$.

2-(4-t-Butylphenyl)-3-(trimethylsilyl)-1-propene (3b). Compound $\mathbf{3 b}+\mathbf{1 b}$ (ratio $94 / 6$) was obtained in 47% yield at $60^{\circ} \mathrm{C}$. An alumina column was used for chromatography. The eluent was isohexane and the products were further purified by bulb-to-bulb distillation $\left(\sim 110^{\circ} \mathrm{C}\right.$ at 10 mm Hg$) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ (app d, $J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.31$ $(\mathrm{s}, 9 \mathrm{H}),-0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,146.2,139.7,125.9$, 124.9, 109.3, 34.4, 31.3, 25.9, -1.4; MS m/z (relative intensity 70 eV$) 246\left(\mathrm{M}^{+}, 12\right)$, 189 (61), 73 (100). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{26}$ Si: C, 78.0; H, 10.6. Found: C, 77.9; H, 10.4.

2-(2,3,5-Trimethylphenyl)-3-(trimethylsilyl)-1-propene (3c). Compound 3c was obtained in 69% yield after 10 days at $60^{\circ} \mathrm{C}$ and in 60% after 16 h at $80^{\circ} \mathrm{C}$. The eluent was isohexane and the products were further purified by bulb-to-bulb distillation $\left(\sim 100^{\circ} \mathrm{C}\right.$ at 10 mm Hg$) .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.78$ $(\mathrm{s}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3$ H), $1.88(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.5$, $144.7,136.7,134.1,129.7,129.0,126.8,111.9,29.1,20.8,20.4,16.3,-1.7 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity 70 eV) $232\left(\mathrm{M}^{+}, 47\right), 217(60), 73(100)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{Si}$: C, 77.5; H, 10.4. Found: C, 77.4; H, 10.0.

2-Phenyl-3-(trimethylsilyl)-1-propene (3d). ${ }^{5 \mathrm{c}}$ Compound 3d+1d (ratio 95/5) was obtained in 67% yield at $60^{\circ} \mathrm{C}$. The eluent was isohexane and the products were further purified by bulb-to-bulb distillation $\left(\sim 105^{\circ} \mathrm{C}\right.$ at 10 mm Hg$)$.

2-(1-Naphthyl)-3-(trimetylsilyl)-1-propene (3e). ${ }^{5 \mathrm{c}}$ Compound 3e+1e (ratio 98/2) was obtained in 77% yield at $60^{\circ} \mathrm{C}$. The eluent was isohexane. No bulb-to-bulb distillation was needed.

2-(4-Acetylphenyl)-3-(trimethylsilyl)-1-propene (3g). Compound $\mathbf{3 g}+\mathbf{1 g}$ (ratio 94/6) was obtained in 31% yield at $80^{\circ} \mathrm{C}$. The eluent was isohexane/diethyl ether $9: 1$ and the products were further purified by bulb-to-bulb distillation $\left(\sim 135^{\circ} \mathrm{C}\right.$ at 6 mm Hg$) .{ }^{1}$ H NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.96(\mathrm{dd}, J=1.0 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.13(\mathrm{~s}, 9$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6,147.5,145.7,135.8,128.3,126.4,112.1$, 26.5, 25.9, -1.5; MS m/z (relative intensity 70 eV) $232\left(\mathrm{M}^{+}, 65\right), 217(8), 73(100)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi}$: C, 72.4; H, 8.7. Found: C, 72.7; H, 8.6. 2-(4-Cyanophenyl)-3-(trimethylsilyl)-1-propene (3h). Compound 3h was obtained in 59% yield at $80^{\circ} \mathrm{C}$. The eluent was isohexane/diethyl ether 19:1 and the products were further purified by bulb-to-bulb distillation $\left(\sim 115^{\circ} \mathrm{C}\right.$ at 10 mm Hg$) .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}$, $J=1.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(67.8$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.3,145.1,131.9,126.8,118.9,112.9,110.7,25.4,-1.5 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity 70 eV) $215\left(\mathrm{M}^{+}, 32\right), 200(7), 73(100)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NSi}$: C, $72.5 ; \mathrm{H}, 8.0 ; \mathrm{N}, 6.5$. Found: C, $72.7 ; \mathrm{H}, 7.9 ; \mathrm{N}, 6.7$.

