The Journal of Organic Chemistry

J. Org. Chem., 1998, 63(25), 9166-9176, DOI:10.1021/jo971579v

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

Copyright © 1998 American Chemical Society

Data Set 2 for β -terrecyclen-3 α -OH (31, R=H)

٦.

Contents

4

0

- 1. Crystal Data
- 2. Data Collection and Reduction
- 3. Solution and Refinement
- 4. Refined Positional Parameters (Table Sla)
- 5. Idealized Positional Parameters (Table S1b)
- 6. Thermal Parameters (Table S2)
- 7. Tables of Bond Distances and Bond Angles
- 8. Observed and Calculated Structure Factors
- 9. Graphics (ORTEP figures)
- 10. References

OH

31

Crystal

Space group PI (C_i^1) No. 2 triclinic

W47N

Conditions limiting possible reflections¹ none

Cell parameters² Molybdenum radiation, $\lambda(K\bar{\alpha}) = 0.71073$ Å range of intensities, 18.8 < 20 < 20.5 ° temperature, t = -75 °C

 \underline{a} = 12.586(2) Å α = 102.98(2)° \underline{b} = 14.167(3) β = 94.59(1) \underline{c} = 15.013(3) γ = 90.12(2)V = 2600(11) Å³

Formula³ $C_{15}H_{24}^{0}$ Formula weight³ 220.36 Formula/unit cell³ 8 Electrons/unit cell, $F_{000} = 976$

Density calculated, $\rho = 1.126 \text{ g/cm}^3$

Linear absorption coefficient^{4a}, $\mu = 0.63 \text{ cm}^{-1}$

Approximate size $0.4 \times 0.5 \times 0.7$ mm

Comments The colorless, translucent equidimensional data crystal was cut from a large parent crystal with poorly developed faces. The excised sample uniformly extinguished plane-polarized light. The crystal was mounted using epoxy to a thin glass fiber with the (1 - 6 - 1) scattering planes roughly normal to the spindle axis. The data crystal was approximately bound by the $\{0 \ 0 \ 1\}, \{1 \ 0 \ 0\}$ and $\{0 \ 1 \ 0\}$ forms. Distances from the crystal center to these facial boundaries were 0.23, 0.24 and 0.35, respectively

Data Collection and Reduction

Instrument Enraf-Nonius CAD4 automated K-axis diffractometer

Radiation Molybdenum $K\alpha_1 = 0.70930$, $K\alpha_2 = 0.71359$, $K\overline{\alpha} = 0.71073$ Å no filters were used, attenuator (factor 20.13) used when required graphite crystal monochromator, 20 monochromator = 12°

Shell	1:	2.0 < 20 <	28.0	of for	<u>+h-k+1</u>				
	2:	28.0	38.0						
	3:	38.0	44.0						
	4:	44.0	48.0	(limited	observed	data,	shell	not	used)

Scan mode ω/θ range ω -scan angle = 1.50[1.00 + 0.35tan(θ)]° rate variable, from 3 to 16°/min

Total background time per scan time 0.33

Standard intensities measured per 5400 sec exposure time 3

Miller indices of standard reflections (-2 - 4 - 4), (-2 - 6 0), (3 - 2)

Orientation test on 3 reflections per 1000 intensities measured

Intensities measured (including standards and non-unique) 6786 (see comments)

Crystal exposure 46.58 hr.

W47N

Intensities processed (excluding standards and non-unique data) 6352

"Observed" reflections $(I > 2.58\sigma(I))^5$ 4767

"Ignorance" factor⁵, p = 0.01

Typical ω -scan width at half maximum < 0.3°

Corrections applied to the data Lorentz and polarization effects^{6a} applied anomalous dispersion effects^{4c,6b} applied crystal decay⁷ not applied, no significant change non-unique data averaged 323 equivalent intensities were measured, internal consistency index, $R_i = 0.029$ absorption^{4a,6c,8a} not applied extinction^{6d,9} not applied questionable reflections deleted none

Comments Data were measured at -75°C. The fourth shell had very few observed data and a minor problem with the cooling stream resulted in some crystal movement, so only the first three data shells were reduced for structure solution and refinement. No other problems were encountered collecting these data and there was no change in the appearance of the sample during the experiment.

W47N

Solution and Refinement

Methods^{10a,6f,11b,6h,6i,11a} direct methods, SHELXS-86; unweighted difference Fourier syntheses, block-diagonal matrix least-squares refinement, SHELX-76

Space group confirmation average values of normalized structure factors and successful refinement of the proposed model in the centric space group

Final agreement factors¹⁵ R = 0.045 $R_{W} = 0.049$ E,k = 2.56,1.00 NO = 4767 NV = 617 (464/block) NP = 961 NALS = 76 NASF = 160

Maximum shift/error in final least squares cycles 4b,4c,6i,16 0.002

Final difference Fourier^{6h,17} $+0.27 > e/Å^3 > -0.28$

Tables

- 1 symmetry¹⁸ no crystallographic symmetry was imposed on the four independent molecules
- 2 positional parameters¹⁹ first tables lists refined coordinates, second table lists "idealized" H atom coordinates (note - hydroxyl and vinyl H atom positions, H1, H5 and H6, were independently refined)

- 1 thermal parameters²¹ non-H atoms were refined with anisotropic thermal coefficients, common isotropic thermal parameters for H atoms of each independent molecule were refined
- 5 selected distances and angles^{22,23a} first table includes refined positions, tables 2 through 5 include all positions for molecules 1 through 4, respectively
- 1 van der Waals contacts^{22,23b} includes all positions, there were 4 strong intermolecular H···0 contacts
- 4 torsion angles²⁴ one table including all positions for each independent molecule
- 0 planes²⁵ available on request
- 1 selected hydrogen interactions²⁶ describing 4 strong H bonds that form two polymeric chains
- 1 observed and calculated structure factor amplitudes ^{6j,27b} 32 pages

Comments The structure was solved by direct methods, SHELXS-86; correct positions for all non-H atoms were deduced from an E-map. A subsequent

isotropic least-squares refinement cycle followed by a difference Fourier synthesis revealed positions for hydroxyl and vinyl H atoms. The remaining H atoms were included as fixed contributors in "idealized" positions. The four independent molecules were refined in blocks representing all possible combinations of three molecules. In the final cycles of least-squares refinement, hydroxyl and vinyl H atom positions were independently refined, common isotropic H atom thermal parameters were refined for each molecule, and non-H atoms were refined with anisotropic thermal coefficients. Successful convergence was indicated by the maximum shift/error for the last cycles. The final difference Fourier map had no significant features. A final analysis of variance between obsereved and calculated structure factors showed no systematic errors.

(Although there are four indepepndent moleucles, there are only different basic conformations represented by molecules A and B or molecules C and D.)

W47N

Graphics^{10a,29}

View of one molecule (35% probability ellipsoids) Thermal ellipsoid representations of the four independent molecules with unique nonhydrogen atoms labelled were plotted roughly parallel to the best-plane normals.

Packing diagram

available on request

Comments Stereo plots of the views mentioned, single or stereo plots in specific orientations, and liquid ink diagrams suitable for publication of any of the above are available on request.

У

-у

z

-z

1

2

х

·x

Table Sla.	Refined Positi	ional Parameters	
	x/a	y/b	z/c
02A	0.0712(2)	0.4286(1)	0.1005(1)
C1A	0.1516(2)	0.4593(2)	0.2536(2)
C2A	0.1679(2)	0.4648(2)	0.1560(2)
C3A	0.2598(2)	0.3983(2)	0.1306(2)
C3'A	0.3227(3)	0.4031(3)	0.0652(2)
C3aA	0.2690(2)	0.3299(2)	0.1945(2)
C4A	0.2679(2)	0.2215(2)	0.1483(2)
C5A	0.2699(3)	0.1628(2)	0.2230(2)
C6A	0.2035(3)	0.2034(2)	0.3039(2)
C7A	0.2123(2)	0.3143(2)	0.3372(2)
C7aA	0.1739(2)	0.3528(2)	0.2529(2)
C8A	0.3290(2)	0.3513(2)	0.3623(2)
C9A	0.3660(2)	0.3569(2)	0.2675(2)
C10A	0.1761(3)	0.1895(2)	0.0758(2)
C11A	0.3358(3)	0.4508(2)	0.4293(2)
C12A	0.3991(3)	0.2866(3)	0.4111(2)
02B	0.0805(2)	0.4371(1)	-0.0795(1)
C1B	0.1786(2)	0.3055(2)	-0.1676(2)
C2B	0.0746(2)	0.3607(2)	-0.1601(2)
СЗВ	-0.0099(2)	0.2828(2)	-0.1636(2)
C3'B	-0.0901(2)	0.2914(2)	-0.1113(2)
C3aB	0.0241(2)	0.1963(2)	-0.2331(2)
C4B	-0.0174(2)	0.0944(2)	-0.2319(2)
C5B	0.0332(2)	0.0210(2)	-0.3078(2)
C6B	0.1518(2)	0.0402(2)	-0.3167(2)
C7B	0.1802(2)	0.1480(2)	-0.3086(2)

		. ·			
	Table S1a.	(continued)			pa
		x/a	y/b	z/c	
	C7aB	0.1471(2)	0.1991(2)	-0.2144(2)	
•	C8B	0.1126(2)	0.1931(2)	-0.3785(2)	

C9B	0.0065(2)	0.2130(2)	-0.3324(2)
C10B	0.0006(2)	0.0659(2)	-0.1398(2)
C11B	0.1639(2)	0.2880(2)	-0.3897(2)
C12B	0.0991(3)	0.1276(2)	-0.4746(2)
02C	0.4290(2)	0.8794(1)	0.8977(1)
C1C	0.3479(2)	0.8315(2)	0.7441(2)
C2C	0.3324(2)	0.8864(2)	0.8411(2)
C3C	0.2409(2)	0.8325(2)	0.8685(2)
C3'C	0.1778(3)	0.8698(3)	0.9328(2)
C3aC	0.2328(2)	0.7318(2)	0.8077(2)
C4C	0.2363(2)	0.6479(2)	0.8574(2)
C5C	0.2358(3)	0.5521(2)	0:7860(2)
C6C	0.3017(3)	0.5515(2)	0.7046(2)
C7C	0.2901(2)	0.6439(2)	0.6668(2)
C7aC	0.3271(2)	0.7262(2)	0.7486(2)
C8C	0.1728(2)	0.6658(2)	0.6407(2)
C9C	0.1352(2)	0.7189(2)	0.7349(2)
C10C	0.3295(3)	0.6557(2)	0.9306(2)
C11C	0.1645(3)	0.7300(2)	0.5713(2)
C12C	0.1034(2)	0.5752(2)	0.5946(2)
02D	0.4197(2)	0.9738(1)	0.0797(1)
C1D	0.3216(2)	0.8855(2)	0.1689(2)
C2D	0.4253(2)	0.9378(2)	0.1609(2)

0.8631(2)

0.1671(2)

0.5102(2)

C3D

page 2

m-ble Cle	(continued)			page
Table Sla.	(continuea)	<i>.</i>	,	
	x/a	y/b	Z/C	
C3'D	0.5908(2)	0.8465(2)	0.1154(2)	
C3aD	0.4760(2)	0.8109(2)	0.2371(2)	
C4D	0.5193(2)	0.7098(2)	0.2391(2)	
C5D	0.4690(2)	0.6737(2)	0.3160(2)	
C6D	0.3496(2)	0.6949(2)	0.3226(2)	
C7D	0.3193(2)	0.7973(2)	0.3121(2)	
C7aD	0.3536(2)	0.8033(2)	0.2183(2)	
C8D	0.3846(2)	0.8784(2)	0.3814(2)	
C9D	0.4920(2)	0.8777(2)	0.3362(2)	
C10D	0.5016(2)	0.6348(2)	0.1479(2)	
C11D	0.3307(2)	0.9765(2)	0.3890(2)	
C12D	0.3983(3)	0.8618(2)	0.4790(2)	
H1A	0.079(2)	0.419(2)	0.045(2)	
H5A	0.384(2)	0.354(2)	0.056(2)	
H6A	0.312(2)	0.452(2)	0.029(2)	
H1B.	0.038(2)	0.479(2)	-0.087(2)	
H5B	-0.139(2)	0.235(2)	-0.112(2)	
H6B	-0.102(2)	0.351(2)	-0.065(2)	
H1C	0.416(3)	0.898(2)	0.952(2)	
H5C	0.122(2)	0.830(2)	0.949(2)	
H6C	0.185(2)	0.937(2)	0.970(2)	
H1D	0.465(2)	1.024(2)	0.089(2)	
H5D	0.641(2)	0.797(2)	0.119(2)	
H6D	0.602(2)	0.884(2)	0.068(2)	

ge 3

 \mathcal{I}

Table S1b.	Idealized Pos	sitional Paramet	ters
	x/a	y/b	z/c
H2A	0.2007	0.5016	0.2963
НЗА	0.0800	0.4754	0.2686
H4A	0.1826	0.5287	0.1479
H7A	0.3306	0.2093	0.1150
H8A	0.3425	0.1599	0.2464
Н9А	0.2436	0.0986	0.1950
H1OA	0.1302	0.1859	0.2856
H11A	0.2271	0.1748	0.3539
H12A	0.1731	0.3347	0.3905
TT1 0 A	0 1020	0 3244	0 2364

-			•
H4A	0.1826	0.5287	0.1479
H7A	0.3306	0.2093	0.1150
H8A	0.3425	0.1599	0.2464
H9A	0.2436	0.0986	0.1950
H10A	0.1302	0.1859	0.2856
H11A	0.2271	0.1748	0.3539
H12A	0.1731	0.3347	0.3905
H13A	0.1038	0.3244	0.2364
H14A	0.3910	0.4214	0.2694
H15A	0.4224	0.3122	0.2516
H16A	0.1773	0.2276	0.0304
H17A	0.1098	0.1985	0.1041
H18A	0.1833	0.1224	0.0471
H19A	0.2937	0.4961	0.4038
H2OA	0.4087	0.4732	0.4397
H21Å	0.3094	0.4454	0.4864
H22A	0.3992	0.2223	0.3733
H23A	0.3713	0.2848	0.4685
H24A	0.4706	0.3126	0.4218
H2B	0.2252	0.3318	-0.2042
нзв	0.2133	0.3091	-0.1079
H4B	0.0581	0.3940	-0:2084
H7B	-0.0935	0.0946	-0.2425
H8B	-0.0051	0.0222	-0.3651

Table S1b	(continued)			page
Table Sib.	(continued)	/ h	- / -	
	x/a	y/0	z/c	
нув	0.0261	-0.0422	-0.2952	
HIOB	0.1928	0.0181	-0.2692	
H11B	0.1704	0.0041	-0.3755	
H12B	0.2540	0.1545	-0.3188	
H13B	0.1834	0.1666	-0.1718	
H14B	-0.0140	0.2787	-0.3301	
H15B	-0.0482	0.1696	-0.3665	
H16B	-0.0317	0.1126	-0.0935	
H17B	0.0756	0.0640	-0.1239	·
H18B	-0.0310	0.0031	-0.1442	
H19B	0.1742	0.3321	-0.3309	
H20B	0.1180	0.3165	-0.4299	
H21B	0.2315	0.2745	-0.4152	
H22B	0.0672	0.0669	-0.4716	
H23B	0.1676	0.1163	-0.4990	
H24B	0.0542	0.1583	-0.5137	
H2C	0.2979	0.8514	0.7009	
H3C	0.4191	0.8406	0.7281	
H4C	0.3180	0.9540	0.8470	
H7C	0.1739	0.6512	0.8910	
H8C	0.1633	0.5362	0.7628	
Н9С	0.2628	0.5032	0.8162	
H10C	0.3754	0.5454	0.7236	
H11C	0.2794	0.4968	0.6564	
H12C	0.3289	0.6370	0.6130	•
H13C	0.3978	0.7079	0.7655	

age 2

Table S1b.	(continued)			p
	x/a	y/b	z/c	
H14C	0.1082	0.7812	0,7308	
H15C	0.0802	0.6812	0.7525	
H16C	0.3270	0.7167	0.9740	
H17C	0.3956	0.6515	0.9019	
H18C	0.3241	0.6039	0.9618	
H19C	0.2058	0.7884	0.5950	
H2OC	0.0913	0.7459	0.5604	
H21C	0.1911	0.6960	0.5148	
H22C	0.1045	0.5307	0.6343	
H23C	0.1313	0.5445	0.5376	
H24C	0:0315	0.5944	0:5832	
H2D	0.2742	0.9293	0+2043	
H3D	0.2875	0.8588	0.1092	
H4D	0.4411	0.9951	0.2080	
H7D	0.5952	0.7169	0.2504	
H8D	0.5061	0.7044	0.3733	
H9D	0.4777	0.6049	0.3053	
H10D	0.3102	0.6486	0.2752	
H11D	0.3302	0.6876	0.3815	
H12D	0.2450	0.8065	0.3211	
H13D	0.3176	0.7496	0.1765	
H14D	0.5114	0.9422	0.3328	
H15D	0.5470	0.8524	0.3716	
H16D	0.5334	0.6583	0.1006	
H17D	0.4266	0.6242	0.1322	
H18D	0.5338	0.5749	0.1538	

age 3

		•	
Table S1b.	(continued)		
	x/a	y/b	z/c
H19D	0.3203	0.9902	0.3292
H2OD	0.3750	1.0263	0.4283
H21D	0.2630	0.9744	0.4142
H22D	0.4319	0.8008	0.4779
H23D	0.3297	0.8611	0.5031
H24D	0.4418	0.9130	0.5172

page 4

Table S2. Thermal Parameters

	U11	U22	U 33	U23	U13	U12
02A	0.041(1)	0.039(1)	0.030(1)	0.006(1)	-0.002(1)	0.0124(9)
C1A	0.042(2)	0.034(2)	0.031(2)	0.006(1)	0.004(1)	0.013(1)
C2A	0.046(2)	0.023(2)	0.032(2)	0.007(1)	-0.003(1)	0.003(1)
C3A	0.030(2)	0.027(2)	0.025(2)	0.004(1)	-0.002(1)	-0.008(1)
C3'A	0.042(2)	0.052(2)	0.036(2)	0.017(2)	0.001(2)	-0.008(2)
C3aA	0.025(2)	0.027(2)	0.028(2)	0.008(1)	0.005(1)	0.004(1)
C4A	0.048(2)	0.030(2)	0.043(2)	0.007(1)	0.011(2)	0.013(1)
C5A	0.066(2)	0.029(2)	0.062(2)	0.017(2)	0.003(2)	0.011(2)
C6A	0.050(2)	0.051(2)	0.067(2)	0.039(2)	0.006(2)	0.004(2)
C7A	0.035(2)	0.049(2)	0.035(2)	0.020(2)	0.013(1)	0.012(1)
C7aA	0.027(2)	0.030(2)	0.036(2)	0.014(1)	0.010(1)	0.006(1)
C8A	0.037(2)	0.052(2)	0.031(2)	0.017(2)	0.004(1)	0.009(1)
C9A	0.030(2)	0.051(2)	0.036(2)	0.016(2)	0.003(1)	0.005(1)
C10A	0.080(3)	0.027(2)	0.055(2)	0.001(2)	-0.002(2)	-0.003(2)
C11A	0.064(2)	0.081(3)	0.034(2)	0.012(2)	-0.009(2)	0.007(2)
C12A	0.047(2)	0:090(3)	0.043(2)	0.031(2)	0.002(2)	0.015(2)
02B	0.035(1)	0.024(1)	0.030(1)	-0.0010(9)	0.0005(9)	0.0089(8)
C1B	0.024(2)	0.025(2)	0.034(2)	0.001(1)	0.000(1)	-0.001(1)
C2B	0.026(2)	0.020(1)	0.026(2)	-0.001(1)	0.004(1)	0.002(1)
СЗВ	0.020(2)	0.029(2)	0.026(2)	0.008(1)	0.001(1)	0.003(1)
СЗ'В	0.026(2)	0.039(2)	0.038(2)	0.010(2)	0.007(1)	0.002(1)
C3aB	0.021(1)	0.024(2)	0.028(2)	0.004(1)	0.003(1)	-0.000(1)
C4B	0.029(2)	0.027(2)	0.037(2)	0.005(1)	0.002(1)	-0.006(1)
C5B	0.049(2)	0.023(2)	0.045(2)	0.004(1)	0.000(2)	-0.005(1)
C6B	0.044(2)	0.026(2)	0.044(2)	-0.005(1)	0.004(2)	0.007(1)
C7B	0.025(2)	0.028(2)	0.040(2)	-0.002(1)	0.008(1)	0.001(1)

						page 2
Table	S2. (conti	nued)				
	U11	U22	U33	U23	U13	U12
C7aB	0.020(2)	0.022(2)	0.034(2)	0.001(1)	-0.000(1)	0.002(1)
C8B	0.038(2)	0.027(2)	0.029(2)	-0.002(1)	0.008(1)	-0.001(1)
C9B	0.032(2)	0.027(2)	0.029(2)	0.001(1)	-0.001(1)	-0.001(1)
C10B	0.052(2)	0.030(2)	0.051(2)	0.012(2)	0.007(2)	-0.006(1)
C11B	0.055(2)	0.043(2)	0.040(2)	0.006(2)	0.019(2)	-0.003(2)
C12B	0.058(2)	0.047(2)	0.034(2)	0.002(2)	0.011(2)	0.001(2)
02C	0.041(1)	0.041(1)	0.037(1)	0.009(1)	0.000(1)	-0.0122(10)
C1C	0.045(2)	0.035(2)	0.038(2)	0.012(1)	0.005(1)	-0.012(1)
C2C	0.050(2)	0.025(2)	0.038(2)	0.009(1)	0.002(2)	-0.003(1)
C3C	0.031(2)	0.027(2)	0.031(2)	0.007(1)	0.001(1)	0.005(1)
C3'C	0.047(2)	0.044(2)	0.043(2)	0.003(2)	0.003(2)	0.009(2)
C3aC	0.024(2)	0.025(2)	0.034(2)	0.007(1)	0.006(1)	-0.001(1)
C4C	0.046(2)	0.030(2)	0.041(2)	0.012(1)	0.006(2)	-0.009(1)
C5C	0.063(2)	0.032(2)	0.061(2)	0.014(2)	0.003(2)	-0.005(2)
C6C	0.048(2)	0.030(2)	0.060(2)	-0.002(2)	0.001(2)	0.001(2)
C7C	0.035(2)	0.033(2)	0.040(2)	-0.001(1)	0.013(1)	-0.003(1)
C7aC	0.023(2)	0.027(2)	0.039(2)	0.005(1)	0.007(1)	-0.003(1)
C8C	0.035(2)	0.037(2)	0.037(2)	0.002(1)	0.003(1)	-0.004(1)
C9C	0.028(2)	0.039(2)	0.048(2)	0.003(2)	0.004(1)	-0.001(1)
C10C	0.081(3)	0.039(2)	0.052(2)	0.024(2)	-0.004(2)	0.000(2)
C11C	0.066(2)	0.064(2)	0.044(2)	0.008(2)	-0.007(2)	-0.005(2)
C12C	0.043(2)	0.058(2)	0.053(2)	-0.004(2)	0.002(2)	-0.010(2)
02D	0.036(1)	0.031(1)	0.037(1)	0.0129(10)	0.0020(9)	-0.0090(9)
C1D	0.024(2)	0.029(2)	0.040(2)	0.012(1)	0.001(1)	0.001(1)
C2D	0.025(2)	0.025(2)	0.032(2)	0.009(1)	0.004(1)	-0.004(1)

0.000(1)

0.031(2)

0.019(2)

C3D

0.023(2)

0.000(1)

-0.004(1)

			a 1			page 3
Table	S2. (conti	nued)				
	U11	U22	U 33	U23	U13	U12
C3'D	0.024(2)	0.035(2)	0.044(2)	0.007(2)	0.005(2)	-0.001(1)
C3aD	0.022(2)	0.024(2)	0.031(2)	0.004(1)	0.000(1)	-0.000(1)
C4D	0.028(2)	0.026(2)	0.040(2)	0.007(1)	0.002(1)	0.004(1)
C5D	0.048(2)	0.027(2)	0.045(2)	0.013(1)	-0.002(2)	0.004(1)
C6D	0.042(2)	0.036(2)	0.040(2)	0.016(1)	0.002(1)	-0.005(1)
C7D	0.023(2)	0.033(2)	0.043(2)	0.015(1)	0.003(1)	-0.000(1)
C7aD	0.020(2)	0.025(2)	0.033(2)	0.009(1)	-0.002(1)	-0.005(1)
C8D	0.034(2)	0.035(2)	0.033(2)	0.009(1)	0.007(1)	0.004(1)
C9D	0.029(2)	0.028(2)	0.033(2)	0.006(1)	-0.001(1)	0.001(1)
C10D	0.046(2)	0.027(2)	0.055(2)	0.006(2)	0.004(2)	0.006(1)
C11D	0.044(2)	0.040(2)	0.049(2)	0.003(2)	0.015(2)	0.005(2)
C12D	0.052(2)	0.057(2)	0.039(2)	0.007(2)	0.010(2)	0.001(2)

Uiso

H(common)	0.055(2)	molecule A
H(common)	0.046(2)	molecule B
H(common)	0.059(2)	molecule C
H(common)	0.043(2)	molecule D

	Atom	x/a	y/b	z/c	S.O.F.	Radius	Minimum	Diagram	Elevation
12345678	02A H1A C1A C2A C3A C3/A H5A H5A	0.0712 0.0795 0.1516 0.1679 0.2598 0.3227 0.3844 0.3122	0.4286 0.4193 0.4593 0.4648 0.3983 0.4031 0.3540 0.4516	0.1005 0.0447 0.2536 0.1560 0.1306 0.0652 0.0564 0.0289	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.76 0.47 0.87 0.87 0.87 0.87 0.47	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	1 1 1 1 1	0.90 1.30 0.72 1.51 2.26 3.25 3.68 3.55
9 10 11 12 13 14 15	C3aA C4A C5A C6A C7A C7A C7A C8A	0.2690 0.2679 0.2699 0.2035 0.2123 0.1739 0.3290	0.3299 0.2215 0.1628 0.2034 0.3143 0.3528 0.3513	0.1945 0.1483 0.2230 0.3039 0.3372 0.2529 0.3623	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	1 1 1 1 1	1.70 1.63 0.97 0.00 0.23 0.57 1.22
16 17 18 19 20 21 22	C9A C10A C11A C12A O2B H1B C1B	0.3660 0.1761 0.3358 0.3991 0.0805 0.0377 0.1786	0.3569 0.1895 0.4508 0.2866 0.4371 0.4786 0.3055	0.2675 0.0758 0.4293 0.4110 -0.0795 -0.0874 -0.1671	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.87 0.87 0.87 0.87 0.76 0.47 0.87	0.10 0.10 0.10 0.10 0.10 0.10 0.10	1 1 1 2 2 2	2.17 1.18 1.30 1.87 1.38 2.50
23 24 25 27 27 28 20	C2B C3B C3'B H5B H6B C3aB C4B C5B	0.0746 -0.0099 -0.0901 -0.1393 -0.1019 0.0241 -0.0174	0.2828 0.2914 0.2355 0.3513 0.1963 0.0944	- 0.1601 - 0.1636 - 0.1113 - 0.1122 - 0.0649 - 0.2331 - 0.2319 - 0.3078	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.87 0.87 0.47 0.47 0.87 0.87	0.10 0.10 0.10 0.10 0.10 0.10 0.10	22222222	0.84 0.37 0.00 0.42 0.91 0.69 0.86
31 32 33 34 35 37 37	C6B C7B C7aB C8B C9B C10B C11B	0.1518 0.1802 0.1471 0.1126 0.0065 0.0006 0.1639	0.0402 0.1480 0.1991 0.1931 0.2130 0.0659 0.2880	- 0.3167 - 0.3086 - 0.2144 - 0.3785 - 0.3324 - 0.1398 - 0.3897	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.87 0.87 0.87 0.87 0.87 0.87 0.87	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	22222222	1.86 2.00 2.12 0.95 0.20 1.38 1.22
3 3 4 4 4 4 4 4 4 4 4 4	C12B 02C H1C C1C C2C C3C C3'C	0.0991 0.4290 0.4161 0.3479 0.3324 0.2409 0.1778	0.1276 0.8794 0.8979 0.8315 0.8864 0.8325 0.8698	-0.4746 0.8977 0.9522 0.7441 0.8411 0.8685 0.9328	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.87 0.76 0.47 0.87 0.87 0.87 0.87	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	2 3 3 3 3 3 3 3	0.42 0.88 1.31 0.71 1.49 2.25 3.24
45 46 47 48 49 50	H5C H6C C3aC C4C C5C C6C	0.1220 0.1851 0.2328 0.2363 0.2358 0.3017	0.8299 0.9367 0.7318 0.6479 0.5521 0.5515	0.9487 0.9701 0.8077 0.8573 0.7860 0.7046	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.47 0.47 0.87 0.87 0.87 0.87 0.87	0.10 0.10 0.10 0.10 0.10 0.10 0.10	3 3 3 3 3 3 3	3.68 3.58 1.70 1.63 0.97 0.00

51	C7C	0.2901	0.6439	0.6668	1.0000	0.87	0.10	3	0.23
52	C7aC	0.3271	0.7262	0.7485	1.0000	0.87	0.10	3	0.56
52	0.00	0 1728	0.6658	0.6407	1.0000	0.87	0.10	3	1.22
5%	200	0 1352	0 7189	0.7349	1.0000	0.87	0.10	3	2.18
55	C10C	0 3205	0 6557	0 9306	1.0000	0.87	0.10	3	1.18
55	C11C	0.14/5	0 7300	0 5713	1 0000	0.87	0.10	3	1.18
50	C11C	0.1045	0.7500	0 5946	1 0000	0.87	0.10	3	1.31
21	020	0.1034	0.0738	0.0707	1 0000	0.76	0 10	ā	1.91
20	020	0.4197	0.9730	0.0797	1 0000	0 47	0 10	i i	1.38
22	HID	0.4000	1.0240	0.0005	1.0000	0.97	0 10	7	2 53
60	CID	0.3210	0.0000	0.1009	1.0000	0.07	0.10	2	1 54
61	C2D	0.4253	0.9378	0.1009	1.0000	0.07	0.10	7	
62	C3D	0.5102	0.8631	0.10/1	1.0000	0.07	0.10	7	0.00
63	C3'D	0.5908	0.8465	0.1154	1.0000	0.87	0.10	4	0.37
64	HSD	0.6409	0.7967	0.1190	1.0000	0.47	0.10	4	0.00
65	H6D	0.6020	0.8840	0.0684	1.0000	0.47	0,10	4	0.45
66	C3aD	0.4760	0.8109	0.2371	1.0000	0.87	0.10	4	0.95
67	C4D	0.5193	0.7098	0.2391	1.0000	0.87	0.10	4	0.69
68	C5D	0.4690	0.6737	0.3160	1.0000	0.87	0.10	4	0.85
69	C6D	0.3496	0.6949	0.3227	1.0000	0.87	0.10	4	1.87
70	C 7 D	0.3193	0.7973	0.3121	1.0000	0.87	0.10	4	2.03
71	C7=D	0 3536	0.8033	0.2183	1.0000	0.87	0.10	4	2.14
22	C 8 D	0 3846	0 8784	0.3814	1.0000	0.87	0.10	4	0.99
72	000	0 6020	0 8777	0 3362	1 0000	0.87	0.10	4	0.23
71	C10D	0.4720	0 6368	0 1479	1 0000	0.87	0.10	4	1.38
74	0110	0 3307	0 0765	0 3800	1 0000	0.87	0.10	4	1.30
13		0.3307	0.7703	0.2070	1 0000	0.87	0 10	Å	0.45
10	CTZD	0.3783	v.0010	0.4/90	1.0000	0.07	0.10	-4	

пi	i s i	t a	n	C.	ρ	s	
•				~		•	

0.24 .444	0 83/3)	024 - 024	1.443(3)	C1A - C2A	1.514(4)
		CZA _CZ/A	1 322(4)	C3/A-H5A	1.04(3)
CZA -CSA	1.211(4)		1 507(4)	C394-C44	1.536(4)
C3/A-H6A	0.97(3)	CSA -CSAA	1.307(4)	CSA - C7A	1 538(4)
C4A -C5A	1.537(4)	C5A - C6A	1.234(2)		1 533741
C1A -C7aA	1.533(4)	C3aA-C7aA	1.555(4)	CIA -CIAA	1.332(4)
C7A - C8A	1.547(4)	C3 a A - C9 A	1.560(4)	CBA - CYA	1.552(4)
C4A - C10A	1.517(4)	C8A -C11A	1.536(4)	C8A -C12A	1.534(4)
028 - 418	0 82(3)	02B - C2B	1.428(3)	C1B - C2B	1.524(3)
	1 520/31	C38 - C3/8	1.318(4)	C3/B-H5B	1.00(3)
	1.320(3)	$C_{2}D = C_{2}D$	1 507(4)	C3aB-C4B	1.540(4)
C3'B-H6B	0.99(3)	C36 -C386	1 579(4)	C68 - C78	1.544(4)
C4B - C5B	1.540(4)	C2B - COB		C7P = C7pP	1 527/41
C1B -C7aB	1.549(3)	C3aB-C7aB	1.550(5)	L/B - L/AB	1.527(4)
C7B - C8B	1.546(4)	C3aB-C9B	1.559(4)	C88 - CAR	1.549(4)
C4B - C10B	1.524(4)	C8B - C11B	1.538(4)	C8B -C12B	1.528(4)
020 - 410	0 83(3)	020 -020	1,445(3)	C1C -C2C	1.516(4)
	1 514(4)	C3C -C3/C	1.319(4)	C3/C-H5C	0.98(3)
	0 00/7)	1eE1- 1E1	1 509(4)	C3aC-C4C	1.538(4)
C3, C- HOC			1 530(5)	C6C - C7C	1.543(4)
C4C -C5C	1.528(4)			670 - 6700	1 532(4)
C1C -C7aC	1.531(4)	USau-C/au	1.530(4)		1 555/47
C7C - C8C	1 547(4)	C3aC-C9C	1.559(4)	666 -696	1.222(4)

C4C C4C C4C C4C C4C O2D H1D 0.89(3) O2D C2D C2D C3D 1.517(4) C3D C3'D C3'D H6D 0.99(3) C3D C3aD C4D C5D 1.541(4) C5D C6D C1D C7aD 1.552(4) C3aD C7aD C7D C8D 1.549(4) C3aD C3D	1.420(3)	C1D - C2D	1.526(4)
	1.317(4)	C3'D-H5D	0.95(3)
	1.502(4)	C3aD-C4D	1.539(4)
	1.540(4)	C6D - C7D	1.525(4)
	1.543(3)	C7D - C7aD	1.525(4)
	1.571(4)	C8D - C9D	1.560(4)
	1.532(4)	C8D - C12D	1.532(4)

Angles

414 -024 -024	112(2)	C2A -C1A -C7aA	102.6(2)	02A -C2A -C1A	107.3(2)	
024 - 024 - 024	111 2/21	C1A - C2A - C3A	104.2(2)	C2A -C3A -C3'A	124.8(3)	
$C_{2A} = C_{2A} = C_{3A}$	108 3(2)	C3/A-C3A -C3AA	126.8(3)	C3A -C3'A-H5A	117(2)	
CZA -CJA -CJAA	121(2)	H5A -C3/A-H6A	122(2)	C3A -C3aA-C4A	115.9(2)	
	104 8/21	C3A -C3aA-C9A	111.9(2)	C4A -C3aA-C7aA	110.0(2)	
C/A = C3aA = C7aA	110 8(2)	C7a4-C3a4-C94	102 4(2)	C3aA-C4A -C5A	108.8(2)	
C7 A C/A C10A	116.0(2)	C5A - C4A - C10A	111.6(2)	C4A - C5A - C6A	115.5(2)	
CSAA-C4A -CIUA	117 7/21	C64 - C74 - C7a4	104.4(2)	C6A - C7A - C8A	112.6(2)	
07-1 074 C94	105 4/21	C1A - C7=A - C3=A	103 8(2)	C1A -C7aA-C7A	125.0(2)	
C78A-C7A - COA	101 2/21	C7A -C8A -C9A	102 0(2)	C7A - C8A - C11A	111.8(2)	
	11/ 2/2)	COA - CBA - C11A	111.6(2)	C9A - C8A - C12A	113.2(2)	
CTA - COA - CIZA	114.2(2)	C70A-C0A -C11A	108 4(2)	H1B -02B -C2B	109(2)	
C11A-U8A -U12A	104.3(2)	020 -C20 -C10	110 8(2)	028 - C28 - C38	115.0(2)	
C28 - C18 - C788		C2D - C2D - C1D	125 2(2)	C2B -C3B -C3aB	104.9(2)	•
C1B - C2B - C3B	104.1(2)	C70 - C36 - C3 0	122/21	C3B -C3/B-H6B	122(2)	
C3/B-C3B - C3AB	129.0(2)		110 6/21	C38 - C3a8 - C7a8	103.1(2)	
H2B - C2, R- H0R		C/P - C7 - P - C7 - P	108 6(2)	C48 - C3aB - C9B	109.5(2)	
C3B - C3aB - C9B	111-2(2)	C7 - D - C/D - C5D	108 0(2)	C3=8-C48 -C108	115.2(2)	
C7aB-C3aB-C9B	103.5(2)	LJAB-L4B -LJB		C58 - C68 - C78	113.7(2)	
C5B - C4B - C10B	111.0(2)	L4B -L3B -L8B		$C7_{2}R_{-}C7_{R} - C8R$	105 6(2)	
C6B - C7B - C/aB	104.4(2)		112.7(2)		100 8(2)	
C1B - C7aB+C3aB	106.1(2)	C18 - C/88 - C/8	123.3(2)	CJAB-C/AB-C/D	113 4(2)	
C7B - C8B - C9B	101.9(2)	C/B -C8B -C11B		C110-C80 -C128	105 8(2)	
C9B - C8B - C11B	110.9(2)	CAR -C98 -C158	113.0(2)	$c_{10} = c_{10} = c_{10} = c_{10}$	102 6(2)	
C3aB-C9B -C8B	108.3(2)	H1C -02C -C2C			102 0(2)	
02C - C2C - C1C	108.0(2)	020 -020 -030	110.9(2)	07(0-070-0300)	126 7(3)	
C2C -C3C -C3'C	124.8(3)	C2C -C3C -C3aC	108.4(2)		114/21	
C3C -C3/C-H5C	120(2)	C3C -C3/C-H6C	124(2)	150 - C3 - C- C9C	112 3/21	
C3C -C3aC-C4C	115.9(2)	C3C -C3aC-C/aC	104.7(2)		102 / (2)	
C4C -C3aC-C7aC	110.0(2)	C4C -C3aC-C9C	110.5(2)		111 0/2)	
C3aC-C4C -C5C	108.9(2)	C3aC-C4C -C10C	113.7(2)		10/ 7/2)	
C4C -C5C -C6C	115.7(2)	C5C -C6C -C7C	113.5(2)	C6C - C7C - C7aC	104.3(2)	
C6C -C7C -C8C	112.9(2)	C7aC-C7C -C8C	105.3(2)	C1C -C/ac-C3ac	104.1(2)	
C1C -C7aC-C7C	125:5(2)	C3aC-C7aC-C7C	101.4(2)	C7C -C8C -C9C	102.0(2)	
c7c -C8C -C11C	111.7(2)	C7C -C8C -C12C	114.4(2)	C9C - C8C - C11C	111.7(2)	
C9C - C8C - C12C	112.9(2)	C11C-C8C -C12C	104.5(2)	C3aC-C9C -C8C	108.3(2)	
H1D -02D -C2D	108(2)	C2D -C1D -C7aD	106.0(2)	02D -C2D -C1D	111.0(2)	
02D - C2D - C3D	115.5(2)	C1D -C2D -C3D	104.0(2)	C2D -C3D -C3/D	124.9(2)	
C2D - C3D - C3aD	105.3(2)	C3'D-C3D -C3aD	129.7(2)	C3D -C3'D-H5D	123(2)	

.

C3D -C3'D-H6D C3D -C3aD-C7aD C4D -C3aD-C9D C3aD-C4D -C10D C5D -C6D -C7D C7aD-C7D -C8D C3aD-C7AD-C7D C7D -C8D -C12D C11D-C8D -C12D	122(2) 103.6(2) 109.1(2) 114.7(2) 113.9(2) 105.1(2) 101.5(2) 113.9(2) 106.1(2)	H5D -C3'D-H6D C3D -C3aD-C9D C7aD-C3aD-C9D C5D -C4D -C10D C6D -C7D -C7aD C1D -C7aD-C3aD C7D -C8D -C9D C9D -C8D -C11D C3aD-C9D -C8D	116(2) 110.8(2) 103.0(2) 110.5(2) 104.9(2) 106.1(2) 101.9(2) 110.8(2) 107.9(2)	C3D - C3AD - C4D C4D - C3AD - C7AD C3AD - C4D - C5D C4D - C5D - C6D C6D - C7D - C8D C1D - C7AD - C7D C7D - C8D - C11D C9D - C8D - C12D	120.0(2) 109.0(2) 114.6(2) 114.6(2) 113.0(2) 124.2(2) 111.0(2) 113.1(2)	
---	--	---	--	---	--	--

Scale=0.806 Inches/Angstrom

Diagram 1 for C15H24O

Matrix -0.0425 0.8503 0.5246 0.5017 -0.4359 0.7472 0.8640 0.2950 -0.4080

-

	Atom	x/a	y/b	z/c	S.O.F.	Radius	Minimum	Diagram	Elevation
1	02A	0.0712	0.4286	0.1005	1.0000	0.76	0.10	1	1.03
ź	H1A	0.0795	0.4193	0.0447	1.0000	0.47	0.10	1	1.36
3	C1A	0.1516	0.4593	0.2536	1.0000	0.87	0.10	1	1.00
4	H2A	0.2007	0.5016	0.2963	1.0000	0.47	0.10	1	1.50
5	HJA	0.0800	0.4754	0.2686	1.0000	0.47	0.10	1	1 44
6	C2A	0.1679	0.4648	0.1560	1.0000	0.87	0.10		1.00
7	H 4 A	0.1826	0.5287	0.1479	1.0000	0.47	0.10		2 / 2
8	C3A	0.2598	0.3983	0.1306	1.0000	0.87	0.10	1	3 30
. 9	C3/A	0.3227	0.4031	0.0052	1.0000	0.07	0.10	1	3.76
10	HSA	0.3844	0.3540	0.0304	1 0000	0.47	0.10	i	3.52
11	HOA	0.3122	0.4510	0.0207	1 0000	0.97	0.10	i	2.00
12	CSAA	0.2090	0.3299	0 1/83	1 0000	0.87	0 10	1	1.97
15	C4A	0.20/9	0.2215	0.1405	1 0000	0.07	0.10	i	2.65
14	OF A	0.3300	0.2073	0 2230	1 0000	0.87	0.10	1	1.47
12		0.2077	0 1500	0.2464	1.0000	0.47	0.10	1	1.96
17	HOA	0.3425	0.0986	0.1949	1.0000	0.47	0.10	1	1.23
18	C64	0.2035	0.2034	0.3039	1.0000	0.87	0.10	1	0.58
10	HIGA	0.1302	0.1859	0.2855	1.0000	0.47	0.10	1	0.00
żó	HIIA	0.2271	0.1748	0.3539	1.0000	0.47	0.10	1	0.45
21	C7A	0.2123	0.3143	0.3372	1,0000	0.87	0.10	1	0.74
22	H12A	0.1731	0.3347	0.3905	1.0000	0.47	0.10	1	0.18
23	C7aA	0.1739	0.3528	0.2529	1.0000	0.87	0.10	1	0.94
24	H13A	0.1038	0.3244	0.2364	1.0000	0.47	0.10	1	0.30
25	C8A	0.3290	0.3513	0.3623	1.0000	0.87	0.10		1.70
26	C9A	0.3660	0.3569	0.2675	1.0000	0.87	0.10		2.72
27	H14A	0.3910	0.4214	0.2694	1.0000	0.47	0.10	-	2.00
28	H15A	0.4224	0.3122	0.2516	1.0000	0.47	0.10	4	1 48
29	CIOA	0.1761	0.1895	0.0758	1.0000	0.07	0.10	1	1 82
30	H16A	0.1773	0.2270	0.0504	1.0000	0.47	0.10	i	0.79
5.1	H17A	0.1098	0.1903	0.1041	1 0000	0.47	0 10	. 1	1.53
32	H18A	0.1033	0.1223	0.0471	1 0000	0.87	0.10	1	1.66
22		0.3350	0.4000	0.4275	1.0000	0.47	0.10	1	1.53
25		0 4087	0 4732	0.4397	1.0000	0.47	0.10	1	2.28
33	H21A	0 3094	0.4454	0.4864	1.0000	0.47	0.10	.1	1.12
37	C124	0.3991	0.2866	0.4110	1.0000	0.87	0.10	1	1.90
38	H22A	0.3992	0.2222	0.3733	1.0000	0.47	0.10	1	1.94
30	H234	0.3713	0.2848	0.4685	1.0000	0.47	0.10	1	1.36
4 0	HZAA	0.4706	0.3126	0.4218	1.0000	0.47	0.10	1	2.52

Distances

02A -H1A	0.83(3)	C1A -H2A	0.957(4)	C1A -H3A	0.962(4)
02A -C2A	1.443(3)	C1A -C2A	1.514(4)	C2A -H4A	0.960(4)
C2A -C3A	1.511(4)	C3A -C3'A	1.322(4)	C3'A-H5A	1.04(3)
C3/A-H6A	0.97(3)	C3A -C3aA	1.507(4)	C3¤A-C4A	1.536(4)
CJ'A-NOA	0.7/(3/	CJA CJUA			

C/A 47A	0 963741	C44 - C54	1.537(4)	C5A -H8A	0.957(5)
L4A - N7A		C5A -C6A	1.534(5)	C6A - H10A	0.958(5)
CDA - HYA	0.737(4)	C6A - C7A	1 538(4)	C7A - H12A	0.963(4)
COA -HIIA	0.930(3)		1 533(4)	C7A -C7aA	1.532(4)
CIA -C/AA	1.333(4)	C7A - C8A	1 547(4)	C3aA-C9A	1.560(4)
CTAA-HIJA	0.930(4)	COA - 41/A	0 960(4)	C9A - H15A	0.961(4)
CBA - CYA	1.332(4)	C7R - 114R	0 960(4)	C104-H17A	0.963(5)
C4A - CIUA			1 536(4)	C11A-H19A	0.958(5)
C10A-H18A	0.960(4)	COA - CTTA	0.962(4)	C8A - C12A	1,534(4)
C11A-H20A	0.959(5)	012A H27A	0 063(4)	C124-H244	0.959(4)
C12A-H22A	0.960(5)	LIZATHZJA	0.703(4)	CIER HEAR	

Angles

		_			440 0/7
H1A -02A -C2A	112(2)	H2A -C1A -H3A	109.3(3)	HZA -CIA -CZA	110.9(3)
H2A -C1A -C7aA	111.3(3)	H3A -C1A -C2A	111.5(3)	H3A -C1A -C/AA	111.1(3)
C2A - C1A - C7aA	102.6(2)	02A -C2A -C1A	107.3(2)	02A -C2A -H4A	108.0(3)
024 - 024 - 034	111.2(2)	C1A - C2A - H4A	114.9(3)	C1A -C2A -C3A	104.2(2)
HAA - C2A - C3A	111 2(3)	C2A - C3A - C3/A	124.8(3)	C2A -C3A -C3aA	108.3(2)
	126 8(3)	C3A - C3/A-H5A	117(2)	C3A -C3/A-H6A	121(2)
	122(2)	C3A - C3aA - C4A	115.9(2)	C3A -C3aA-C7aA	104.8(2)
	111 0/21	C44 - C344 - C744	110.0(2)	C4A -C3aA-C9A	110.8(2)
07-1 07-1-COA	102 4/21	C3-A-C4A -H7A	107.6(3)	C3aA-C4A -C5A	108.8(2)
L/8A-LJ8A-L9A	102.4(2)		110.4(3)	H7A - C4A - C10A	104.2(3)
C38A-L4A -C10A		C/A - C5A - M8A	107 7(3)	C4A - C5A - H9A	108.1(3)
C5A - C4A - C1UA	111.0(2)		100 3(4)	H8A - C5A - C6A	108.2(3)
C4A - C5A - C6A		CEA - CEA - 410A	108 7(4)	C5A - C6A - H11A	108.4(3)
H9A - C5A - C6A	107.9(3)		100.7(4)	H10A-C6A -C7A	108.3(3)
C5A - C6A - C7A	113.7(2)	HIUA-LOA HIIA		C6A - C7A - C7AA	104.4(2)
H11A-C6A -C7A	108.5(3)	UOA -UTA -HIZA		H12A-C7A -C8A	108 4(3)
C6A - C7A - C8A	112.6(2)	H12A-C7A -C7AA		614 - 67 - 4 - 67	125 0(2)
C7aA-C7A -C8A	105.6(2)	CIA -C/AA-CJAA	103.8(2)	07-A 07-A U17A	125.0(2)
C1A -C7aA-H13A	100.9(3)	C3aA-C7aA-C7A	101.2(2)		141 9/21
С7А -С7аА-Н1ЗА	103.4(3)	C7A - C8A - C9A	102.0(2)	U/A -U8A -U11A	117 2/2)
C7A -C8A -C12A	114.2(2)	C9A -C8A -C11A	111.6(2)	CYA -LOA -CIZA	
C11A-C8A -C12A	104.3(2)	C3aA-C9A -C8A	108.4(2)	C38A-C9A -H14A	109.7(3)
C3aA-C9A -H15A	109.6(3)	C8A -C9A -H14A	109.8(3)	C8A - C9A - H15A	110.0(3)
H14A-C9A -H15A	109.4(4)	C4A -C10A-H16A	109.3(3)	C4A - C10A-H17A	109.4(5)
C4A - C10A-H18A	109.4(3)	H16A-C10A-H17A	109.7(4)	H16A-C10A-H18A	109.4(4)
H17A-C10A-H18A	109.6(4)	C8A -C11A-H19A	109.7(3)	C8A -C11A-H2OA	109.2(3)
C8A - C11A-H21A	109.5(3)	H19A-C11A-H20A	109.3(4)	H19A-C11A-H21A	109.3(4)
H20A-C11A-H21A	109.8(4)	C8A - C12A - H22A	109.7(3)	C8A -C12A-H23A	109.3(3)
C8A - C12A-H24A	109 3(4)	H22A-C12A-H23A	109.5(4)	H22A-C12A-H24A	109.2(4)
	100 8(4)				
NEJA-CIEX-NE4A	10710(47				

	Ator	n x/a	y/b z/	/c S.O.F.	Radius	Minimum	Diagram	Elevation	
	1 026 2 H16 3 C16 4 H26 5 H36 6 C26 7 H46 9 C37 111 H66 12 C38 13 C46 14 H76 15 C58 112 C38 123 C478 224 H38 2212 C488 223 C78 224 C88 223 C413 224 C88 223 C78 224 C88 223 C89 214 H17 333 H20 333 H20 333 H20 334 H120 335 H23 340 H24	0.0805 0.0377 0.1786 0.2252 0.22133 0.0746 0.0581 0.0581 0.0099 -0.00991 -0.1393 -0.1019 0.0241 -0.0935 0.0241 -0.01518 0.0251 0.0251 0.1518 B.0.1704 0.1518 B.0.1471 B.0.1471 B.0.1471 B.0.1471 B.0.1471 B.0.1461 B.0.1471 B.0.1471 B.0.1471 B.0.1471 B.0.1472 B.0.0317 B.0.0317 B.0.1639 B.0.1639 B.0.1639 B.0.1639 B.0.1639 B.0.1639 B.0.1676 B.0.0542	$\begin{array}{c} 0.4371 & -0.0\\ 0.4786 & -0.0\\ 0.3055 & -0.1\\ 0.3091 & -0.1\\ 0.3091 & -0.1\\ 0.3607 & -0.1\\ 0.3940 & -0.2\\ 0.2828 & -0.1\\ 0.2828 & -0.1\\ 0.2355 & -0.1\\ 0.2355 & -0.1\\ 0.3513 & -0.0\\ 0.1963 & -0.2\\ 0.0946 & -0.2\\ 0.0946 & -0.2\\ 0.0210 & -0.3\\ 0.0222 & -0.3\\ 0.0222 & -0.3\\ 0.0222 & -0.3\\ 0.0222 & -0.3\\ 0.0210 & -0.3\\ 0.0222 & -0.3\\ 0.0210 & -0.3\\ 0.0222 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0210 & -0.3\\ 0.0222 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0422 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0441 & -0.3\\ 0.0441 & -0.3\\ 0.0441 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0441 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0421 & -0.3\\ 0.0441 & -0.3\\$	0795 1.0000 0874 1.0000 0874 1.0000 1676 1.0000 1079 1.0000 1079 1.0000 1079 1.0000 1079 1.0000 1079 1.0000 10601 1.0000 1113 1.0000 122 1.0000 2311 1.0000 2425 1.0000 2425 1.0000 2651 1.0000 2652 1.0000 2692 1.0000 2755 1.0000 2144 1.0000 2144 1.0000 2144 1.0000 2144 1.0000 2144 1.0000 2144 1.0000 2391 1.0000 2392 1.0000 2393 1.0000 2394 1.0000 2309 1.0000 2309 1.0000 2309 1.0000 2425 1.0000 29	$\begin{array}{c} 0.76\\ 0.477\\ 0.487\\ 0.447\\ 0.4$	$\begin{array}{c} 0.10\\$		0.88 1.24 0.57 0.35 0.00 1.34 1.69 2.08 2.48 2.91 2.32 2.18 2.55 3.13 2.55 3.13 2.55 3.13 2.55 1.67 1.77 1.30 0.77 1.30 1.77 1.30 1.77 2.91 3.41 2.99 2.91 3.41 2.18 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.13 2.55 3.25	
				Distances	.				
02B -H1B 02B -C2B C2B -C3B C3'B-H6B		0.82(3) 1.428(3) 1.520(3) 0.99(3)	C1B - C1B - C3B - C3B - C3B -	H2B C2B C3'B C3aB	0.963 1.524 1.318 1.507	3(4) 3(4) 7(4)	C1B - H C2B - H C3/B-H C3ab-C	13 B 14 B 15 B 24 B	0.957(4) 0.959(3) 1.00(3) 1.540(4)

Q
10
Q
∞
\geq
n
Ë.
- C
an
\bigcirc
h
ĥ
Ц.
à
Ś
õ
Ę.
,
J.
0
<u>3</u> 1
<u> </u>
lei
B.
j
\mathcal{O}
a
ē
<u> </u>
$\tilde{0}$
Ĕ
15
2
V
S
In
qc
0I
Ę.
8u
E
nf
0
Pa
60
् एम राग

C4B - H7B C5B - H9B C6B - H11B C1B - C7aB C7aB - H13B C8B - C9B C4B - C10B C10B - H18B C11B - H20B	0.959(4) 0.960(4) 0.962(4) 1.549(3) 0.958(4) 1.549(4) 1.524(4) 0.960(4) 0.957(4)	C4B -C5B C5B -C6B C6B -C7B C3aB-C7aB C7B -C8B C9B -H14B C10B-H16B C8B -C11B C11B-H21B C12B-H23B	1.540(4) 1.538(4) 1.544(4) 1.550(3) 1.546(4) 0.960(4) 0.962(4) 1.538(4) 0.963(4) 0.963(4)	C5B - H8B C6B - H10B C7B - H12B C7B - C78B C3aB-C9B C9B - H15B C10B-H17B C11B-H19B C8B - C12B C12B-H24B	0.956(4 0.957(4 1.527(4 1.559(4 0.957(4 0.958(4 0.958(4 1.528(4 0.959(4
C12B-H22B	0.960(4)	C12B-H23B	0.965(4)	C128-H24B	0.757(4

Angles

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	109(2) 110.3(3) 106.0(2) 115.0(2) 115.0(2) 119.0(3) 129.8(2) 116(2) 111.2(2) 103.5(2) 115.2(2) 115.2(2) 115.2(2) 105.4(2) 105.6(2) 99.9(3) 105.6(3) 105.8(2) 109.6(3) 109.6(3) 109.7(3) 109.7(3) 109.4(4)	H2B - C1B - H3B H3B - C1B - C2B O2B - C2B - C1B C1B - C2B - H4B C2B - C3B - C3'B C3B - C3'B - C3'B C3B - C3'B - C3'B C3B - C3'B - C4B C4B - C3aB - C4B H7B - C4B - C5B C4B - C5B - H7B H7B - C4B - C5B C4B - C5B - H9B C5B - C6B - H10B H10B - C6B - H10B H10B - C6B - H12B H12B - C7B - C7aB C3aB - C7B - C7aB C3aB - C7B - C7aB C3aB - C7B - C7aB C3B - C6B - C11B C3aB - C9B - C4B C3B - C6B - C10B H14B C4B - C10B - H14B C4B - C10B - H14B C4B - C10B - H14B C4B - C10B - H14B	109.6(3) 110.1(3) 110.8(2) 114.3(3) 125.2(2) 122(2) 108.4(2) 107.0(3) 108.1(3) 109.5(4) 109.5(3) 116.4(3) 109.5(3) 116.4(3) 109.5(3) 116.4(2) 100.8(2) 101.9(2) 108.3(2) 109.9(3) 109.8(4) 109.3(3) 109.3(3)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	110.6(3) 110.2(3) 103.1(2) 104.1(2) 104.9(2) 122(2) 103.1(2) 109.5(2) 108.0(2) 108.0(3) 108.6(3) 108.6(3) 108.6(3) 108.6(3) 108.6(3) 108.6(3) 108.6(2) 109.7(3) 109.7(3) 109.1(3) 109.3(4) 109.8(4)
H148-C98 -H158 C48 -C108-H188 H178-C108-H188 C88 -C118-H218 H208-C118-H218 C88 -C128-H248 H238-C128-H248	109.6(3) 109.7(3) 109.4(4) 109.5(3) 109.2(3) 109.2(3) 109.3(4)	C4B -C10B-H16B H16B-C10B-H17B C8B -C11B-H19B H19B-C11B-H20B C8B -C12B-H22B H22B-C12B-H23B	109.6(3) 109.8(4) 109.3(3) 109.2(4) 109.3(3) 109.5(4)	C4B - C10B - H17B H16B - C10B - H18B C8B - C11B - H20B H19B - C11B - H21B C8B - C12B - H23B H22B - C12B - H24B	109.3(4) 109.6(3) 109.8(4) 109.8(3) 109.6(4)

Scale=0.751 Inches/Angstrom

© 1998 American Chemical Society, J. Org. Chem., Coates jo971579v Supporting Info Page 72

Diagram 1 for C15H24O

32

Matrix -0.5108 0.2428 0.8247 0.0859 0.9689 -0.2321 -0.8554 -0.0477 -0.5158 39

9 2

11

				•						
	Atom	x/a	y/b	z/c	S.O.F.	Radius	Minimum	Diagram	Elevation	,
12345678901234567890123456789012333333333333333333333333333333333333	020 010 120 120 120 120 120 120 120 120	0.4290 0.4161 0.3479 0.2979 0.4191 0.3324 0.3324 0.3180 0.2409 0.1778 0.2328 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.2363 0.23289 0.32794 0.23289 0.32794 0.32794 0.32794 0.32794 0.32794 0.32794 0.32794 0.32790 0.3279 0.3278 0.1728 0.1728 0.32978 0.1728 0.32975 0.32710 0.32956 0.32415 0.0913 0.0315	0.8794 0.8979 0.8315 0.8514 0.88540 0.8864 0.9540 0.8325 0.8698 0.9367 0.7318 0.6512 0.5521 0.5521 0.55521 0.55521 0.55521 0.55521 0.64390 0.63702 0.64370 0.7268 0.7268 0.77812 0.663702 0.663702 0.663702 0.663702 0.77812 0.66390 0.77812 0.663702 0.663702 0.663702 0.663702 0.663702 0.663702 0.663702 0.663702 0.663702 0.66390 0.778122 0.66390 0.77812 0.66390 0.77812 0.66390 0.77812 0.66390 0.77812 0.66390 0.57527 0.55444	0.8977 0.9522 0.7441 0.7099 0.7281 0.8411 0.8470 0.9328 0.9701 0.8573 0.9701 0.7860 0.7628 0.77308 0.7628 0.76360 0.7628 0.76360 0.7628 0.76360 0.76360 0.76360 0.76360 0.76360 0.76360 0.76360 0.76360 0.66688 0.66688 0.66407 0.7308 0.9710 0.59206 0.97113 0.95113 0.59443 0.55376 0.5832	1.0000 1.00	0.7670.8770.47770.487770.487770.48770.48770.48770.48770.48770.48770.48770.48770.48770.48770.48770.44770.44770.44770.447770.447770.447770.447770.447770.447700000000	0.10 0.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.00\\ 1.378\\ 0.293\\ 1.941\\ 2.25\\ 3.530\\ 2.95\\ 1.941\\ 2.25\\ 3.550\\ 1.925\\ 2.95\\ 1.925\\ $	

Distances

02C -H1C 02C -C2C C2C -C3C	0.83(3) 1.445(3) 1.514(4) 0.99(3)	C1C -H2C C1C -C2C C3C -C3'C C3C -C3aC	0.956(4) 1.516(4) 1.319(4) 1.509(4)	C1C -H3C C2C -H4C C3/C-H5C C3aC-C4C	0.982(4) 0.960(4) 0.98(3) 1.538(4)
----------------------------------	--	--	--	--	---

0	
1998	
American	
Chemical	
Society, J.	
Org.	
Chem.,	
Coates jo9'	
71579v	
Supporting	
g Info P	
age 74	

C4C -H7C	0.963(4)	C4C -C5C	1.528(4)	C5C -H8C	0.957(5)
C5C -H9C	0.959(4)	C5C -C6C	1.530(5)	C6C -H10C	0.958(4)
C6C -H11C	1.531(4)	C6C -C7C	1.543(4)	C7C -H12C	0.963(4)
C1C -C7aC	0.958(4)	C3aC-C7aC	1.530(4)	C7C -C7aC	1.532(4)
C7aC-H13C	1.555(4)	C7C -C8C	1.547(4)	C3aC-C9C	1.559(4)
C8C -C9C	1.555(4)	C9C -H14C	0.960(4)	C9C -H15C	0.961(4)
C4C -C10C	1.528(4)	C10C-H16C	0.960(4)	C10C-H17C	0.963(5)
C10C-H18C	0.960(4)	C8C -C11C	1.528(4)	C11C-H19C	0.958(5)
C11C-H20C	0.959(5)	C11C-H21C	0.963(5)	C8C -C12C	1.545(4)
C11C-H2OC C12C-H22C	0.959(5) 0.960(4)	C11C-H21C C12C-H23C	0.963(4)	C12C-H24C	0.959(4)

Angles

					110 0/7
H1C -02C -C2C	108(2)	H2C -C1C -H3C	109.3(4)	H2C - C1C - C2C	110.9(3)
H2C -C1C -C7aC	111.3(3)	H3C -C1C -C2C	111.5(3)	H3C - C1C - C/aC	111.1(3)
C2C - C1C - C7aC	102 6(2)	02C -C2C -C1C	108.0(2)	02C -C2C -H4C	107.6(3)
	110 0/21	C1C -C2C -H4C	114.5(3)	C1C -C2C -C3C	103.9(2)
	111 0/3	C2C - C3C - C3/C	124 8(3)	C2C -C3C -C3aC	108.4(2)
H4C - C2C - C3C		CZC -C3(C-WEC	120/2)	C3C -C3/C-H6C	124(2)
C3/C-C3C -C3aC	120.7(3)		115 0/21	3e77-7e27- 720	104 7(2)
H5C -C3'C-H6C	116(2)	CSC -CSAC-C4C	113.9(2)	101-1020-1020	110 5(2)
C3C -C3aC-C9C	112.3(2)	C4C -C3aC-C7aC	110.0(2)	07-0 0/0 050	108 0/21
C7aC-C3aC-C9C	102.4(2)	C3aC-C4C -H7C	107.9(3)	USAU-040 -050	
C3aC-C4C -C10C	113.7(2)	H7C -C4C -C5C	110.0(3)	H/C -C4C -C1UC	104.5(5)
C5C -C4C -C10C	111.9(2)	C4C -C5C -H8C	107.7(3)	C4C - C5C - H9C	108.1(3)
CAC - C5C - C6C	115.7(2)	H8C - C5C - H9C	109.3(4)	H8C -C5C -C6C	108.2(3)
HOC - C5C - C6C	107 9(3)	C5C -C6C -H10C	108.7(3)	C5C -C6C -H11C	108.5(3)
-650 - 640 - 670	113 5(2)	H10C-C6C -H11C	109.2(4)	H10C-C6C -C7C	108.3(3)
	108 6(3)	CAC - C7C - H12C	109.5(3)	C6C -C7C -C7aC	104.3(2)
		H12C+C7C -C7aC	116 5(3)	H12C-C7C -C8C	108.4(3)
COC - C/C - COC	112.9(2)		10/ 1/2)	C1C - C7aC - C7C	125 5(2)
C7aC-C7C -C8C	105.3(2)		104.1(2)		125 1(3)
C1C - C7aC-H13C	100.4(3)	C3aC-C/aC-C/C	101.4(2)	070 - 680 - 6110	111 7(2)
C7C -C7aC-H13C	103.0(3)	C7C -C8C -C9C	102.0(2)		
C7C -C8C -C12C	114.4(2)	C9C -C8C -C11C	111.7(2)	CYC - C8C - C12C	112.9(2)
c11c-c8c -c12c	104.5(2)	C3aC-C9C -C8C	108.3(2)	C3aC-C9C -H14C	109.7(3)
C3aC-C9C -H15C	109.6(3)	C8C -C9C -H14C	109.8(3)	C8C - C9C - H15C	110.0(3)
H14C-C9C -H15C	109.4(3)	С4С -С10С-Н16С	109.3(3)	C4C -C10C-H17C	109.4(3)
C/C - C10C-W18C	109 4(3)	H16C-C10C-H17C	109.7(4)	H16C-C10C-H18C	109.4(4)
	100 6(4)	C8C - C11C-H19C	109.7(3)	C8C -C11C-H2OC	109.2(3)
ARA 0110-110C	100.5/3	H19C-C11C-H20C	109.3(4)	H19C-C11C-H21C	109.3(4)
LOL - LIIL- NZIL		CRC _C12C-H22C	100 7/31	C8C + C12C - H23C	109.3(3)
H200-0110-H210	109.0(4)	000 -0120-0220	100 5(/)	H22C-C12C-H24C	109.2(4)
C8C -C12C-H24C	109.3(3)	M220-0120-M230	107.3(4)	1220 0120 1240	
H23C-C12C-H24C	109.8(4)				

Diagram 1 for C15H240

Matrix 0.4004 0.4696 0.7869 0.0126 0.8558 -0.5171 -0.9163 0.2170 0.3367

	Atom	x/a	y/b	z/c	S.O.F.	Radius	Minimum	Diagram	Elevation
1234567890112345678901222245	Atom 02D H1D C1D H2D H3D C3D C3D C3D C3D C3D C3D C3D C3D C3D C	x/a 0.4197 0.4650 0.3216 0.2875 0.4253 0.4253 0.4411 0.5108 0.6020 0.6020 0.6020 0.6020 0.6409 0.6020 0.5193 0.5952 0.35952 0.3193 0.2450 0.3193 0.2450 0.3193 0.2450 0.31846	y/b 0.9738 1.0240 0.8855 0.9293 0.8588 0.9378 0.9951 0.8631 0.8465 0.7967 0.8840 0.8109 0.7098 0.7098 0.7098 0.6737 0.7044 0.6049 0.6486 0.6949 0.64876 0.7973 0.8065 0.8033 0.8786	z/c 0.0797 0.0885 0.1689 0.2043 0.1092 0.1609 0.2080 0.1671 0.1154 0.1154 0.2371 0.2391 0.2391 0.2391 0.2391 0.2391 0.3733 0.3053 0.3053 0.3227 0.3121 0.3211 0.2183 0.3765 0	S.O.F. 1.0000	Radius 0.76 0.47 0.87 0.47 0.87 0.47 0.87 0.47 0.87 0.47 0.87 0.47 0.87 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.4	Minimum 0.10 0.1	Diagram 1 1 1 1 1 1 1 1 1 1 1 1 1	Elevation 2.20 1.71 2.68 2.79 3.29 1.83 1.37 1.29 0.95 0.65 1.03 1.30 1.15 0.50 1.23 0.61 1.23 0.61 1.35 2.07 2.69 2.95 2.16 2.67 2.35 2.93 1.7
222222223333333333334	H12D C7aD H13D C8D C9D H14D H15D C10D H16D H17D H18D C10D H17D H18D H20D H21D H22D H22D H23D H24D	0.2450 0.3536 0.35176 0.3846 0.4920 0.5114 0.55476 0.55476 0.55334 0.4266 0.5338 0.3307 0.3203 0.3750 0.2630 0.3983 0.3983 0.3297 0.4418	0.8085 0.8033 0.7496 0.8784 0.8777 0.9422 0.8524 0.6583 0.6583 0.6242 0.5749 0.9745 0.9902 1.0263 0.9744 0.8618 0.8611 0.9130	0.3211 0.2183 0.1765 0.3814 0.3362 0.3328 0.3716 0.1479 0.1006 0.1322 0.1538 0.3890 0.3292 0.4283 0.4142 0.4779 0.5031 0.5172	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ \end{array}$	0.47 0.87 0.87 0.87 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.4	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.67 2.35 2.97 0.57 0.32 1.82 2.55 1.71 1.36 2.73 1.73 0.68 1.73 0.68 0.48 0.48 0.00

Distances						
02D - H1D	0.89(3)	C1D -H2D	0.963(4)	C1D - H3D	0.957(4)	
02D - C2D	1.420(3)	C1D -C2D	1.526(4)	C2D - H4D	0.959(4)	
C2D - C3D	1.517(4)	C3D -C3'D	1.317(4)	C3'D-H5D	0.95(3)	
C3'D - H6D	0.99(3)	C3D -C3aD	1.502(4)	C3aD-C4D	1.539(4)	

0
10
90
$\tilde{\infty}$
\succ
Ŕ
le
ri.
ష
n
Ω
he
ň
H.
ä
ő
<u>õ</u> .
ē
Y
, L
0
ŝ
<u> </u>
ē
В
;
Ω
Da
fe
Ň
jo
<u>ک</u>
1
Ū.
5
Ž
S
ln
q
Õ
Ħ.
Bu
59
n
fo
Р
a
e.
J

 \neg

C4D - H7D C5D - H9D C6D - H11D C1D - C7aD C7aD - H13D C8D - C9D C4D - C10D C10D - H18D C11D - H20D	0.959(4) 0.960(4) 0.962(4) 1.552(4) 1.552(4) 1.560(4) 1.533(4) 0.960(4) 0.960(4)	C4D - C5D C5D - C6D C6D - C7D C3aD - C7aD C7D - C8D C9D - H14D C10D - H16D C8D - C11D C11D - H21D C11D - H27D	1.541(4) 1.540(4) 1.540(4) 1.543(3) 1.549(4) 0.960(4) 0.962(4) 1.532(4) 0.963(4) 0.963(4)	C5D - H8D C6D - H10D C7D - H12D C7D - C7aD C3aD - C9D C9D - H15D C10D - H17D C11D - H19D C8D - C12D C12D - H24D	0.956(4) 0.957(4) 1.525(4) 1.571(4) 0.957(4) 0.958(4) 0.959(4) 1.532(4) 0.957(4)
C12D-H22D	0.960(5)	C12D-H23D	0.963(4)	C12D-H24D	0.957(4)

Angles

		•			
H1D -02D -C2D	108(2)	H2D -C1D -H3D	109.6(3)	H2D -C1D -C2D	110.6(3)
H2D - C1D - C7AD	110.3(3)	H3D - C1D - C2D	110.1(3)	H3D -C1D -C7aD	110.3(3)
(120 - C10 - C7a)	106 0(2)	02D - C2D - C1D	111.0(2)	02D - C2D - H4D	102.6(3)
	115 5(2)	C1D - C2D - H4D	114.5(3)	C1D - C2D - C3D	104.0(2)
$\frac{1}{10} - \frac{1}{10} $	109 8(3)	C2D - C3D - C3/D	124,9(2)	C2D -C3D -C3aD	105.3(2)
(7/0 - (7) - (3))	120 7(2)	C3D -C3/D-H5D	123(2)	C3D -C3'D-H6D	122(2)
	116/21	C3D - C3aD - C4D	120.0(2)	C3D -C3aD-C7aD	103.6(2)
(70 - (70) - (90)	110 8/21	C4D - C3aD - C7aD	109.0(2)	C4D - C3aD - C9D	109.1(2)
	103 0/2)	C3aD - C4D - H7D	107.0(3)	C3aD-C4D -C5D	108.4(2)
C7aD - C3aD - C7D	116 7(2)	W7D - C4D - C5D	111.7(3)	H7D - C4D - C10D	104.5(3)
	110 5/21	CAD - C5D - H8D	108.3(3)	C4D - C5D - H9D	108.1(3)
	116.5(2)	H8D - C5D - H9D	109-6(4)	H8D - C5D - C6D	107.9(3)
	109 7/71	C50 - C60 - H100	108 0(3)	C5D - C6D - H11D	108.7(3)
HYD -COD -COD	117 0/2)	H100-C60 -H110	109.3(4)	H10D-C6D -C7D	108.5(3)
	109 2/3	CAD - C7D - H12D	108.9(3)	C60 - C70 - C7aD	104.9(2)
	100.2(3)		116 5(3)	H12D-C7D -C8D	108.5(3)
	113.0(2)	C1D - C70D - C30D	106 1(2)	C10 - C7aD - C7D	124.2(2)
C/aD-C/D -C80			101 5(2)	C3aD-C7aD-H13D	122.9(3)
C10 - C7a0-H130	99.0(3)	C7D - C8D - C9D	101.0(2)	C70 - C80 - C110	111.0(2)
C/D - C/aD-H13D	104.0(3)	COD - COD - C11D	110 8(2)	C90 - C80 - C120	113.1(2)
C7D - C8D - C12D	113.9(2)		107 0(2)	C3-D-C9D -H14D	109.9(3)
C11D-C8D -C12D	100.1(2)	C9D	110 0(3)	C80 - C90 - H150	109.9(3)
C3aD-C9D -H15D	109.7(3)		100 4(3)	C4D - C10D-H17D	109.1(3)
H14D-C9D -H15D	109.6(3)	140 - CIUD-HIOD	109.0(3)	H16D-C10D-H18D	109 3(4)
C4D - C10D - H18D	109.7(3)		109.0(4)	$C_{RD} = C_{10} + 20D$	100 6(3)
H17D-C10D-H18D	109.4(4)	C8D - C11D-H19D	109.3(3)		100 8(4)
C8D -C11D-H21D	109.5(3)	HT90-CTTD-H20D	109.2(4)	CRD - C12D-H23D	100 8(3)
H20D-C11D-H21D	109.3(4)	C8D - C12D - H22D	109.3(3)	UOD - C120- M2/D	100 7/41
C8D -C12D-H24D	109.2(3)	H22D-C12D-H23D	109.5(4)	N220-C120-N240	107.7(4)
H23D-C12D-H24D	109.3(4)				

Diagram 1 for C15H24O

Scale=0.751 Inches/Angstrom

Matrix 0.5143 0.2332 -0.8253 0.2776 -0.9558 -0.0971 -0.8114 -0.1791 -0.5563

	Atom	x/a	y/b	z/c	S.O.F.	Radius	Minimum	Diagram	Elevation
1	02A H1A	0.0712	0.4286 0.4193	0.1005 0.0447	1.0000	1.46 1.17	0.76 0.47	1	0.59 0.61
3	C1A	0.1516	0.4593	0.2536	1.0000	1.57	0.87	1	0.88
4	H2A	0.2007	0.5016	0.2963	1 0000	1.17	0.47	1	0.65
2 6	N5A C2A	0.1679	0.4648	0.1560	1.0000	1.57	0.87	1	0.89
7	HAA	0.1826	0.5287	0.1479	1.0000	1.17	0.47	1	0.88
8	C3A	0.2598	0.3983	0.1306	1.0000	1.57	0.87	1.	1.22
.9	C3/A	0.3227	0.4031	0.0652	1 0000	1.17	0.47	i	1.61
11	H6A	0.3122	0.4516	0.0289	1.0000	1.17	0.47	1	1.30
12	C3aA	0.2690	0.3299	0.1945	1.0000	1.57	0.87	1	1.32
13	C4A	0.2679	0.2215	0.1483	1.0000	1.57	0.87	1	1 58
14	H7A	0.3306	0.2093	0.1150	1.0000	1.57	0.87	i	1.46
15	HRA	0.3425	0.1599	0.2464	1.0000	1.17	0.47	1	1.70
17	HØA	0.2436	0.0986	0.1949	1.0000	1.17	0.47	1	1.42
18	C6A	0.2035	0.2034	0.3039	1.0000	1.57	0.87	1	1.20
19	HIOA	0.1302	0.1859	0.2855	1 0000	1 17	0.47	1	1.37
20	C74	0.2271	0.3143	0.3372	1.0000	1.57	0.87	1	1.21
žż	H12A	0.1731	0.3347	0.3905	1.0000	1.17	0.47	1	1.10
23	C7aA	0.1739	0.3528	0.2529	1.0000	1.57	0.87	1	1.05
24	H13A	0.1038	0.3244	0.2364	1.0000	1.17	0.47	1	1.56
25	C8A C0A	0.3290	0.3513	0.2675	1.0000	1.57	0.87	1	1.63
27	H14A	0.3910	0.4214	0.2694	1.0000	1.17	0.47	1	1.66
28	H15A	0.4224	0.3122	0.2516	1.0000	1.17	0.47	1	1.84
29	C10A	0.1761	0.1895	0.0758	1.0000	1.57	0.87	i	1.05
30	H10A	0.1775	0.2270	0.1041	1.0000	1.17	0.47	i	0.89
32	H18A	0.1833	0.1223	0.0471	1.0000	1.17	0.47	1	1.16
33	C11A	0.3358	0.4508	0.4293	1.0000	1.57	0.87	1	1.55
34	H19A	0.2937	0.4961	0.4038	1.0000	1.17	0.47	1	1.75
35	H2UA H21A	0.4087	0.4752	0.4864	1.0000	1.17	0.47	1	1.47
37	C12A	0.3991	0.2866	0.4110	1.0000	1.57	0.87	. 1	1.85
38	H22A	0.3992	0.2222	0.3733	1.0000	1.17	0.47	1	1.88
39	H23A	0.3713	0.2848	0.4685	1.0000	1.17	0.47	1	2.05
40	H24A 02B	0.4700	0.4371	-0.0795	1.0000	1.46	0.76	i	0.55
42	H1B	0.0377	0.4786	-0.0874	1.0000	1.17	0.47	1	0.38
43	C1B	0.1786	0.3055	-0.1676	1.0000	1.57	0.87	1	0.92
44	H2B	0.2252	0.3318	-0.2042	1.0000	1.17	0.47	1	1.05
45	H38 C22	0.2155	0.3607	-0.1601	1.0000	1.57	0.87	i	0.56
47	H4B	0.0581	0.3940	-0.2084	1.0000	1.17	0.47	1	0.46
48	C3B	-0.0099	0.2828	-0.1636	1.0000	1.57	0.87	1	0.35
49	C3/B	-0.0901	0.2914	-0.1113	1.0000	1.57	0.87	1	0.11
50	K 5 B	-0.1393	0.2355	-0.1122	1.0000	1.17	0.47		

	0
	199
	A 8(
	nme
	rica
	n C
	hen
	nica
	1 Sc
	cie
	ty, J
	.0
	ů.
	Che
	m.,
	Co
	ates
	jo9
	715
	579v
	Su/
•	ppc
	ortin
	ıl gı
	lfo
	Pag
	je 8
	0

60 H11B 0.1704 0.0041 -0.3755 1.0000 1.17 0.87 1 61 C7B 0.1802 0.1480 -0.3086 1.0000 1.57 0.87 1 1 62 H12B 0.2540 0.1545 -0.3188 1.0000 1.17 0.47 1 1 63 C7aB 0.1471 0.1991 -0.2144 1.0000 1.57 0.87 1 0.165 64 H13B 0.1824 0.1666 -0.1718 1.0000 1.57 0.87 1 0.76 66 C9B 0.0065 0.2130 -0.3324 1.0000 1.57 0.87 1 0.76 67 H14B -0.0140 0.2787 -0.3301 1.0000 1.57 0.87 1 0.76 67 H16B -0.0317 0.1126 -0.0357 1.0000 1.17 0.47 1 0.77 71 H17B 0.0756 0.0641 -0.1239 1.0000 1.17 0.47 1 0.77 72 H18B	C4B 0.0174 0.0946 -0.2319 1.0000 1.57 0.87 H7B -0.0935 0.0210 -0.3078 1.0000 1.57 0.87 C5B 0.0332 0.0221 -0.3651 1.0000 1.17 0.47 H8B -0.0421 -0.0422 -0.2952 1.0000 1.17 0.47 H9B 0.0261 -0.0422 -0.2952 1.0000 1.17 0.47 H10B 0.1928 0.0181 -0.2692 1.0000 1.17 0.47 H10B 0.1928 0.0181 -0.2692 1.0000 1.17 0.47 H11B 0.1704 0.0041 -0.3755 1.0000 1.57 0.87 H12B 0.2540 0.1545 -0.3188 1.0000 1.17 0.47 H12B 0.1834 0.1666 -0.1718 1.0000 1.57 0.87 H13B 0.1834 0.1666 -0.3785 1.0000 1.57 0.87 C7aB 0.1126 0.2787 -0.3011 1.0000 1.17 0.47	00.00011001000000000000000000000000000
---	--	--