J. Org. Chem., 1998, 63(7), 2066-2067, DOI:10.1021/jo9800762

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Solid-Phase Synthesis of Diverse E- and F-Series Prostaglandins

Lorin A. Thompson, Frederick L. Moore, Young-Choon Moon, and Jonathan A. Ellman*

Department of Chemistry, University of California, Berkeley, CA 94720

Supplementary Material

General

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Tetrakis(triphenylphosphine)palladium was prepared according to the literature procedure. ${ }^{1} 3$-buten-1-ol methyl ether was prepared according to the method of Brown and coworkers. ${ }^{2}$ (S)-1-Octyn-3-ol was purchased from Aldrich and protected with triethylsilyl chloride under standard conditions. The alkyne 4,4-dimethyl-1-octyn-3-ol was prepared according the the literature procedure and protected with triethylsilyl chloride under standard conditions. ${ }^{3}$ Tetrahydrofuran and diethyl ether were distilled under N_{2} from sodium/benzophenone immediately before use. Pyridine and dichloromethane were distilled under N_{2} from sodium hydride, and toluene was distilled from sodium. All reactions were run under a blanket of dry nitrogen using standard techniques unless stated otherwise. Organic layers were dried over anhydrous magnesium sulfate unless stated otherwise. Flash column chromatography was carried out using Merck 60 230-400 mesh silica gel. Thin layer chromatography (tlc) analyses were performed with Merck Kieselgel $60 \mathrm{~F}_{254}$ plates and visualized using p-anisaldehyde staining. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a Bruker AMX-300, AMX-400, AM-400 or AM-500 FT spectrometer. Proton-decoupled ${ }^{13} \mathrm{C}$ spectra were obtained with the same instruments with a line broadening of 1.5 Hz . Chemical shifts are reported in ppm, and coupling constants are reported in Hertz. Unless otherwise noted, spectra were obtained in CDCl_{3} with residual CHCl_{3} as an internal standard at 7.26 ppm ; spectra obtained in $d_{6}-$ DMSO were referenced to the residual DMSO at 2.49 ppm . Elemental analyses were performed by M-H-W Labs, Phoenix, AZ, or by the University of California, Berkeley, Department of Chemistry Microanalytical Laboratory. Polystyrene SX-1 beads (200-400 mesh) were obtained from Bio-Rad. Most simple resin reactions at rt were carried out in fritted cartridges (Applied Separations). It was not necessary to use distilled solvents for rinsing of resin, and in the rinsing procedure a sufficient amount of solvent was added to slurry the beads followed by agitation for approximately 30 seconds, followed by draining the solvent. A filtration cannula (Pharmacia, Uppsala, Sweden) is useful for filtration of resins in round-bottom flasks.
Cis-(4(R)-tert-Butyldimethylsilyl)-2-bromo-cyclopentene-1,4-diol ${ }^{4}$ 4-(R)-tert-butylsilyloxy-2-cyclopentenone ($6.0 \mathrm{~g}, 28 \mathrm{mmol}$) was dissolved in 90 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 250 mL round-bottomed flask and chilled in an ice bath. Bromine $(1.60 \mathrm{~mL}, 31.1$ mmol) dissolved in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise at a slightly slower rate than the rate at which it reacts. After TLC eluting in 1:4 ethyl acetate/hexanes indicated conplete reaction, $4.5 \mathrm{~g}(45 \mathrm{mmol})$ of triethylamine dissolved in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the reaction was allowed to warm to rt over 1 h . The reaction solution was then extracted with a 1.0 M sodium bisulfate solution ($3 \times 50 \mathrm{~mL}$), a saturated NaHCO_{3} solution (3×50 mL) and brine ($1 \times 50 \mathrm{~mL}$). The aqueous layers were back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2×10

[^0]mL) and the combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. The crude α-bromoenone was then dissolved in 200 mL of methanol and chilled to $-78^{\circ} \mathrm{C}$. A solution was then prepared by dissolving 6.9 g (28 mmol) of anhydrous CeCl_{3} in 80 mL of methanol with heating. The CeCl_{3} solution was added to the chilled α-bromoenone solution and the temperature was allowed to return to $78^{\circ} \mathrm{C}$, at which time $1.1 \mathrm{~g}(29 \mathrm{mmol})$ of NaBH_{4} was added. The reaction was monitored by tlc, and when complete (10 min or less) 50 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added slowly. The solution was diluted with 50 mL of water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×50 mL). The organic layers were washed with a saturated NaHCO_{3} solution ($1 \times 25 \mathrm{~mL}$) and brine ($1 \times 25 \mathrm{~mL}$). The combined aqueous layers were back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10$ mL) and the combined organic layers were dried and concentrated to a brown-red oil. Chromatography eluting with 9:1 hexanes/ethyl acetate provided $7.26 \mathrm{~g}(88 \%)$ of product as a colorless oil. On storage at $-20^{\circ} \mathrm{C}$ for several days the product crystallized. A small crystal was saved as a seed and used to initiate crystallization of the rest of the product from pentane at $-20^{\circ} \mathrm{C}$. White crystals ($5.14 \mathrm{~g}, 62 \%$) were obtained and found to be one diastereomer by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. mp 44-45 ${ }^{\circ} \mathrm{C}$. IR: 3378, 2926, 1620, $1256,1033 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.071(\mathrm{~s}, 3 \mathrm{H}), 0.072(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $1.70(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=13.5,4.8), 2.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3), 2.78(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=13.5,7.2), 4.46$ $(\mathrm{m}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.1) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}) \delta-4.7,18.0,25.8$, 43.6, 73.4, 76.8, 129.4, 136.5.

Compound 2. In a round-bottomed flask 9.6 g (33 mmol) of (4(R)-tert-butyldimethylsilyl)-2-bromo-cyclopentene-1,4-diol ($8: 1$ cis/trans) was dissolved in 66 mL of pyridine and $0.4 \mathrm{~g}(3.3 \mathrm{mmol})$ of $4-\mathrm{N}, \mathrm{N}$-dimethylaminopyridine was added, followed by $18.4 \mathrm{~g}(49.9 \mathrm{mmol})$ of $4,4^{\prime}, 4^{\prime \prime}$-trimethoxytrityl chloride. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ until tle indicated complete reaction (approx. 1 h). The reaction solution was diluted with 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with a 1 M citric acid solution (3×50 mL), a saturated NaHCO_{3} solution ($3 \times 50 \mathrm{~mL}$), and brine ($1 \times 25 \mathrm{~mL}$). The aqueous layers were separately back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The product was purified by chromatorgaphy eluting with $4: 1$ ethyl acetate/hexanes to afford 20.2 g (98\%) of the title compound as a white foam. IR: $3394,2955,1608,1508,1251,1176,1038,830 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta-0.20(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 9 \mathrm{H}), 4.24(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.3), 4.46(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=1.7,6.1), 6.07(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 1.7), $6.84(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9), 7.46(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9) .{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta-4.7,-4.6$, $18.0,25.7,43.5,55.1,73.5,76.7,86.2,112.9,127.7,130.4,137.1,137.2,158.5$. Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{SiBr}$: C, 63.35 ; H, 6.61. Found: C, 63.23; H, 6.67.
Compound 3. Compound $2(20.2 \mathrm{~g}, 32.3 \mathrm{mmol})$ was dissolved in 50 mL of THF and 50 mL of a 1 M solution of TBAF in THF was added. The reaction solution was stirred at rt until tlc indicated completion, and then 100 mL of diethyl ether was added and the reaction solution was extracted with water ($3 \times 25 \mathrm{~mL}$) and brine ($1 \times 25 \mathrm{~mL}$). The aqueous layers were back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 10 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chromatography eluting with $9: 1$ hexanes/ethyl acetate affords $15.4 \mathrm{~g}(94 \%)$ of the title compound as a white foamy solid. IR: 3388, 1607, 1507, $1249,1176,1033,830 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.0(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) 1.75$ $(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.0,7.0) 3.79(\mathrm{~s}, 9 \mathrm{H}), 4.25(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 4.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.6) 6.16(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9), 7.47(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 42.9,55.1,73.4$, $77.5,86.5,113.0,129.1,130.3,136.9,137.2,158.4$. Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{Br}$: C , 63.41 ; H, 5.32. Found: C, 63.14; H, 5.54.

Compound 5. A round-bottomed flask was charged with 20 mL of THF, and the solvent was chilled to -78 C . To the flask was added 13.2 mL of a 1.5 M solution of tertbutyllithium (19.8 mmol) in pentane. A solution of 5.9 g (9.4 mmol) of compound 2 ($8: 1$ cis/trans) dissolved in 20 mL of THF was then added dropwise via syringe pump. After the addition was complete, 0.84 g (9.4 mmol) of copper cyanide was added and the solution was warmed to $-40^{\circ} \mathrm{C}$ for 15 min , at which time the solution became
homogeneous. The reaction solution was re-chilled to $-78^{\circ} \mathrm{C}$ and a solution of 2.0 g (10 mmol) of (Z)-1,3-dibromo-1-propene dissolved in 10 mL of THF was added dropwise via syringe pump. The reaction solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then the cooling bath was removed and the reaction solution was allowed to warm to $-20^{\circ} \mathrm{C}$. The reaction was quenched by the addition of 30 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and 50 mL of diethyl ether was added. The aqueous layer was separated, and the organic layer was washed with 30 mL of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and 30 mL of brine. The combined aqueous layers were back-extracted with ether ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chromatography eluting with a gradient of 9:1 hexanes/ethyl acetate increasing to $4: 1$ hexanes/ethyl acetate afforded $3.2 \mathrm{~g}(51 \%)$ of a white foamy solid. The solid ($3.00 \mathrm{~g}, 4.44 \mathrm{mmol}$) was then dissolved in 10 mL of THF and treated with 11 mL of a 1 M solution of TBAF in THF (11 mmol). The reaction mixture was stirred at it until tlc indicated completion (approx. 4 h) and then 20 mL of ether was added and the reaction solution was extracted with water $(3 \times 10 \mathrm{~mL})$ and brine (1×10 $\mathrm{mL})$. The combined aqueous layers were back-extracted with ether ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.
Chromatography eluting with a gradient of 19:1 hexanes/ethyl acetate increasing to 9:1 hexanes/ethyl acetate afforded $1.8 \mathrm{~g}(73 \%)$ of the title compound as a white foam. \mathbb{R} : $3406,2835,1607,1507,1249,1176,1035,829 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 1.25(\mathrm{~m}$, $1 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.6,6.7), 3.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 17.7, 6.3), 3.79 (s, 9H), 4.33 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}$), $4.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.0), 5.57(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{dt}$, $1 \mathrm{H}, \mathrm{J}=7.0,7.0), 6.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.0), 6.83(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9), 7.39(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.9)$. ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 29.4,44.1,55.2,73.8,77.2,86.3,109.0,113.0,130.2,130.3$, 131.9, 137.4, 146.3, 158.4. Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Br}$: C, 65.34; H, 5.67. Found: C, 65.29; H, 5.77.
Sodium 1-(benzenesulfonamido)-6-heptenoate. In a 500 mL round-bottomed flask 6-heptenioc acid ${ }^{5}$ ($5.25 \mathrm{~g}, 41.0 \mathrm{mmol}$) was dissolved in 160 mL of THF and the solution was chilled to $-15^{\circ} \mathrm{C} . N$-methylmorpholine ($3.93 \mathrm{~g}, 38.9 \mathrm{mmol}$) was added, followed by isobutyl chloroformate ($5.32 \mathrm{~g}, 38.9 \mathrm{mmol}$) at a dropwise rate over 15 min . When the addition was complete, a portion of N, N-dimethylaminopyridine $(0.24 \mathrm{~g}, 2.0$ mmol) was added, followed by a solution of benzenesulfonamide ($6.13 \mathrm{~g}, 38.9 \mathrm{mmol}$) and N -methylmorpholine ($3.93 \mathrm{~g}, 38.9 \mathrm{mmol}$) dissolved in 40 mL of DMF. The cooling bath was removed, and the solution was stirred for 2 h . The reaction mixture was poured into 40 mL of a $1 \mathrm{M} \mathrm{NaHSO}_{4}$ solution in a separatory funnel and the organic layer was separated. The aqueous layer was extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$ and the combined organic layers were extracted once with 20 mL of a saturated NaHCO_{3} solution and once with 20 mL of brine. The aqueous layers were back-extracted with 10 mL of ethyl acetate and the conbined organic layers wre dried and concentrated in vacuo. Chromatography eluting with 3:1:1 hexanes/ethyl acetate/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ removes unreacted benzenesulfonamide. Bulb to bulb distillation at 0.05 torr provides unreacted carboxylic acid ($1.5 \mathrm{~g}, 29 \%$, b.p. $80-100^{\circ} \mathrm{C}$, uncorrected) followed by $7.00 \mathrm{~g}(67 \%)$ of $1-$ benzenesulfonamido-6-heptenoic acid, b.p. $120-140^{\circ} \mathrm{C}$. The purified N-acylsulfonamide ($7.00 \mathrm{~g}, 26.2 \mathrm{mmol}$) is dissolved in 100 mL of $\mathrm{CH}_{3} \mathrm{OH}$, and $0.500 \mathrm{~g}(21.8 \mathrm{mmol})$ of sodium is added in small pieces. After the metal has completely dissolved, the solvent is removed in vacuo to yield a white powder. Trituration with dry toluene until no more sulfonamide is visible by tlc gives $6.22 \mathrm{~g}(82 \%)$ of the analytically pure sodium salt. IR (KBr): 2929, 1602, 1446, 1377, 1233, 1136, 1093, $853 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 1.19$ (quint, $2 \mathrm{H}, \mathrm{J}=7.5$), 1.38 (quint, $2 \mathrm{H}, \mathrm{J}=7.5$), 1.90 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.9$), $2.06(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3), 4.8-5.0(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.82(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4), 7.67(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=7.4), 8.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.9){ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta 29.5,32.8,38.0$,
(5) Although 6-heptenoic acid is commercially available from Aldrich, it is relatively expensive ($\sim \$ 45 / \mathrm{g}$). It can easily be prepared from 7 -octene-1,2-diol $(\$ 1.50 / \mathrm{g})$ by sodium periodate cleavage followed by Jones oxidation and distillation in 70% overall yield.
$42.2,119.8,132.0,133.5,136.9,143.7,147.8,180.0$. Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NNaO}_{3} \mathrm{~S}: ~ \mathrm{C}, 53.97 ; \mathrm{H}, 5.57$; N, 4.84. Found: C, $54.00 ; \mathrm{H}, 5.60 ; \mathrm{N}, 4.90$. Bromopolystyrene ($\mathbf{1 . 0} \mathbf{~ m m o l} / \mathrm{g}$): 30 g of Bio-Rad SX-1 beads are placed in a 500 mL round-bottomed flask and solvated in 300 mL of dry CCl_{4}. Thallium(III) acetate (1.00 $\mathrm{g}, 2.62 \mathrm{mmol}$) was added and the flask was covered with aluminum foil and the reaction mixture was stirred 30 min at rt . CAUTION: Thallium acetate is a known poison. Handle only using proper safety precautions in a well ventilated hood. The flask was placed on a heating mantle and $5.75 \mathrm{~g}(36 \mathrm{mmol})$ of bromine was added via syringe. The slurry was heated to reflux, and stirred at that temperature for 1.5 h. The slurry typically loses the red-brown color of bromine after about 10 min at reflux, and remains a dark reddish-brown until workup. The slurry was then allowed to cool to rt, and the beads were isolated by filtration on a coarse 600 mL glass fritted funnel. The beads were then washed with 1:1 acetone/water (3x), acetone (3x), benzene ($3 x$) and methanol (3x) and dried in vacuo to yield 35.5 g (99\%) of dry beads.
Chlorodibutylsilyl-derived polystyrene: Bromopolystyrene beads $(10 \mathrm{~g}, 1.0$ $\mathrm{mmol} / \mathrm{g}, 20 \mathrm{mmol}$) were placed in a flask with a sidearm separated by a course filter. The beads were solvated in 100 mL of dry toluene, and 20 ml of $2.5 \mathrm{M} \mathrm{n-BuLi}$ in hexanes was added. The slurry was heated to $60^{\circ} \mathrm{C}$ for 3 h and then allowed to cool to rt . The reaction solvent was drained through the sidearm, and the beads were washed with dry toluene (3 x) and dry THF (3-5x, until the solvent drained was no longer bright yellow). The last portion of THF was removed, and the flask was placed in a bath at $-20^{\circ} \mathrm{C}$. Enough dry THF to slurry the beads (approx. 30 mL) was added, followed by dichlorodibutylsilane ($8.53 \mathrm{~g}, 0.0400 \mathrm{~mol}$) distilled from sodium carbonate. The cooling bath was removed, and the reaction mixture was stirred for 2 h . The beads were then washed with distilled THF (3 x), and distilled ether (3 x) and dried with a stream of dry nitrogen. The chlorodibutylsilyl-derivatized beads are very sensitive to any moisture. For this reason, the loading step is typically performed without fully drying the beads or removing them from the nitrogen atmosphere.
Loading dibutylsilyl-derived polystyrene beads: Chlorodibutylsilyl-derivatized beads ($7.0 \mathrm{~g}, 7.0 \mathrm{mmol}$) prepared above were swollen in 70 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Imidazole $(1.42 \mathrm{~g}, 21.0 \mathrm{mmol})$ was added followed by $1.8 \mathrm{~g}(3.3 \mathrm{mmol})$ of compound 5 . The slurry was stirred at rt for 2 h , and then methanol (7 mL) was added and the slurry was stirred an additional 15 min . The solvents were then removed by filtration and the beads were washed with DMF/water 1:1 (3x), DMF (3x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$, and ether (3 x) and dried first by flushing with N_{2} and then in vacuo (0.05 torr). TMT quantitation ($\varepsilon_{484}=87100$) gives a loading level of $0.35 \mathrm{mmol} / \mathrm{g}$ of beads, and 7.42 g of beads are recovered (80% loading efficiency). The alcohol $\mathbf{3}$ was loaded in an identical manner.

TMT Quantitation

The procedure is very similar to the DMT quantitation, described by Caruthers and coworkers, Meth. Enzymol. 1987, 154, 287-313. A $5-10 \mathrm{mg}$ portion of resin 3 or 5 is weighed into a 10.0 mL volumetric flask. The TMT cation is released by addition of 10.0 mL of 3% trichloroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The bright orange solution (100 mL) is diluted to 4.0 mL with a 0.1 M solution of p-toluenesulfonic acid monohydrate in acetonitrile, and the resulting solution is analyzed spectrophotometrically at 484 nm . The resin loading is calculated by the following equation:
Loading $(\mathrm{mmol} / \mathrm{g})=\quad \frac{\text { Absorbance }}{217.75 \times \text { (amount of resin in grams) }}$
The extinction coefficient of the TMT cation was determined by a 5-point titration curve collecting two repetitions per point with a 0.1 M solution of p-toluenesulfonic acid monohydrate in acetonitrile, and was determined to be 87,100 at 484 nm with a R value of 0.9999.

Solid-phase synthesis of prostaglandins. TMT Cleavage. Polystyrene beads $(1.0 \mathrm{~g}, 0.46 \mathrm{mmol} / \mathrm{g})$ loaded with the core 3 or 5 are placed in a fritted syringe and
solvated in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent is removed, and 10 mL of a 1 M solution of formic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added. The solution is removed after 1.0 min and the beads are quickly rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. This procedure is repeated 4 times for a total HCOOH contact time of 5 min . After the last subjection the beads are rinsed with DMF (3 x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$, and then THF (3x) and taken directly to the next step.
Suzuki-Miyuara coupling. An alkene (2.5 mmol) is dissolved in 10 mL of THF and treated with $0.28 \mathrm{~g}(2.3 \mathrm{mmol})$ of $9-\mathrm{BBN}$. The reaction solution is stirred for 6 h at rt . Separately, 1 g of resin 7 or $11(0.46 \mathrm{mmol} / \mathrm{g}, 0.46 \mathrm{mmol})$ is placed in a 50 mL roundbottomed flask. The solution of the hydroborated alkene is added via cannula. A 2.5 mL portion of $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ is then degassed by bubbling nitrogen through the solution for 10 min , and then the degassed solution is added to the solvated beads. The flask is then charged with 75 mg of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.065 \mathrm{mmol})$ and a condenser is placed on the flask. The solution is heated to reflux and stirred at that temperature for 12 h . The slurry is allowed to cool, and then the beads are washed with DMF/water (3x), DMF (3x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x), and ether (3 x) and dried in vacuo.
Oxidation. Support-bound alcohol beads from above ($1.0 \mathrm{~g}, 0.46 \mathrm{mmol} / \mathrm{g}, 0.46 \mathrm{mmol}$) are placed in a 50 mL round-bottomed flask and solvated in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{A} 0.6 \mathrm{~g}$ (1.41 mmol) portion of Dess-Martin periodinane is then added and a condenser is placed on the flask. The slurry is heated to reflux for 2 h , and then allowed to cool to rt. The beads are then washed with DMF (3x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$, and ether (3 x) and dried in vacuo.
Cuprate addition: A solution of 1.00 mmol of an 1 -alkyne in 5 mL of THF is treated with $0.257 \mathrm{~g}(1.00 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$. After 20 min at rt , the homogeneous solution is chilled to $-78{ }^{\circ} \mathrm{C}$ and treated with 2.0 mmol of a 1.4 M solution of methyllithium in diethyl ether. After 15 min copper (I) cyanide ($89.6 \mathrm{mg}, 1.00 \mathrm{mmol}$) is added, followed by an additional 1.0 mmol of 1.4 M methyllithium in ether. The solution is warmed to $-20^{\circ} \mathrm{C}$ for 15 min , at which time it again becomes homogeneous, and then the solution is rechilled to $78^{\circ} \mathrm{C}$. In a separate flask, support-bound enone beads 8 or 12 from above $(0.40 \mathrm{~g}, 0.50$ $\mathrm{mmol} / \mathrm{g}, 0.20 \mathrm{mmol}$) are solvated in 3 mL of THF. The slurry is chilled to $-78^{\circ} \mathrm{C}$ and the chilled cuprate solution is added to the beads by teflon cannula. The reaction slurry is stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then warmed to $-20^{\circ} \mathrm{C}$ for 15 min to ensure complete reaction. The solution is then re-chilled to $-78^{\circ} \mathrm{C}$ and the reaction is quenched by the addition of 10 mL of a chilled $\left(-78^{\circ} \mathrm{C}\right) 10 \%$ solution of acetic acid in THF. The solution is removed and the beads are rinsed with 1:1 DMF/water (3x), DMF (3 x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ether (3x).
Optional Reduction: Resin ($0.40 \mathrm{~g}, 0.46 \mathrm{mmol} / \mathrm{g}, 0.18 \mathrm{mmol}$) is swollen in 4.0 mL of THF. The slurry is chilled to $-78^{\circ} \mathrm{C}$ and 1.0 mL of a 1 M solution of L-selectride in THF is added. The slurry is stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then quenched with 10 mL of a prechilled 10% solution of acetic acid in THF. The solution is removed and the beads are rinsed with 1:1 DMF/water (3x), DMF (3x) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ether (3x).
Activation of N-acylculfonamide resin: $\operatorname{Resin}(0.40 \mathrm{~g}, 0.46 \mathrm{mmol} / \mathrm{g}, 0.18 \mathrm{mmol})$ is solvated in 4 mL of dry N -methylpyrrolidone. Bromoacetonitrile is run through a plug of activated basic alumina, and then $0.48 \mathrm{~g}(4.0 \mathrm{mmol})$ of bromoacetonitrile is added to the resin slurry with slow stirring. Diisopropylethylamine ($0.26 \mathrm{~g}, 2 \mathrm{mmol}$) is then added, and the reaction slurry is slowly stirred for 6 h . The solution is removed and the beads are rinsed with NMP (3x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ether (3 x).
Displacement of the activated sulfonamide: The resin $(0.20 \mathrm{~g}, 0.45 \mathrm{mmol} / \mathrm{g}$, 0.090 mmol) is solvated in 2.0 mL of dry NMP. For amines: 2.0 mmol of an amine is added and the slurry is stirred for 15 min at rt . The solution is removed and the beads are rinsed with DMF (3x), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ether (3x). For alcohols: 4.0 mmol of an alcohol and 33 mg (0.27 mmol) of N, N-dimethylaminopyridine are added. The reaction slurry is heated to $50^{\circ} \mathrm{C}$ and stirred for 6 h (methanol and ethanol) or 8 h (isopropanol). The solution is removed and the beads are rinsed with DMF (3 x) , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ether (3 x). Cleavage: Beads ($0.20 \mathrm{~g}, 0.45 \mathrm{mmol} / \mathrm{g}, 0.090 \mathrm{mmol}$) are swollen in THF in a disposable glass vial. HF/pyridine solution ($17.5 \% \mathrm{HF}, 0.5 \mathrm{~mL}$) is added, and the slurry
is stirred at rt for 2 h . The beads are separated from the solution and washed with 2 additional 1 mL portions of THF. The combined THF layers are diluted with 5 mL of ethyl acetate and the organic layer is washed with a saturated bicarbonate solution ($2 \times 5 \mathrm{~mL}$) and brine ($1 \times 5 \mathrm{~mL}$). The combined aqueous layers are back-extracted with $3 \times 2 \mathrm{~mL}$ of ethyl acetate, and the combined organic layers are dried and concentrated. Chromatography eluting with a gradient of $3: 2$ ethyl acetate/hexanes increasing to $4: 1$ ethyl acetate/hexanes provides the E series prostaglandins and chromatography eluting with a gradient of $4: 1$ ethylacetate/hexanes increasing to pure ethyl acetate provides the F series prostaglandins. Physical properties of prostaglandins in table 1.
For most of the prostaglandins isolated, the alcohol OH peaks were very broad or rapidly exchanged with water in the solvent, and are not reported except where noted in entry 10 . Entry 1. IR: $3386,2930,1744,1120,1078 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 0.88(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{J}=6.8), 1.20-1.45(\mathrm{~m}, 7 \mathrm{H}), 1.45-1.61(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.3), 2.07(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}$ $=11.6,5.8), 2.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.5,9.9), 2.30-2.42(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=19.6$, $7.4,1.2$), $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4), 4.00-4.10(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.32(\mathrm{~m}, 1 \mathrm{H})$, $5.36-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,8.2), 5.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.5) .{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 14.0,22.6,25.0,25.2,26.0,27.1,29.2,31.7,37.3,46.1,53.7$, $54.6,58.5,72.0,72.7,73.0,125.6,131.4,131.9,136.9,214.2$. HRMS (FAB, mnitrobenzyl alcohol +LiCl$)$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Li}(\mathrm{M}+\mathrm{Li}) 359.277364$, found 359.277100. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}: \mathrm{C}, 71.55 ; \mathrm{H}, 10.29$. Found: C, $71.45 ; \mathrm{H}$, 10.08 .

Entry 2. IR 3374, 2228, 2857, 1743, 1077, 1154, $968 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz) δ $0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8), 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9), 1.20-1.35(\mathrm{~m}, 14 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.52-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1), 2.08(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=12.2,5.4), 2.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $10.0,10.0), 2.33(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.2,7.2), 4.03(\mathrm{q}$, $1 \mathrm{H}, \mathrm{J}=8.8), 4.08(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.9), 5.20-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=15.2,8.8$), 5.62 (dd, $1 \mathrm{H}, \mathrm{J}=15.2,7.7$). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 14.0,14.1$, $22.6,22.6,24.9,25.2,27.4,29.0,29.5,31.7,31.8,37.3,46.1,53.8,54.7,71.9,73.3$, 125.0, 132.1, 132.4, 136.8, 214.2. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{3}: \mathrm{C}, 75.38 ; \mathrm{H}, 10.93$. Found: C, 75.44; H, 10.70 .
Entry 3. This compound was isolated as an approximate 1:1 mixture of diastereomers at the C_{15} hydroxyl group. IR: 3438, 2932, 2862, 1743, 1118, $1082 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}) \delta 0.76(\mathrm{~m}, 18 \mathrm{H}), 1.15-1.40(\mathrm{~m}, 14 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.90-2.25(\mathrm{~m}, 10 \mathrm{H})$, $2.35-2.24(\mathrm{~m}, 6 \mathrm{H}), 2.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.6), 2.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.6), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 3.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.7), 4.03(\mathrm{q}$, $1 \mathrm{H}, \mathrm{J}=7.8$), $4.06(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.5), 5.24-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.36-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.57$ (dd, $1 \mathrm{H}, \mathrm{J}=15.2,9.0$), 5.60 (dd, $1 \mathrm{H}, \mathrm{J}=15.2,9.0$), 5.71 (dd, $1 \mathrm{H}, \mathrm{J}=15.2,6.8$), 5.73 (dd, $1 \mathrm{H}, \mathrm{J}=15.2,6.8$). ${ }^{13} \mathrm{C}$ NMR (100 HMz) $\delta 14.1,22.7,22.8,23.0,23.7,25.0,25.1$, $25.9,26.0,27.1,29.2,29.2,37.1,37.4,38.6,38.7,46.2,46.4,53.3,53.8,54.6,54.7$, $58.5,72.0,72.2,72.7,72.7,79.0,79.9,125.6,125.6,131.1,131.9,132.0,133.5$, 133.8, 214.3. HRMS (FAB, m-nitrobenzyl alcohol +LiCl) calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Li}(\mathrm{M}+\mathrm{Li})$ 387.308665, found 387.308500 .

Entry 4. IR: $3375,2929,2858,1457,1120,969 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.88(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=6.6), 1.23-1.53(\mathrm{~m}, 9 \mathrm{H}), 1.53-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{dd}, 1 \mathrm{H}, 14.7,3.0)$, 2.23$2.28(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{H}), 3.90(\mathrm{~m}, \mathrm{br}$, $1 \mathrm{H}), 4.04(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.0), 4.15(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H}), 5.38-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 15.2, 7.4), 5.54 (dd, $1 \mathrm{H}, 15.2,7.4$). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 14.0,22.6,25.2,25.5$, $26.1,27.0,29.1,31.7,37.2,42.8,50.1,55.7,58.5,72.7,72.7,73.1,77.7,128.2$, 130.6, 132.9, 135.4. HRMS (FAB, m-nitrobenzyl alcohol) calcd. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 355.284835, found 355.284710. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4}$: C, 71.14; $\mathrm{H}, 10.80$. Found: C, 71.01 ; H, 10.59 .
Entry 5. IR: $3367,2925,2856,1738,1075 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $500(\mathrm{MHz}) \delta 0.85(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $=7.1), 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6), 1.14-1.35(\mathrm{~m}, 13 \mathrm{H}), 1.35-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.66(\mathrm{~m}$, $2 \mathrm{H}), 1.97(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=12.1,6.0), 2.20(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,10.0), 2.31(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=12.1$,
8.9), 2.70 (dd, $1 \mathrm{H}, \mathrm{J}=18.4,7.4$), $2.92(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 4.00(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.6), 4.07(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{J}=7.1$), 5.51 (dd, $1 \mathrm{H}, \mathrm{J}=15.2,8.9$), 5.62 (dd, $1 \mathrm{H}, \mathrm{J}=15.2,7.8$). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz})$ S $14.0,14.0,22.6,25.1,26.8,27.8,29.4,29.7,31.6,31.6,37.2,45.8,54.6$, $55.0,71.8,73.3,132.5,136.6,214.8$. HRMS (FAB, m-nitrobenzyl alcohol +LiCl) calcd. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Li}(\mathrm{M}+\mathrm{Li})$ 317.266800, found 317.266370.
Entry 6. IR: $3354,2927,2856,1458,1339,1078,971,750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta 0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7), 0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8), 1.20-1.60(\mathrm{~m}, 18 \mathrm{H}), 2.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=14.7,3.1), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.65(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 4.09(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=$ 6.9), $4.22(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 5.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,8.9), 5.58(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.6) .{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 14.0,14.0,22.6,22.6,25.1,28.0,28.1,29.6,31.7,31.8,37.3$, $43.0,50.6,56.3,72.6,73.6,78.6,132.3,134.4$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3}: \mathrm{C}, 73.03$; $\mathrm{H}, 11.61$. Found: C, 72.82 ; H, 11.99 .
Entry 7. IR: $3374,2931,2858,1735,1450,1345,1170,1087 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta 0.86(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8), 1.15-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.97-2.05(\mathrm{~m}$, $1 \mathrm{H}), 2.17-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.32-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.6,7.3), 4.00-4.15$ $(\mathrm{m}, 2 \mathrm{H}), 5.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,8.7), 5.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.1), 7.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 7.6), $7.62(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4), 8.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}) \delta 14.0,22.6$, $24.1,25.1,26.1,27.2,28.3,28.8,31.6,36.2,37.1,46.0,54.3,54.4,71.8,73.0$, 128.1, 128.9, 131.6, 133.8, 136.7, 138.8, 171.8, 215.7. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{~S}$: C, 63.26; H, 7.96; N, 2.84. Found: C, 63.01; H, 7.81; N, 2.83.
Entry 8. IR: $3351,2932,2858,1739,1652,1545,1078 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta(300 \mathrm{MHz})$ $0.87(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=16.1), 1.15-1.65(\mathrm{~m}, 17 \mathrm{H}), 1.96(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=12.0,6.0), 2.13-2.25(\mathrm{~m}$, $3 \mathrm{H}), 2.27-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.7,7.1), 4.00(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.3), 4.05-4.10$ $(\mathrm{m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.7), 5.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,8.5), 5.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2$, $7.1), 5.90(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 14.0,22.6,25.1$, $25.4,26.3,27.5,28.8,29.1,31.7,36.6,37.2,43.6,45.9,54.3,54.6,71.8,71.8$, $127.5,127.8,128.7,131.5,136.9,138.2,173.1,215.0$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{4}$: C, 73.10; H, 9.32; N, 3.16. Found: C, 73.34, H, 9.12; N, 3.34.
Entry 9. IR : 3396, 2930, 2857, 1738, 1464, $1161 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.88$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8), 1.24(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=14.6), 1.23-1.38(\mathrm{~m}, 11 \mathrm{H}), 1.42-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.97$ (dt, $1 \mathrm{H}, \mathrm{J}=12.0,6.0$), 2.20 (dd, $1 \mathrm{H}, \mathrm{J}=18.5,9.9$), $2.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5$), $2.32(\mathrm{dt}, 1 \mathrm{H}$, $\mathrm{J}=12.1,9.0), 2.70(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 4.02(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.8), 4.50(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ 7.1), $5.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,8.9), 5.64(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.3) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}) \delta$ $13.9,14.2,22.5,24.8,25.1,26.5,27.6,28.8,29.3,31.6,34.2,37.2,45.8,54.4,54.8$, $60.2,71.8,73.0,131.9,136.7,173.8,214.6$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{5}: \mathrm{C}, 69.07 ; \mathrm{H}$, 10.01. Found, C, 69.37; H, 9.74.

Entry 10. IR: $3371,2929.5,2857,1739,1169.9 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.88(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=6.7), 1.20-1.50(\mathrm{~m}, 14 \mathrm{H}), 1.52-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.8,3.0)$, $1.88(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5), 2.34(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}(\mathrm{OH})), 2.45$ (s, br, $1 \mathrm{H}, \mathrm{OH})$), $3.20(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}(\mathrm{OH})$), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, \mathrm{br} 1 \mathrm{H}), 4.04(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=$ 6.7), 4.16 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}$), $4.55(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,8.9), 5.52(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.2) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 14.0,22.6,24.8,25.2,27.6,27.7,29.0,29.5,31.7,34.0,37.2$, $42.9,50.1,51.5,56.2,73.0,73.2,78.0,133.2,135.0,174.4$. HRMS (FAB, mnitrobenzyl alcohol +LiCl) calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Li}(\mathrm{M}+\mathrm{Li}) 377.287929$, found 377.287210.

Entry 11. IR: 3363, 2431, 2857, 1733, 1467, $1109 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.88$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9), 1.20(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.2), 1.23-1.34(\mathrm{~m}, 11 \mathrm{H}), 1.34-1.5(\mathrm{~m}, 4 \mathrm{H}), 1.5-1.64$ $(\mathrm{m}, 4 \mathrm{H}), 1.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.9,3.3), 2.17-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5), 3.87-$ $3.92(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.8), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.98$ (septet, $1 \mathrm{H}, \mathrm{J}=6.3), 5.44(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=15.2,9.0$), $5.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,7.4) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz)} \delta 14.0,21.8$, $22.6,24.8,25.2,27.6,27.8,28.9,29.5,31.7,34.6,37.2,42.9,50.1,56.2,67.4,73.0$, 73.2, 78.1, 133.2, 135.0, 173.5. HRMS (FAB, m-nitrobenzyl alcohol +LiCl) calcd. for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Li}(\mathrm{M}+\mathrm{Li}) 405.319229$, found 405.319650 .

Proton Starting Parameters. 10/06/92 RN rev.5/9/94.

Carbon starting parameters, anp probe. 12/7/88 fn.

W-83

I

13 C 5 mm BB PROBE 5/9/97 RN

 $\overbrace{i}^{m i n}$

Proton Starting parameters, 11/29/94 RN

 ㅇ․․․․ . | \because |
| :--- |
| $\div 8$ |
| 0 |
0

 $\stackrel{\infty}{\stackrel{\infty}{m}}$ $\stackrel{\infty}{\infty}$
 $\stackrel{\square}{\square}$

평

LJBTNP. 112
AU PROG:
POWGATE.
DATE 2-10-96
TIME 11:56
SA.NA SEP27
SA. NO C115 137
SFO 161.972
$\begin{array}{lr}01 & 6222.37 \\ \text { SI } & 65536\end{array}$
TD 65536
SW 31250.000
$\mathrm{HZ} / \mathrm{PT} \quad .954$
$\begin{array}{ll}\mathrm{PW} & 0.0 \\ \mathrm{RD} & 0.0\end{array}$
$\begin{array}{ll}\text { RD } & 0.0 \\ \text { AQ } & 1.049\end{array}$
$\begin{array}{lr}\text { RG } & 1024 \\ \text { NS } & 44\end{array}$
$02 \quad \begin{aligned} & 5900.000 \\ & 17 \mathrm{HCPD}\end{aligned}$
DP 17 H CPD
$\begin{array}{cc}\text { LB } & 0.0 \\ \text { F1 } & 137.905 \mathrm{P} \\ \text { FE } & -1.234 \mathrm{P}\end{array}$
$\mathrm{FZ} / \mathrm{CM} 704.238 \mathrm{P}$ PPM/CM 4.348 SR 12417.94

$(\mathrm{mpd} \mid 18 a($ enty 7$)$

兵

Proton Starting Parameters, 10/06/92 RN rev.5/9/94.

INTENSITY
[Hz]
2205.143
[PPM]
7.3472

1
2
3
4
5
6 ADDRESS
 2200.048 2198.261 2194. 176 2191.315 2185.087 2180.761 2178.297 2173.121 1766.403 1709.177 1702.122 1693.900 1686.868 1670.044 1661.500 1654.728 1646.281 1327. 268
1.12

7.3302	1.12
7.3243	2.22

7.3107	2.82
7.305	

 \(7.3011 \quad 5.74\)
 \(7.2804 \quad 3.63\)
 \(7.2660 \quad 8.79\)
 \(\begin{array}{lr}7.2578 & 10.01 \\ 7.2405 & 4.23\end{array}\)
 \(\begin{array}{ll}5.2405 & 4.23 \\ 5.6947 & 1.27\end{array}\)
 \(\begin{array}{ll}5.6712 & 1.02 \\ 5.6438 & 2.13\end{array}\)
 \(5.6204 \quad 2.40\)
 \(5.5643 \quad 2.08\)
 \(5.5359 \quad 1.96\)
 \(5.5133 \quad 1.01\)
 1.01
 1.01
$\begin{array}{ll}5.4852 & 1.01 \\ 4.4223 & 6.05 \\ 4.4034 & 6.44\end{array}$
$\begin{array}{ll}4.4034 & 6.44 \\ 4.1196 & 0.80 \\ 4.1104 & 0.66\end{array}$
$\begin{array}{ll}4.0955 & 0.66 \\ 4.0881\end{array}$
$4.0881 \quad 1.92$
$4.0654 \quad 2.08$
$4.0494 \quad 1.14$
$4.0196 \quad 1.45$
$3.9917 \quad 1.43$
$3.9639 \quad 0.85$
$2.7404 \quad 0.92$
$2.7153 \quad 0.99$
$2.6790 \quad 1.28$
2.65621 .28
$\begin{array}{ll}2.3808 & 0.66 \\ 2.3522 & 1.30\end{array}$
2.34031 .02
$2.3120 \quad 1.66$
$\begin{array}{ll}2.2832 & 0.91 \\ 2.2456 & 1.81\end{array}$
$2.2126 \quad 2.04$
$2.2025 \quad 3.02$
$2.1784 \quad 5.04$
$2.1518 \quad 5.02$
$2.0331 \quad 3.51$
1.9833 . 1.38
1.96231 .26
$1.9423 \quad 1.27$
$\begin{array}{ll}1.6117 & 2.95 \\ 1.5867 & 3.27\end{array}$
$1.4858 \quad 2.07$
$1.2761 \quad 14.40$
$1.2484 \quad 8.99$
$1.2251 \quad 4.16$
$0.9233 \quad 0.47$
$0.8696 \quad 8.08$
$0.8474 \quad 3.25$

13C 5mm BB PROBE 5／9／97 RN

Nロロ品 $\underset{\mid}{\sim}$
 へヘレズ H1／

 ソ

$D U=u, ~ U S E R=$ drew, NAME=pgeoet2, EXPNO=1, PROCNO=1
$\mathrm{F} 1=2.840 \mathrm{ppm}, \mathrm{F} 2=0.767 \mathrm{ppm}, \mathrm{MI}=0.00 \mathrm{~cm}, \mathrm{MAXI}=19.00 \mathrm{~cm}, \mathrm{PC}=5.000$
 \# ADDRESS FREQUENCY INTENSITY
[Hz]
1369.274 1361.792 1350.865 1344.401 1303.841 1274.593
1268.590
1255.330
1249.426
1177.737
1168.957
1165.716
1160.045
1156.892
1147.997
1143.601
1134.794
1127.293
1119.684
1115.562
1105.679
1097.092
1087.227
1048.662 997.369
991.836
985.837
979.796
973.899
952.070
795.616
788.565
781.023
773.789
757.584
750.810
747.736
740.977
737.483
732.887
723.977
718.731
713.152
670.159
664.710
644.129
640.892
632.189
629.478
626.466
621.636
619.317
612.171
597.561
446.020
439.229

0.86
0.90
0.78
0.66
0.09
0.07
0.08
0.38
0.71
0.48
0.46
0.87
0.45
1.81
2.80
1.09
0.99
0.89
0.89
0.29
0.61
0.55
0.54
0.32
0.77
1.42
1.68
0.57
0.43
0.54
0.58
0.64
0.57
0.38
0.23
0.85
0.92
3.69
2.97
3.21
1.49
9.00
4.26
0.19
4.67

13C 5mm BB PROBE 5/9/97 RN
wad
$\stackrel{\stackrel{\sim}{\infty}}{\stackrel{\sim}{\infty}}$

DU=u, USER=drew, NAME=pgfome2, EXPNO=1, PROCNO=1
$\mathrm{F} 1=14.285 \mathrm{ppm}, \mathrm{F} 2=-5.710 \mathrm{ppm}, \mathrm{MI}=0.00 \mathrm{~cm}, \mathrm{MAXI}=19.00 \mathrm{~cm}, \mathrm{PC}=5.000$
\# ADDRESS
[Hz]
3631.173
2773.431
2766.194
2758.209
2750.925
2727.541
2718.662
2712.322
2703.445
2082.468
2029.137
2022.505
2015.659
2008.955
1958.287
1900.403
1864.456
1828.314
1753.729
1601.642
1417.947
1223.530
1170.924
1151.773
1144.312
1136.815
1128.294
1124.141
1118.616
1112.313
1107.234
1104.457
1097.573
1092.380
1089.647
1084.577
940.152
876.277
873.294
861.431
858.638
801.453
794.170
735.160
727.330
715.963
711.968
705.481
701.483
695.543
691.416
671.717
644.943
464.593
446.307
439.613

INTENSITY
[PPM]
7.2605
1.42
5.5454
0.38
5.5309
5.5150
5.5004
5.4537
0.71
5.4359
5.4232
5.4055
0.76
0.69
0.65
0.35
$4.1639 \quad 0.54$
$4.0572 \quad 0.20$
$4.0440 \quad 0.57$
$4.0303 \quad 0.58$
$4.0169 \quad 0.23$
$\begin{array}{ll}3.9156 & 0.39 \\ 3.7998 & 0.05\end{array}$
$\begin{array}{ll}3.7998 & 0.05 \\ 3.7279 & 0.11\end{array}$
$\begin{array}{ll}3.6557 & 9.00 \\ 3.5065 & 0.05\end{array}$
$3.2025 \quad 0.31$
$2.8352 \quad 0.04$
$2.4464 \quad 0.35$
$2.3412 \quad 0.39$
$2.3029 \quad 1.16$
$2.2880 \quad 2.15$
$2.2730 \quad 1.48$
$2.2560 \quad 0.41$
$2.2477 \quad 0.30$
$2.2367 \quad 0.26$
$\begin{array}{ll}2.2240 & 0.27 \\ 2.2139 & 0.30\end{array}$
$2.2083 \quad 0.30$
$2.1946 \quad 0.39$
$2.1842 \quad 0.35$
$2.1787 \quad 0.35$
$2.1686 \quad 0.30$
$1.8798 \quad 0.94$
$1.7521 \quad 0.45$
$\begin{array}{ll}1.7461 & 0.46 \\ 1.7224 & 0.42\end{array}$
$1.7168 \quad 0.43$
$1.6025 \quad 0.77$
$1.5879 \quad 0.74$
$1.4699 \quad 0.58$
1.4543 . 0.46
$1.4316 \quad 0.53$
$1.4236 \quad 0.47$
$1.4106 \quad 0.61$
$1.4026 \quad 0.53$
$1.3907 \quad 0.47$
$1.3825 \quad 0.42$
$1.3431 \quad 0.69$
$1.2896 \quad 3.86$
3.86
0.08
$\begin{array}{ll}0.9289 & 0.08 \\ 0.8924 & 1.02\end{array}$
$0.8790 \quad 2.94$

1

- ppm

[^0]: (1) Coulson, D. R.; Satek, L. C.; Grim S. O. Inorg. Syn., 1972, 121-124.
 (2) Brown, H. C.; G. J. Lynch. J. Org. Chem., 1981, 46, 531-538.
 (3) Bernady, K. F.; Floyd, M., Jr.; Poletto, J. F.; Schaub, R. E.; Weiss, M. J. U. S. Pat. 4123 456, 1978.
 (4) Nakazawa, M.; Sakamoto, Y.; Takahashi, T.; Tomooka, K.; Ishikawa, K.; Nakai, T. Tetrahedron Lett. 1993, 34, 5923-5926.

