J. Org. Chem., 1998, 63(12), 3798-3799, DOI:10.1021/jo9715837 ## **Terms & Conditions** Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html Representative Preparations of Allylic Alcohols: (1*E*)-2-Methyldec-1-en-4-yn-3-ol. To a stirred solution of heptyne (1.51g, 15.7 mmol) in THF (40 mL) at 20 °C was added *n*-butyllithium (6.8 mL as a 2.5 M solution in hexanes, 17.0 mmol). After 0.5 h, 2-methylpropenal (1.00g, 14.3 mmol) in THF (20 mL) was added. The mixture was stirred for a further 3 h, poured onto saturated ammonium chloride solution (20 mL) and the aqueous layer extracted with ether (3x15 mL). The combined organic extracts were dried over magnesium sulfate, filtered and evaporated. The residue was purified by column chromatography on silica using 1:9 ethyl acetate:petroleum ether as eluent to give (1*E*)-2-methyldec-1-en-4-yn-3-ol (2.04g, 86%) as a pale yellow oil; IR (liquid film) 3350, 2210, 1650 cm⁻¹; ¹H NMR δ (CDCl₃) 5.11 (1H, d, *J* 1.5 Hz), 4.80 (1H d, *J* 1.5 Hz), 4.68 (1H, bs), 2.15 (2H, dt, *J* 6, 1.5 Hz), 1.82 (3H, s), 1.60-1.45 (2H, m) 1.28 (4H, m), 0.83 (3H, t, *J* 6 Hz); ¹³C NMR δ (CDCl₃) 144.7 (s), 111.8 (t), 86.6 (s), 79.3 (s), 66.3 (d), 31.0 (t), 28.2 (t), 18.7 (t), 18.0 (q), 13.9 (q); MS m/z (%) 166 (31, M⁺), 151 (79, C₁0H₁5O), 123 (49, C₉H₁1O), 109 (82, C₇H₉O), 95 (100, C₆H₇O), 81 (80, C₅H₅O), 55 (72, C₃H₃O); HR-MS calcd for C₁1H₁₈O 166.1358, found 166.1349. **7-Ethoxy-4-methyl-hept-3-en-6-yn-5-ol (5).** To a stirred solution of ethoxy acetylene (0.50g of a 50% w/w solution in hexanes, 3.6 mmol) in THF (10 mL) at 0 °C was added dropwise n-butyllithium (1.5 mL, 2.5M in hexanes; 3.8 mmol). After 0.5 h, a solution of 2-methyl-2-pentenal (0.27g, 2.7 mmol) in THF (20 mL) was added. After a further 18 h at 20 °C, work-up and column chromatography as for 1a afforded 3 as a pale orange oil (0.37g, 61%); IR (liquid film) 3428, 2263, 1625 cm⁻¹; ¹H NMR (CDCl₃) δ 5.50 (1H, t, J 5Hz), 4.75 (1H, s), 4.20-3.95 (2H, m), 2.15-1.95 (2H, m), 1.90 (1H, s), 1.70 (3H, s), 1.35 (3H, t, J 6 Hz), 1.0 (3H, t, J 6 Hz); ¹³C NMR (CDCl₃) δ 134.7 (s), 128.9 (d), 94.6 (s), 74.6 (s), 68.0 (t), 60.4 (t), 20.9 (t), 14.3 (q), 13.8 (q), 11.9 (q); MS m/z (%) 168 (30, M⁺), 139 (36, C8H₁1O₂), 111 (60, C6H₇O₂), 97 (45, C5H₅O₂), 69 (100, C₃HO₂); HR-MS calcd for C₁0H₁6O₂ 168.1150, found 168.1146. Preparation of Epoxy Alcohols. Although the current work did not in our hands afford any dangerous processes, the inherent explosion hazard of peroxides requires caution to be exercised whenever tert-butylhydroperoxide is used, particularly in solutions heated at reflux. For correct handling procedures see K. B. Sharpless and T. R. Verhoeven, Aldrichimica Acta, 1979, 12, 63. Epoxidation frequently afforded two diastereoisomers that were not readily separable. NMR data for the major and minor diastereoisomers are denoted by the superscripts ma and mi, respectively. 1-(2-Methyl-oxiranyl)-1-oct-2-yn-1-ol (1a). To a stirred solution of 2-methyldec-1-en-4-yn-3-ol (0.50g, 3.0 mmol) in benzene (50 mL) at 20 °C was added vanadyl acetoacetonate (0.01g). After 5 minutes aqueous *tert*-butylhydroperoxide (0.50g, 3.9 mmol, 70%; CAUTION!) was added. The mixture was heated at reflux for 1 h, allowed to cool to 20 °C and washed with saturated sodium sulfite solution (50 mL). The organic layer was separated, dried over magnesium sulfate, filtered and evaporated. The residue was purified by column chromatography on silica (1:9 ethyl acetate:petroleum ether) to give **1a** (0.37g, 67%) as a colourless oil, (71:29 mixture of diastereoisomers); IR (liquid film) 3430, 2215 cm⁻¹; ¹H NMR (CDCl₃) δ 4.32 (1H, m), 2.98 (1H, d, J 5Hz), 2.60 (1H, d, J 5Hz), 2.13 (2H, dt, J 6.5, 1.5), 1.46 (4H, m), 1.39 (3H, s), 1.12-1.35 (5H, m); ¹³C NMR (CDCl₃) δ 87.1 (s), 87.0 (s), 77.4 (s), 65.3^{ma} (d), 64.3^{mi} (d), 59.9^{ma} (s), 58.9^{mi} (d), 51.5^{ma} (t), 51.1^{mi} (t), 30.9 (t), 28.0 (t), 22.0 (t), 17.5^{ma} (q), 16.5^{mi} (q), 13.8 (q); MS m/z (%) 181 (19, M^+), 167 (20, $C_{10}H_{16}O$), 125 (50), 111 (83), 81 (84), 55 (100); HR-MS calcd for $C_{11}H_{18}O_{2}$ 181.1231, found 181.1229. 1-(2-Methyl-oxiranyl)-3-phenyl-2-propyn-1-ol (1b). To a stirred solution of 2-methyl-5-phenylpent-1-en-4-yn-3-ol (0.50g, 5.8 mmol) in benzene (50 mL) at 20 °C was added vanadyl acetoacetonate (0.01g). After 5 minutes aqueous *tert*-butylhydroperoxide (0.50g, 3.9 mmol, 70%; CAUTION!) was added. The mixture was heated at reflux for 4 h, allowed to cool to 20 °C and worked up as for 1a. Column chromatography on silica (1:9 ethyl acetate:petroleum ether) afforded 1b (0.63g, 57%) as a pale yellow oil (3:1 mixture of diastereoisomers); IR (liquid film) 3420, 2205, 1600, 1490, cm⁻¹; ¹H NMR (CDCl₃) δ 7.55-7.40 (2H, m), 7.35-7.20 (3H, m), 4.63 (1H^{ma}, d, *J* 4Hz), 4.48 (1H^{mi}, d, *J* 9Hz), 3.10 (1H^{ma}, d, *J* 6Hz), 3.0 (1H^{mi}, d *J* 6Hz), 2.75 (1H, d, *J* 6Hz), 2.47 (1H, d, *J* 3Hz), 1.50 (3H, s); ¹³C NMR (CDCl₃) δ 131.8 (d), 128.7 (d), 128.3 (d), 122.2 (s), 86.4^{mi} (s), 86.2^{ma} (s), 86.1^{ma} (s), 65.6^{mi} (d), 64.8^{ma} (d), 59.2^{mi} (s), 58.9^{ma} (s), 51.7^{mi} (t), 51.4^{ma} (t), 17.7^{ma} (q), 16.8^{mi} (q); MS *m/z* (%) 188 (9, M⁺), 173 (9, C11H9O2), 145 (5, C9H5O2), 131 (99, C8H3O2), 118 (31), 115 (34, C8H3O), 103 (38), 77 (37), 71 (41); HR-MS calcd for C12H12O2 188.0831, found 188.0837. 1-(2-*n*-Butyl-oxiranyl)-oct-2-yn-1-ol (1 c). To a stirred solution of 2-butyldec-1-en-4-yn-3-ol (1.00g, 4.8 mmol) in benzene (50 mL) at 20 °C was added vanadyl acetoacetonate (0.01g). After 5 minutes aqueous *tert*-butylhydroperoxide (0.87g, 6.7 mmol, 70%; CAUTION!) was added. The mixture was stirred at 20 °C for 18 h, allowed to cool to 20 °C and worked up as for 1a. Column chromatography on silica (1:9 ethyl acetate: petroleum ether) afforded 1c (1.03g, 96%) as a yellow oil (6:1 mixture of diastereoisomers); IR (liquid film) 3425, 2215 cm⁻¹; ¹H NMR (CDCl₃) δ 4.55-4.45 (1H^{ma}, m), 4.35 (1H^{mi}, dt, *J* 9, 1Hz), 2.95 (1H^{ma}, d, *J* 6Hz), 2.90 (1H^{mi}, d, *J* 6Hz), 2.70-2.60 (1H, m), 2.40 (1H, d, *J* 6Hz), 2.15 (2H, dt, *J* 9, 1.5Hz). 2.0-0.70 (18H, m); ¹³C NMR (CDCl₃) δ 87.1 (s), 63.9^{mi} (d), 62.8^{ma} (d) 61.4^{ma} (s), 61.2^{mi} (s), 49.4 (t), 31.0 (t), 30.7^{ma} (t), 30.3^{mi}(t), 28.1 (t), 26.4^{mi} (t), 26.3 ma (t), 22.8 (t), 22.1 (t), 18.7 (t), 14.1 (q), 13.9 (q); MS m/z (%) 224 (24, M⁺), 223 (24, C₁4H₂3O₂), 207 (27), 193 (23), 167 (11, C₁0H₁5O₂), 153 (31, C₉H₁3O₂), 125 (38, C₇H₉O₂), 111 (19, C₆H₇O₂), 107 (21), 95 (30), 83 (57, C₄H₃O₂), 81 (15); HR-MS calcd for C₁4H₂4O₂ 224.1776, found 224.1779. 1-(rel-2S,3S-2-Methyl-3-ethyl-oxiranyl)-oct-2-yn-1-ol (1d). To a stirred solution of (3*E*)-4-methyldodec-3-en-6-yn-5-ol (0.50g, 2.57 mmol) in benzene (50 mL) at 20 °C was added vanadyl acetoacetonate (0.01g). After 5 minutes aqueous *tert*-butylhydroperoxide (0.47g, 3.6 mmol, 70%; CAUTION!) was added. The mixture was stirred at 20 °C for 20 h and worked up as for 1a. Column chromatography on silica (1:9 ethyl acetate:petroleum ether) afforded 1d (0.35g, 65%) as a pale yellow oil (2:1 mixture of diastereoisomers); IR (liquid film) 3420, 2210 cm⁻¹; ¹H NMR (CDCl₃) δ 4.30 (1Hma, s), 4.10 (1H,mi s,, 3.05 (1Hma, t, *J* 6.5Hz), 2.92 (1Hmi, t, *J* 6.5Hz), 2.43-2.36 (1H, bs), 2.15 (2H, dt, *J* 7, 2Hz), 1.70-1.15 (8H, m), 1.33 (3H, d, *J* 1Hz), 0.98 (3Hma, t, *J* 7.5Hz), 0.96 (3Hmi, t, *J* 7.5Hz), 0.84 (3H, t, *J* 7Hz); ¹³C NMR (CDCl₃) δ 86.8ma (s), 86.6 mi(s), 77.1mi (s), 76.6ma (s), 66.9mi (d), 65.2ma (d), 63.5mi (s), 62.6ma (s), 61.5mi (d), 60.4ma (d), 30.9 (t), 28.1 (t), 22.1 (t), 21.4ma (t), 21.3mi (t) 18.6 (t), 13.9ma (q), 13.5mi (q), 12.0 (q), 10.3 (q); MS m/z (%) 195 (5, M⁺), 181 (33, C₁1H₁7O₂), 139 (7), 125 (32), 95 (27), 86 (100) 83 (35), 71 (99); HR-MS calcd for C₁2H₁9O₂ 195.1385, found 195.1381. 1-(rel-2S,3S-2-Methyl-3-ethyl-oxiranyl)-but-2-yn-1,4-diol (1e). To a stirred solution of m-CPBA (0.76g, 4.54 mmol, 70%) in chloroform (50 mL) at 0 °C, was added (5E)-5-methyloct-6-en-2-yn-1,4-diol (0.50g, 3.24 mmol) in chloroform (30 mL). The mixture was allowed to warm to 20 °C and stirred for 18 h. The mixture was then washed with saturated aqueous sodium hydrogen carbonate (50 mL), dried over magnesium sulfate, filtered and evaporated. The residue was taken up in dichloromethane (10 mL), and potassium fluoride (0.50g) was added. After stirring at 20 °C for 2 h, the solution was filtered, the filtrate evaporated. The residue was purified by column chromatography on silica (7:3 ethyl acetate:petroleum ether) to give 1e (0.25g, 53%) as a colourless oil (2:1 mixture of diastereoisomers); IR 3385, 2220 cm⁻¹; ¹H NMR (CDCl₃) δ 4.25 (1H^{ma}, s), 4.20 (1H, d, *J* 7Hz), 4.15 (1H^{mi}, d, *J* 7Hz), 3.85-3.65 (1H, bs), 3.10-2.95 (1H, m *J* 6Hz), 1.65-1.45 (2H, m), 1.35 (3H, s), 1.0 (3H, dt, *J* 7, 1Hz); ¹³C NMR (CDCl₃) δ 84.8^{ma} (s), 84.5^{mi} (s) 82.7^{mi} (s) 82.6^{ma} (s), 66.3^{mi} (d), 65.5^{ma} (d), 63.0^{mi} (s), 62.4^{ma} (s), 62.3^{ma} (d), 62.1^{mi} (d), 50.7 (t), 21.5^{ma} (t), 21.3^{mi} (t), 13.4^{ma} (q), 12.6^{mi} (q), 10.4. (q). 1-(rel-2S,3S-2-Phenyl-3-ethyl-oxiranyl)-oct-2-yn-1-ol (1f). To a stirred solution of (3*E*)-4-phenyldodec-3-en-6-yn-5-ol (1.00g, 3.90 mmol) in benzene (50 mL) at 20 °C was added vanadyl acetoacetonate (0.01g). After 5 minutes aqueous *tert*-butylhydroperoxide (0.70g, 5.5 mmol, 70%; CAUTION!) was added. The mixture was stirred at 20 °C for 72 h and worked up as for 1a. Column chromatography on silica (1:9 ethyl acetate: petroleum ether) afforded 1f (0.78g, 73%) as a colourless oil; IR (thin film) 3445, 2235, 1605, 1500 cm⁻¹; ¹H NMR (CDCl₃) δ 7.50-7.35 (2H, m),7.35-7.15 (3H, m), 4.50 (1H, m), 3.33 (1H, t, *J* 6Hz), 2.40 (1H, d, *J* 6Hz), 2.15 (2H, dt, *J* 6, 3Hz), 1.55-0.75 (14H, m); ¹³C NMR (CDCl₃) δ 131.5 (s), 128.8 (d), 128.5 (d), 128.0 (d), 127.9 (d), 127.7 (d), 88.1 (s), 76.6 (s), 67.1 (s), 65.5ma (d), 65.3mi (d), 63.1ma (d), 62.5mi (d), 31.0ma (t), 30.8mi (t), 28.1 (t), 22.2 (t), 22.1 (t), 18.7ma (t), 18.6mi (t), 14.2ma (q), 14.0mi (q), 10.0 (q); MS m/z (%) 272 (13, M⁺), 243 (16, C16H19O2), 157 (10, C11H9O), 148 (70), 133 (33), 105 (99), 91 (13), 71 (35); 55 (19); HR-MS calcd for C18H24O2 272.1780, found 272.1776. **1-[rel-2S,3R-2-Methyl-3(2-propyl)-oxiranyl]-oct-2-yn-1-ol (1g).** To a stirred solution of heptyne (0.09g, 0.93 mmol) in THF (5 mL) at 20 °C was added dropwise *n*-butyllithium (0.4 mL, 2.5M solution in hexanes, 1.01 mmol). After 0.5 h, a solution of 3-(2-propyl)-2-methyloxiranemethanal (0.09g, 0.72 mmol,) in THF (5 mL) was added. The mixture was stirred for 18 h and then poured onto saturated ammonium chloride solution (15 mL). The aqueous layer was extracted with ether (2x10 mL), the organic layers combined, dried over magnesium sulfate, filtered and evaporated. The residue was purified by column chromatography on silica (1:9 ethyl acetate: petroleum ether) to give **1g** (0.10g, 65%) as a pale yellow oil; IR 3425, 2230 cm⁻¹; ¹H NMR (CDCl₃) δ 4.25 (1H, s), 3.35-3.15 (1H, bs), 2.50 (1H, d, *J* 7Hz), 2.15 (2H, dt, *J* 6, 1Hz), 1.85-1.60 (1H, dqq, *J* 12, 7Hz), 1.55-0.75 (18H, m); ¹³C NMR (CDCl₃) δ 87.3 (s), 71.1 (d), 69.0 (s), 63.8mi (d), 62.8ma (s), 31.0 (t), 26.9 (t), 22.1 (t), 20.1 (q), 19.1 (q), 18.3 (q), 15.3mi (q), 13.9ma (q); MS *m/z* (%) 207 (M-H₂O, 7), 195 (12, C₁2H₁9O₂), 177 (11), 139 (12, C₈H₁1O₂), 125 (13, C₇H₉O₂), 121 (22), 111 (14, C₆H₇O₂), 107 (18), 95 (45), 71 (100), 55 (85). 2 control of the cont Mercury (II) Catalyzed Rearrangement of Epoxy Alcohols. Unless otherwise specified, the diastereoisomeric mixtures of epoxy alcohols as obtained above were used in the following cyclization reactions. 3-Methyl-6-pentyl-2,3-dihydro-4*H*-pyran-4-one (2a). To a stirred solution of 1-(2-methyloxiranyl)-oct-2-yn-1-ol (0.30g, 1.65 mmol) in acetone (30 mL, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.3 mL, 0.1M Hg(II)). The mixture was stirred for 10 min. then neutralized by addition of powdered sodium hydrogen carbonate. The mixture was stirred at 20 °C for a further 1.5 h, filtered and the filtrate evaporated. The residue was taken up into ether (15 mL) and the solution was washed with water (25 mL). The aqueous layer was extracted with ether (2 x15 mL), and the combined extracts washed with saturated aqueous sodium hydrogen carbonate (30 mL), then brine (30 mL), dried over magnesium sulfate, filtered and evaporated. The residue was purified by column chromatography on silica (1:9 ethyl acetate: petroleum ether) to give 2a (0.223g, 74%) as a pale yellow oil; IR (liquid film) 1685, 1610 cm⁻¹; ¹H NMR (CDCl₃) δ (CDCl₃) 5.25 (1H, s), 4.40 (1H, dd, *J* 11Hz, 5.5Hz), 3.98 (1H, t, *J* 11Hz), 2.48 (1H, m), 2.18 (2H, t, *J* 7Hz), 1.55-1.45 (2H, m), 1.35-1.15 (4H, m), 1.08 (3H, d, *J* 6.5Hz), 0.85 (3H, t, *J* 7Hz); ¹³C NMR (CDCl₃) δ 195.5 (s), 177.4 (s), 103.3 (d), 73.1 (d), 38.5 (d), 34.5 (t), 31.1 (t), 25.9 (t), 22.2 (t), 13.8 (q), 11.1 (q); MS *m/z* (%) 183 (88, M+1), 139 (22, C8H₁₁O₂), 123 (40), 99 (100), 71 (67); HR-MS calcd for C₁₁H₁₈O₂ 182.1307, found 182.1301. 3-Methyl-6-phenyl-2,3-dihydro-4*H*-pyran-4-one (2b). To a stirred solution of 1-(2-methyl-oxiranyl)-3-phenyl-2-propyn-1-ol (0.30g, 1.56 mmol) in acetone (30 ml, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.25 mL, 0.1M Hg(II)). The mixture was stirred for 1 h then neutralized by addition of powdered sodium hydrogen carbonate. After work-up as for 1a, the residue was purified by column chromatography on silica (1:19 ethyl acetate: petroleum ether) to give 2b (0.24g, 80%) as a white solid which crystallized from petroleum ether as plates, mp 94°C; IR (nujol mull) 1660, 1600, 1570 cm⁻¹; 1 H NMR (CDCl₃) δ 7.80-7.70 (2H, m), 7.55-7.35 (3H, m), 6.00 (1H, s), 4.58 (1H, dd, *J* 5Hz), 4.15 (1H, t, *J* 11Hz), 2.60 (1H, ddq, *J* 12, 5, 6 Hz), 1.10 (3H, d, *J* 6Hz); 13 C NMR (CDCl₃) δ 195.9 (s), 170 (s), 132.7 (s), 131.6 (t), 128.7 (d), 126.5 (d), 101.4 (d), 73.4 (t), 38.9 (d), 11.1 (q); MS m/z (%) 188 (42, M⁺), 147 (22), 105 (99, C6HO₂), 77 (26); anal. calcd for C₁₂H₁₂O₂ C, 76.57%; H, 6.43%; found C, 76.15%; H, 6.48%; HR-MS calcd for C₁₂H₁₂O₂ 188.0837; found 188.0835. **3-Butyl-6-pentyl-2,3-dihydro-4***H***-pyran-4-one** (**2c**). To a stirred solution of 1-(2-n-butyl-oxiranyl)-oct-2-yn-1-ol (0.20g, 0.89 mmol) in acetone (30 mL, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.4 mL, 0.1M Hg(II)). The mixture was stirred for 18 h then neutralized by addition of powdered sodium hydrogen carbonate. After work-up as for **1a**, the residue was purified by column chromatography on silica (1:9 ethyl acetate: petroleum ether) to give **2c** as a colourless oil (0.134g, 67%); IR (liquid film) 1670, 1610 cm⁻¹; ¹H NMR (CDCl₃) δ 5.23 (1H, s), 4.35 (1H, dd, J 6, 12 Hz), 4.15 (1H, dd, J 6, 12Hz), 2.35-2.20 (1H, m), 2.20 (2H, t, J 5Hz), 0.95-0.70 (6H, m); ¹³C NMR (CDCl₃) δ 195.4 (s), 177.1 (s), 103.5 (t), 71.4 (t), 43.9 (d), 34.5 (t), 31.2 (t), 29.1 (t), 26.6 (t), 26.0 (t), 22.7, (t) 22.3 (t), 13.9 (q); MS m/z (%) 224 (32, M⁺), 194 (12), 181 (9, C₁1H₁₇O₂), 168 (99), 141 (75), 112 (50), 97 (21); HR-MS calcd for C₁4H₂4O₂ 224.1176, found 224.1177. - **2-Ethyl-3-methyl-5-pentyl-2,3-dihydro-4***H***-pyran-4-one (2d)**. To a stirred solution of 1-(rel-2S,3S-2-methyl-3-ethyl-oxiranyl)-oct-2-yn-1-ol (0.30g, 1.47 mmol) in acetone (30 mL, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.3 mL, 0.1M Hg(II)). The mixture was stirred for 30 min then neutralized by addition of powdered sodium hydrogen carbonate. After work-up as for **1a**, the residue was purified by column chromatography on silica (1:19 ethyl acetate: petroleum ether) to give **2d** (0.16g, 56%) as a pale yellow oil; IR (liquid film) 1685, 1610 cm⁻¹; ¹H NMR (CDCl₃) δ 5.17 (1H, s), 4.10 (1H, m), 2.35-2.10 (3H, m), 1.95-1.70 (1H, m), 1.70-1.40 (3H, m), 1.40-1.10 (4H, m), 1.05-0.70 (9H, m); ¹³C NMR (CDCl₃) δ 198.1 (s), 177.3 (s), 102.5 (d), 83.2 (d), 42.5 (d), 34.5 (t), 31.4 (t), 26.1 (t), 23.4 (t), 22.3 (t), 13.9, (q) 9.8 (q), 9.6 (q); MS m/z (%) 210 (42, M⁺), 181 (61, C₁1H₁7O₂), 167 (8, C₁0H₁5O₂), 152 (16), 141 (100), 111 (8, C₆H₇O₂), 99 (14), 84 (14), 70 (46), 55 (51); HR-MS calcd for C₁3H₂7O₂ 210.1620, found 210.1614. - **2-Ethyl-3-methyl-6-methanol-2,3-dihydro-4***H***-pyran-4-one (2e)**. To a stirred solution of 1-(rel-2S,3S-2-methyl-3-ethyl-oxiranyl)-but-2-yn-1,4-diol (0.30g, 1.76 mmol) in acetone (30 mL, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.3 mL, 0.1M Hg(II)). The mixture was stirred for 1 h then neutralized by addition of powdered sodium hydrogen carbonate. After work-up as for **1a**, the residue was purified by column chromatography on silica (1:1 ethyl acetate: petroleum ether) to give **2e** (0.17g, 57%) as a pale yellow oil; IR (liquid film) 3400, 1650, 1615 cm⁻¹; ¹H NMR (CDCl₃) δ 5.50 (1H, s), 4.30-4.20 (1H, m), 4.20 (2H, s), 2.95-2.70 (1H, bs), 2.40 (1H, ddq, J 10, 3.5, 1Hz), 1.95-1.45 (2H, m, J 3.5 Hz), 1.10-0.85 (6H, m); ¹³C NMR (CDCl₃) δ 198.1 (s), 175.2, (s) 100.7 (d), 83.8 (d), 61.5 (t), 42.9 (d), 23.2 (t), 9.7 (q), 9.5 (q); MS m/z (%) 170 (22, M⁺), 130 (61), 122 (35), 101 (99), 99 (28, C4H₃O₃), 83 (27) 71 (66); HR-MS calcd for C9H₁4O₃ 170.0943, found 170.0947. - **2-Ethyl-3-phenyl-6-pentyl-2,3-dihydro-4***H***-pyran-4-one (2f)**. To a stirred solution of 1-(rel-2S,3S-2-phenyl-3-ethyl-oxiranyl)-oct-2-yn-1-ol (0.30g, 1.10 mmol) in acetone (30 mL, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.3 mL, 0.1M Hg(II)). The mixture was stirred for 25 min then neutralized by addition of powdered sodium hydrogen carbonate. After work-up as for **1a**, the residue was purified by column chromatography on silica (1:19 ethyl acetate: petroleum ether) to give **2f** (0.16g, 53%) as a pale yellow oil; IR (liquid film) 1665, 1605, 1500 cm⁻¹; ¹H NMR (CDCl₃) δ 7.35-7.02 (5H, m), 5.45 (1H, s), 4.45 (1H, m), 3.40 (1H, d, J 3.5Hz), 1.85 (2H, dt, J 7, 1.5Hz), 1.80-1.20 (8H, m), 1.05-0.80 (6H, m); ¹³C NMR (CDCl₃) δ 193.4 (s), 178.0, (s) 134.3 (s), 129.0 (d), 128.7 (d), 127.5 (d), 104.1 (d), 83.7 (d), 54.6 (d), 34.9 (t), 31.3 (t), 26.0 (t), 24.5 (t), 22.4 (t), 14.0 (q), 9.8 (q); MS m/z (%) 272 (7, M⁺), 243 (61, C₁6H₁9O₂), 214 (77), 157 (99), 128 (20, C₉H₄O), 115 (70, C₈H₃O), 105 (8), 77 (9); HR-MS calcd for C₁8H₂4O₂ 272.1776, found 272.1771. - **2-Isopropyl-3-methyl-6-pentyl-2,3-dihydro-4***H***-pyran-4-one (2g)**. To a stirred solution of 1-[rel-2S,3R-2-methyl-3(2-propyl)-oxiranyl]-oct-2-yn-1-ol (0.1g, 0.45 mmol) in acetone (30 mL, HPLC grade) at 20 °C was added a solution of yellow mercury(II) oxide dissolved in 2.5% sulfuric acid (0.15 mL, 0.1M Hg(II)). The mixture was stirred for 1 h then neutralized by addition of powdered sodium hydrogen carbonate. After work-up as for 1a, the residue was purified by column chromatography on silica (1:9 ethyl acetate: petroleum ether) to give **2g** (0.05g, 50%) as a pale yellow oil; IR (liquid film) 1665, 1660 cm⁻¹; ¹H NMR (CDCl₃) δ 5.25 (1H, s), 3.78 (1H, dd, J 12, 5Hz), 2.35 (1H, dq, J 6, 5Hz), 2.20-2.05 (2H, dt, J 6, 1Hz), 2.05-1.85 (1H, m), 1.60-1.10 (6H, m), 1.0 (6H, dd, J 7, 1Hz), 0.95-0.70 (6H, m); ¹³C NMR (CDCl₃) δ 196.0 (s), 176.9 (s), 102.9 (d), 87.7 (d), 68.2 (d), 40.8 (d), 34.6 (t), 31.1 (t), 28. 5 (t), 25.9 (t), 20.2, (q), 18.1 (q), 17.4 (q), 14.9 (q), 13.9 (q); MS m/z (%) 224 (8, M⁺), 141 (100), 125 (7, C7H9O₂), 84 (19), 69 (47); HR-MS calcd for C14H24O₂ 224.1776, found 224.1778. 6-Ethoxy-2-ethyl-3-methyl-2,3-dihydro-4H-pyran-4-one (4). To a stirred solution of 1-ethoxy-4-methylhept-4-en-1-yn-3-ol (0.25g, 1.49 mmol) in benzene (30 mL) at 20 °C was added vanadyl acetoacetonate (0.01g). After 5 minutes aqueous tert-butylhydroperoxide (0.27g, 2.1 mmol, 70%; CAUTION!) was added. The mixture was stirred at 20 °C for 72 h and worked up as for 1a. Column chromatography on silica (3:7 ethyl acetate: petroleum ether) afforded 4 (0.137g, 55%) as a pale orange oil; IR (liquid film) 1655 cm⁻¹; ¹H NMR (CDCl₃) δ 4.75 (1H, s), 4.37-4.27 (1H, m), 4.04 (2H, q, J 7Hz), 2.30 (1H, dq, J 7.5, 2.5Hz), 1.95-173 (1H, ddq, J 7.5, 2, 1Hz), 1.70-1,45 (1H, ddq, J 7.5, 2, 1Hz), 1.33 (3H, t, J 7Hz), 1.07-0.85 (6H, m); ¹³C NMR (CDCl₃) δ 197.8 9 (s), 172.9, (s), 154.8 (d), 84.2 (d), 81.2 (d), 64.9 (t), 23.6 (t), 14.2 (q), 9.8 (q), 9.7 (q); MS m/z (%) 184 (77, M⁺), 144 (10), 115 (100), 87 (64), 69 (64); HR-MS calcd for C10H16O₃ 184.1100, found 184.1101.