J. Org. Chem., 1997, 62(17), 5672-5673, DOI:10.1021/jo9708755

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supporting Information for Stereoselective Synthesis of the C3-C17 Bis-Oxane Domain of Phorboxazole A

Experimental Procedures and Compound Characterization Data

General Methods. All reactions were carried out under argon or nitrogen in oven dried glassware using standard syringe, cannula, and septa techniques. Tetrahydrofuran and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from Na /benzophenone ketyl under nitrogen. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{Et}_{3} \mathrm{~N}$, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were distilled from CaH_{2} under nitrogen. DMF was dried over activated $3 \AA$ molecular sieves. ((S)-4-(4-Methoxybenzyloxy)butan-1,2-diol was prepared from (S)-malic acid as previously described for (S)-4-(benzyloxy)butan-1,2-diol. Flash chromatography was performed using Baker Flash silica gel $60(40 \mu \mathrm{~m})$ and the solvent systems indicated. Analytical and preparative TLC was performed with 0.25 mm or 0.50 mm EM silica gel $60 \mathrm{~F}_{254}$ plates, respectively, and visualized by fluorescence upon 254 nm irradiation and/or staining with anisaldehyde reagent (450 mL of 95% $\mathrm{EtOH}, 25 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}, 15 \mathrm{~mL}$ of HOAc , and 25 mL of anisaldehyde). NMR spectra obtained in CDCl_{3} are referenced to residual CHCl_{3} at $7.25 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$. The mass spectrometers used show deviations of less than 5 ppm .

4

Preparation of Diene 4.

3-(4-Methoxybenzyloxy)-propan-1-ol (4a).
To a soln of p-anisaldehyde ($27.5 \mathrm{~g}, 202 \mathrm{mmol}$) in benzene (700 mL) was added 1,3-propanediol $(15.22 \mathrm{~g}, 200.0 \mathrm{mmol})$, and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(90 \mathrm{mg}, 500 \mu \mathrm{~mol})$. The flask was equipped with a Dean-Stark trap and the mixture heated at reflux for 18 h . The mixture was cooled to rt , concentrated by rotary evaporation to a volume of 200 mL , and diluted with THF (300 mL). The soln was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{LiAlH}_{4}(7.6 \mathrm{~g}, 0.20 \mathrm{~mol})$ followed by $\mathrm{AlCl}_{3}(27 \mathrm{~g}, 0.20 \mathrm{~mol})$ were added cautiously. The mixture was warmed to rt and stirred for 18 h . The reaction was quenched cautiously with water (150 mL) and 15% aqueous $\mathrm{NaOH}(150 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 X 200 mL) and the combined organic phases were dried over MgSO_{4}, filtered through a plug of silica gel and concentrated by rotary evaporation. The resultant pale yellow oil was distilled (bp 149-154 ${ }^{\circ} \mathrm{C}, 0.9$ Torr) to give 3 -(4-methoxybenzyloxy)-propan-1-ol (33.44 g , $170.4 \mathrm{mmol}, 85 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{q}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.27(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{p}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$.
3-(4-Methoxybenzyloxy)-propanal (4b).
To a soln of oxalyl chloride ($2.42 \mathrm{~mL}, 27.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a soln of DMSO ($3.94 \mathrm{~mL}, 55.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min before a soln of $4 \mathrm{a}(4.95 \mathrm{~g}, 25.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before $\mathrm{Et}_{3} \mathrm{~N}(17.6 \mathrm{~mL}, 126 \mathrm{mmol})$ was added and the mixture allowed to warm to rt. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, washed with water (100 mL) and brine (100 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The residue was dried by azeotropic removal of water with benzene to provide crude 4b as a pale yellow oil which was used without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 9.77(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{ddd}, J=6.1,6.1,1.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A
(E)-6-(4-Methoxybenzyloxy)-3-hexen-2-one (4c).

To a suspension of $\mathrm{LiCl}\left(1.28 \mathrm{~g}, 30.2 \mathrm{mmol}\right.$) in $\mathrm{CH}_{3} \mathrm{CN}(280 \mathrm{~mL})$ was added dimethyl (2oxopropyl)phosphonate ($5.0 \mathrm{~g}, 30 \mathrm{mmol}$), $i-\mathrm{Pr}_{2} \mathrm{NEt}(4.40 \mathrm{~mL}, 25.2 \mathrm{mmol}$) and crude $\mathbf{4 b}$ (ca. 5 g , $25 \mathrm{mmol})$. The mixture was stirred at rt for 18 h , then diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, washed with water (70 mL) and brine (70 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(150 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation. Flash chromatography ($3: 1$ hexanes-ethyl acetate) provided $4 \mathrm{c}(4.88 \mathrm{~g}, 20.8$ $\mathrm{mmol}, 83 \%$ for 2 steps) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80$ (ddd, $J=16.1,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.
(E)-2-(Triethylsilyl)oxy-6-(4-methoxybenzyl)oxy-1,3-hexadiene (4).
To a soln of diisopropylamine ($6.50 \mathrm{~mL}, 49.6 \mathrm{mmol}$) in THF (80 mL) at $0^{\circ} \mathrm{C}$ was added a soln of $\mathrm{n}-\mathrm{BuLi}$ in hexanes (19.2 mL of a 2.58 M soln, 49.5 mmol). The soln was stirred at $0^{\circ} \mathrm{C}$ for 15 min then cooled to $-78^{\circ} \mathrm{C}$ before a soln of $4 \mathrm{c}(10.54 \mathrm{~g}, 44.99 \mathrm{mmol})$ in THF (10 mL) was added over 15 min . The soln was stirred at $-78^{\circ} \mathrm{C}$ for 15 min before chlorotriethylsilane ($8.30 \mathrm{~mL}, 49.4$ mmol) was added. The resulting soln was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then warmed to $-20^{\circ} \mathrm{C}$ over 2.2 h . The reaction mixture was diluted with pentane (600 mL) and washed with cold, saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), and the combined aqueous phases were extracted with pentane (150 mL). The combined pentane phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography on silica gel neutralized with $E t_{3} \mathrm{~N}$ ($20: 1$ hexanes-ethyl acetate) afforded $4(11.64 \mathrm{~g}, 33.39 \mathrm{mmol}, 74 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.63$ (5:1 hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.93-6.04(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.53(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=8.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.74(\mathrm{q}, J=8.2 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 159.1,154.9,130.5,129.5,129.3,127.6,113.8,94.0,72.6$, $69.5,55.3,32.6,6.8,4.9$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}: 348.2121$, found 348.2108.

5
Enol ether (5).
To a soln of $4(4.638 \mathrm{~g}, 13.31 \mathrm{mmol})$ and (S)-glyceraldehyde acetonide ($3.52 \mathrm{~g}, 27 \mathrm{mmol}$) in Et 2 O (90 mL) at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(330 \mu \mathrm{~L}, 2.7 \mathrm{mmol})$. The soln was stirred at $-78^{\circ} \mathrm{C}$ for 30 min then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was diluted with ethyl acetate (120 mL), washed with water (40 mL) and brine (50 mL), and the combined aqueous phases were extracted with ethyl acetate ($2 \times 25 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Filtration through a plug of silica gel, neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, and eluting with hexanes and 20:1 hexanes-ethyl acetate afforded 5 as a mixture of diastereomers ($5.47 \mathrm{~g}, 11.4 \mathrm{mmol}, 86 \%$) which was used without further separation. Chromatographic purification provided an analytical sample of diastereomerically pure 5 as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.48$ ($5: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 7.24$ (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H})$.

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A

6
Ketone (6).
To a soln of $5(5.47 \mathrm{~g}, 11.4 \mathrm{mmol})$ in THF (90 mL) at $0^{\circ} \mathrm{C}$ was added a soln of tetra-nbutylammonium fluoride in THF neutralized (as indicated by pH paper) with $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (11.4 mL of a 1.0 M soln, 11 mmol$)$. The soln was stirred for 10 min then diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, washed with water ($2 \times 70 \mathrm{~mL}$) and brine (70 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($3: 1$ hexanes-ethyl acetate) afforded 6 ($2.903 \mathrm{~g}, 7.966 \mathrm{mmol}, 60 \%$ from 4) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.32$ (2:1 hexanes-ethyl acetate); $[\alpha]{ }^{23}{ }_{\mathrm{D}}$ $=+16\left(c 0.78, \mathrm{CHCl}_{3}\right)$; IR (neat): $2870,1720,1610,1510,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 5 \mathrm{H}), 3.58(\mathrm{ddd}, J=8.8,8.8,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H})$, 2.55 (ddd, $J=14.5,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (ddd, $J=14.5,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dd, $J=14.5$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=14.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (dddd, $J=14.1,8.5,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80$ (dddd, $J=14.2,8.4,5.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ $206.6,159.2,130.3,129.4,113.8,109.9,77.6,74.3,72.7,66.7,65.5,55.3,47.8,43.8,36.4,26.6$, 25.1; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ [M]+: 364.1886, found 364.1895.

$6 a$
Axial alcohol (6a).
To a soln of $6(2.850 \mathrm{~g}, 7.820 \mathrm{mmol})$ in THF $(260 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a soln of potassium tri-sec-butylborohydride in THF (11.7 mL of a 1.0 M soln, 12 mmol). The soln was stirred for 30 \min below $-70^{\circ} \mathrm{C}$ then warmed to $-25^{\circ} \mathrm{C}$ over 2 h . The reaction was quenched with aqueous $\mathrm{NaOH}(47 \mathrm{~mL}$ of a 1.0 M soln, 47 mmol$)$ and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(21 \mathrm{~mL}, 30 \mathrm{wt} \%)$ then warmed to 0 ${ }^{\circ} \mathrm{C}$ and stirred for 20 min . The mixture was diluted with water (600 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 X 90 mL) and the combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($1: 1$ hexanes-ethyl acetate) afforded $\mathbf{6 a}$ ($2.785 \mathrm{~g}, 7.600 \mathrm{mmol}, 97 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.34$ ($1: 1$ hexanes-ethyl acetate); $[\alpha]^{23} \mathrm{D}=$ +15.9 (c 1.12, CHCl_{3}); IR (neat): $\left.3450,2900,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.25$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}$) , 3.69 (ddd, $J=11.7,6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 1.84$ (dddd, $J=14,2.4,2.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H})$ 1.59-1.76 (m, 3H), 1.42-1.55 (m, 2H), $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta 159.1,130.5,129.3,113.7,109.3,78.1,72.7,72.6,68.8,67.0,66.3,64.1,55.2,38.7$, $36.2,34.8,26.6,25.3$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 367.2121$, found 367.2091 .

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Donuain of Phorboxazole A

6b
TBDPS ether (6b).
To a soln of 6 a ($2.497 \mathrm{~g}, 6.814 \mathrm{mmol}$) in DMF (34 mL) was added imidazole ($3.71 \mathrm{~g}, 54.5$ mmol), 4-dimethylaminopyridine ($100 \mathrm{mg}, 819 \mu \mathrm{~mol}$) and t-butylchlorodiphenylsilane (7.10 mL , $27.3 \mathrm{mmol})$. The mixture was stirred at rt for 18 h then diluted with water (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 75 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography (20:1-5:1 hexanes-ethyl acetate) afforded $6 \mathrm{~b}(3.853 \mathrm{~g}, 6.370 \mathrm{mmol}, 93 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.32$ ($5: 1$ hexanes-ethyl acetate); $[\alpha]^{23} \mathrm{D}=+7.9\left(c 1.26, \mathrm{CHCl}_{3}\right)$; IR (neat): $3090,2900,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right):$ $\delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 3 \mathrm{H}), 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): ~ \delta 159.1,135.73,135.69,134.2,134.0,130.7,129.67,129.65$, $129.2,127.6,113.7,109.3,78.2,72.9,72.6,69.4,66.8,66.6,65.7,55.2,39.1,36.3,35.2,27.0$, $26.7,25.4,19.3$; HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{+} 603.3143$, found 603.3160 .

6c

Alcohol (6c).

To a soln of $\mathbf{6 b}(547 \mathrm{mg}, 949 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(48 \mathrm{~mL})$ was added $\mathrm{t}-\mathrm{BuOH}(4.8 \mathrm{~mL})$, aq. phosphate buffer ($480 \mu \mathrm{~L}, \mathrm{pH} 7$) and DDQ ($431 \mathrm{mg}, 1.90 \mathrm{mmol}$). The mixture was stirred at rt for 30 min then additional phosphate buffer ($400 \mu \mathrm{~L}, \mathrm{pH} 7$) and DDQ ($140 \mathrm{mg}, 617 \mu \mathrm{~mol}$) were added and stirring continued for 30 min . The reaction mixture was diluted $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, washed with aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, water (75 mL) and brine (75 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered through a plug of silica gel and concentrated by rotary evaporation. Flash chromatography ($3: 1-2: 1$ hexanes-ethyl acetate) afforded $6 \mathrm{c}(444 \mathrm{mg}, 916 \mu \mathrm{~mol}, 97 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.35$ ($2: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.64(\mathrm{~m}, 4 \mathrm{H})$, $7.39(\mathrm{~m}, 6 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 3.90-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.78(\mathrm{~m}$, $4 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ $135.7,135.6,134.0,133.8,129.75,129.73,127.6,109.3,77.9,72.9,72.6,66.1,65.3,61.6,38.8$, $37.6,34.9,27.0,26.6,25.2,19.2$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+485.2723$, found 485.2734.

7
Aldehyde (7).
To a soln of $6 \mathrm{c}(175 \mathrm{mg}, 361 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaHCO}_{3}(300 \mathrm{mg}$, 3.57 mmol) and Dess-Martin periodinane ($230 \mathrm{mg}, 542 \mu \mathrm{~mol}$). The mixture was warmed to rt and stirred for 45 min before additional $\mathrm{NaHCO}_{3}(150 \mathrm{mg}, 1.79 \mathrm{mmol})$ and Dess-Martin periodinane ($230 \mathrm{mg}, 542 \mu \mathrm{~mol}$) were added. Stirring was continued for 1.25 h before the reaction mixture was diluted $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and allowed to stir for an additional 30 min . The layers were separated and the organic phase was washed with water (15 mL) and brine (15 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($6: 1$ hexanesethyl acetate) afforded $7\left(139 \mathrm{mg}, 288 \mu \mathrm{~mol}, 80 \%\right.$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.64$ ($2: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 9.79$, (t, $\left.J=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66,(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H})$, 4.52 (dddd, $J=11.1,8.7,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.85-4.05(\mathrm{~m}, 4 \mathrm{H}), 2.53$ (ddd, $J=16.2$, $8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (ddd, $J=16.2,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s} 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 201.2,135.7$, $135.6,133.8,133.6,129.8,127.6,109.3,77.9,73.0,67.7,66.6,65.3,49.4,38.5,34.6,27.0,26.6$, 25.3, 19.2; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+483.2566$, found 483.2564 .

Hydroxy silane (8a).
To a soln of (S)-4-(4-methoxybenzyloxy)butan-1,2-diol ($1.076 \mathrm{~g}, 4.755 \mathrm{mmol}$) in THF (60 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(285 \mathrm{mg}, 11.9 \mathrm{mmol})$ and the mixture warmed to rt and stirred for 1 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and N -tosylimidazole ($1.057 \mathrm{~g}, 4.755 \mathrm{mmol}$) was added in three equal portions over 20 min . The mixture was warmed to rt and stirred for 40 min before $\mathrm{CuI}(90 \mathrm{mg}$, $470 \mu \mathrm{~mol}$) was added and the mixture cooled to $-40^{\circ} \mathrm{C}$. A soln of Grignard reagent prepared from 2-bromo-3-(trimethylsilyl)propene ($2.87 \mathrm{~mL}, 16.6 \mathrm{mmol}$), magnesium ($520 \mathrm{mg}, 21.4$ mmol) and THF (25 mL) was added. The mixture was warmed to $-10^{\circ} \mathrm{C}$ over 1.3 h and then quenched with aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The mixture was diluted with ethyl acetate (150 mL), washed with water (75 mL) and brine (75 mL), and the combined aqueous phases were extracted with ethyl acetate (75 mL). The combined organic phases were dried over MgSO_{4}, filtered through a plug of silica gel and concentrated by rotary evaporation. Flash chromatography ($5: 1$ hexanes-ethyl acetate) afforded $8 \mathbf{a}(838 \mathrm{mg}, 2.60 \mathrm{mmol}, 55 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, $500 \mathrm{MHz}): \delta 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~m}, 1 \mathrm{H})$, $4.29(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, J=9.5,5.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.5,6,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (ddd, $J=$ $13.5,8,1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=13.5,5,1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{dd}, J=13,1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.49(\mathrm{dd}, J=13,1 \mathrm{~Hz}, 1 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H})$.

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A

8b
TES ether silane (8b).
To a soln of $8 \mathbf{a}(601 \mathrm{mg}, 1.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}$) was added imidazole ($387 \mathrm{mg}, 5.68$ mmol), 4-dimethylaminopyridine ($16 \mathrm{mg}, 130 \mu \mathrm{~mol}$), and chlorotriethylsilane ($410 \mu \mathrm{~L}, 2.44$ mmol). The mixture was stirred at rt for 1 h , diluted with $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$, washed with water (25 mL) and brine (25 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($20: 1$ hexanes-ethyl acetate) afforded $8 \mathbf{8 b}$ ($753 \mathrm{mg}, 1.72$ mmol, 93%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, 1 H), 3.97 (dddd, $J=7.5,7.5,5.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18$ (ddd, J $=13.5,5.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (ddd, $J=13.5,7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (dddd, $J=14,7.1,7.1,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.63$ (dddd, $J=14,7.7,6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.54 (dd, $J=13.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.48 (dd, $J=$ $13.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.1,144.0,130.7,129.3,113.7,110.0,72.6,68.5,66.9,55.3,46.9,36.9$, 27.1, 7.0, 5.0, -1.4.

TES bromide (8).
To a soln of $8 \mathbf{b}(157 \mathrm{mg}, 359 \mu \mathrm{~mol})$ in ethyl acetate (35 mL) at ca. $-50^{\circ} \mathrm{C}$ was added bromine dropwise until a light yellow color persisted. A soln of imidazole ($100 \mathrm{mg}, 1.47 \mathrm{mmol}$) in ethyl acetate (3 mL) was added quickly and the yellow color dissipated. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$, filtered through a plug of silica gel and washed with aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine (15 mL), and the combined aqueous phases were extracted with ethyl acetate (15 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($25: 1$ hexanes-ethyl acetate) afforded $8(122 \mathrm{mg}, 275 \mu \mathrm{~mol}$, 77%) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.38$ ($10: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): δ $7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.51$ (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=6.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H}), 0.60$
 $68.1,66.6,55.3,41.4,37.4,36.9,6.9,5.0$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{SiBr}[\mathrm{M}-\mathrm{H}]+441.1471$, found 441.1453.

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A

9

10

Coupled products (9 and 10).
To a suspension of CrCl_{2} (containing $1 \% \mathrm{w} / \mathrm{w} \mathrm{NiCl}, 370 \mathrm{mg}, 3.01 \mathrm{mmol}$) in THF (2 mL) was added a soln of $8(446 \mathrm{mg}, 1.01 \mathrm{mmol})$ in THF (4 mL) followed by a soln of $7(200 \mathrm{mg}, 414$ $\mu \mathrm{mol}$) in THF (4 mL). The mixture was stirred for 3.5 h then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The mixture was diluted with ethyl acetate (75 mL), washed with water (25 mL) and brine (30 mL), and the combined aqueous phases were extracted with ethyl acetate (2 X 20 mL). The combined organic phases were dried over MgSO_{4}, filtered through a plug of silica gel and concentrated by rotary evaporation. Flash chromatography (10:1-6:1 hexanes-ethyl acetate) afforded $9(163 \mathrm{mg}, 192 \mu \mathrm{~mol}, 46 \%)$ and and $10(117 \mathrm{mg}, 138 \mu \mathrm{~mol}, 33 \%)$ as colorless oils. Data for 9: $\mathrm{R}_{\mathrm{f}} 0.24$ (5:1 hexanes-ethyl acetate); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.65(\mathrm{~m}$, $4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 7.26$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.06(\mathrm{~m}, 6 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.53(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, $1.24-1.90(\mathrm{~m}, 8 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.0,143.6,135.7,135.6,134.0,133.9,130.6,129.68,129.66,129.2$, $127.6,114.9,113.7,109.3,78.0,73.0,72.6,69.8,68.5,66.6,66.5,66.4,65.6,55.2,44.8,44.2$, $41.8,38.6,36.9,34.9,27.0,26.6,25.2,19.2,6.9,5.0$; HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{8} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 847.5003, found 847.4938.

Data for 10: $\mathrm{R}_{\mathrm{f}} 0.19$ (5:1 hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.65(\mathrm{~m}, 4 \mathrm{H})$, $7.39(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 3.88-4.08(\mathrm{~m}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H})$, $3.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.91(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29$ (m, 2H), $1.09(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl 3,75 $\mathrm{MHz}): \delta 159.0,143.3,135.7,135.6,133.9,133.7,130.6,129.75,129.72,129.2,127.63,127.62$, $114.9,113.7,109.3,77.8,73.4,72.8,72.6,69.9,68.2,66.7,66.3,65.2,55.2,44.5,42.1,39.2$, $36.7,34.9,27.0,26.6,25.2,19.2,6.9,5.0$; HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{8} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+847.5003$, found 847.5033.

Supporting Information for

Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A

10a
p-Nitrobenzoate (10a).
To a soln of $10(78 \mathrm{mg}, 92 \mu \mathrm{~mol})$ in benzene (3 mL) was added $\mathrm{PPh}_{3}(121 \mathrm{mg}, 461 \mu \mathrm{~mol}$), 4nitrobenzoic acid ($69 \mathrm{mg}, 410 \mu \mathrm{~mol}$) and diethyl azodicarboxylate ($73 \mu \mathrm{~L}, 460 \mu \mathrm{~mol}$). The mixture was stirred for 1.5 h then diluted with ethyl acetate (35 mL), washed with water (10 mL), and brine $(10 \mathrm{~mL})$, and the combined aqueous phases were extracted with ethyl acetate (10 mL). The combined organic phases were dried over MgSO_{4}, filtered through a plug of silica gel and concentrated by rotary evaporation. Flash chromatography (7:1 hexanes-ethyl acetate) afforded samples of impure (42 mg) and pure $\mathbf{1 0 a}\left(60 \mathrm{mg},>100 \%\right.$ combined) as colorless oils: $\mathrm{R}_{\mathrm{f}} 0.70$ (2:1 hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 8.25$ (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.19$ (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.82-4.08(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-$ $2.49(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 0.92$ $(\mathrm{m}, 18 \mathrm{H}), 0.58(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{3} \mathrm{C}^{\mathrm{C} \mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 163.8,159.0,150.3,142.0$, $136.0,135.6,135.5,133.9,133.7,130.64,130.58,129.71,129.68,129.2,127.6,123.4,115.5$, $113.7,109.2,77.9,73.5,72.6,70.7,68.5,68.3,67.1,66.7,65.6,55.2,44.3,42.3,40.8,39.1,36.9$, $34.9,26.8,26.6,25.2,19.1,6.9,5.0$.
To a soln of impure $10 \mathrm{a}(102 \mathrm{mg}$, ca. $92 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}, 140 \mu \mathrm{~mol})$. The mixture was stirred for 22 h then diluted with ethyl acetate $(60 \mathrm{~mL})$, washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, and the combined aqueous phases were extracted with ethyl acetate (20 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography (7:1-6:1 hexanes-ethyl acetate) afforded $9(59 \mathrm{mg}, 70 \mu \mathrm{~mol}, 76 \%$ from 10$)$ that matched 9 prepared from 7 and $\mathbf{8}$ above.

Supporting Information for

Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A

(R)-MTPA-9
(R)-Mosher Ester of 9 ((R)-MTPA-9).
To a soln of $9(6.1 \mathrm{mg}, 7.2 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})$ was added 4-dimethylaminopyridine (13 $\mathrm{mg}, 110 \mu \mathrm{~mol}$) and (S)- α-methoxy- α-(trifluoromethyl)phenylacetyl chloride ($6 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$). The mixture was stirred for 30 min and then diluted with ethyl acetate $(10 \mathrm{~mL})$, washed with water (3 mL) and brine (3 mL), and the combined aqueous phases were extracted with ethyl acetate (5 $\mathrm{mL})$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($6: 1$ hexanes-ethyl acetate) afforded (\boldsymbol{R})-MTPA-9 (5.0 mg , $4.7 \mu \mathrm{~mol}, 65 \%)$ as a pale yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.59(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~m}$, $9 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dd}, J=13.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.31(\mathrm{~m}$, $3 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}$, $9 \mathrm{H}), 0.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.

(R)-MTPA-10
(R)-Mosher Ester of 10 ((R)-MTPA-10)

Compound 10 was treated as described above for 9 to afford (\boldsymbol{R})-MTPA-10 (97%) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.62(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 9 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81-4.10(\mathrm{~m}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}$, $2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (dd, $J=14.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (dd, $J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.91$ (m, $6 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}$).

Supporting Information for Stereoselective Synthesis of the C3-C17 Bis-Oxane Domain of Phorboxazole A

11
Mesylate (11).
To a soln of $9(160 \mathrm{mg}, 189 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(260 \mu \mathrm{~L}, 1.87$ $\mathrm{mmol})$ and $\mathrm{MsCl}(73 \mu \mathrm{~L}, 940 \mu \mathrm{~mol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min and then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was diluted with ethyl acetate (70 mL), washed with water (15 mL) and brine (15 mL), and the combined aqueous phases were extracted with ethyl acetate (15 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($7: 1$ hexanes-ethyl acetate) afforded 11 ($168 \mathrm{mg}, 182 \mu \mathrm{~mol}, 96 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.64$ ($2: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right): \delta 7.72(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H})$, $4.87(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 4 \mathrm{H}), 4.14(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{dd}, J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.44-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.98$ $(\mathrm{m}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.84-$ $1.39(\mathrm{~m}, 4 \mathrm{H}), 0.64(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}\right): \delta 159.3,142.2,135.8$, $135.7,134.3,134.0,130.9,129.7,129.2,127.8,127.7,115.9,113.7,108.9,78.4,77.1,73.0,72.5$, $68.2,67.1,66.3,65.8,54.4,44.2,43.0,40.9,39.0,37.7,37.5,35.7,26.9,26.6,25.5,19.2,7.0$, 5.2; HRMS calcd for $\mathrm{C}_{50} \mathrm{H}_{76} \mathrm{O}_{10} \mathrm{Si}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 947.45954$, found 947.4560 .

11a
Hydroxy mesylate (11a).
To a soln of $11(167 \mathrm{mg}, 180 \mu \mathrm{~mol})$ in THF (8 mL) at $0^{\circ} \mathrm{C}$ was added a soln of tetra-nbutylammonium fluoride in THF ($270 \mu \mathrm{~L}$ of a 1.0 M soln, $270 \mu \mathrm{~mol}$). The soln was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 45 min then diluted with ethyl acetate (60 mL), washed with water (10 mL) and brine (10 mL), and the combined aqueous phases were extracted with ethyl acetate (10 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($2: 1$ hexanes-ethyl acetate) afforded 11a ($137 \mathrm{mg}, 169 \mu \mathrm{~mol}, 94 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.55$ (1:1 hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$): $\delta 7.72(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~m}$, $8 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J$ $=8.4,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.22(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{dd}, J=8.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=$

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A
$6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.10-$ $2.36(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 0.84-$ $1.41(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}\right): \delta 159.4,142.6,135.8,135.7,134.3,134.0,130.4$, $129.7,129.1,127.8,127.7,115.6,113.8,108.9,78.3,77.4,72.8,72.7,69.0,68.3,67.1,66.8$, $65.8,54.4,44.1,42.9,40.6,38.9,37.7,36.7,35.7,26.9,26.6,25.4,19.2$; HRMS calcd for $\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{10} \mathrm{SiS}[\mathrm{M}+\mathrm{Na}]+833.3731$, found 833.3718 .

Bispyran acetonide (12).
A soln of $11 \mathbf{a}(136 \mathrm{mg}, 168 \mu \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{CN}(11 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ was heated to reflux for 47 h . The soln was cooled to rt, diluted with ethyl acetate (60 mL), washed with water (10 mL), and brine (10 mL), and the combined aqueous phases were extracted with ethyl acetate (2×10 mL). The combined organic phases were dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. Flash chromatography ($6: 1$ hexanes-ethyl acetate) afforded 12 ($103 \mathrm{mg}, 144 \mu \mathrm{~mol}$, 86%) as a pale yellow oil: $\mathrm{R}_{\mathrm{f}} 0.69$ ($2: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): δ $7.67(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.03(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{dd}, J=13.0,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 159.0,142.1,135.7,134.0,133.9,130.6,129.7,129.1,127.6$, $113.7,110.2,109.2,78.1,73.1,72.6,69.04,68.96,68.92,66.9,66.7,65.7,55.2,40.0,39.1,38.8$, $35.2,34.1,27.0,26.7,25.3,19.2$; HRMS calcd for $\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+715.4032$, found 715.3990 .

Supporting Information for

Stereoselective Synthesis of the C3-CI7
Bis-Oxane Domain of Phorboxazole A

Bispyran diol (12a).

To a soln of $12(103 \mathrm{mg}, 144 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg}, 30 \mu \mathrm{~mol})$. The soln was stirred at rt for 7 h , then diluted with ethyl acetate (90 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, water (10 mL), and brine (10 mL), and the combined aqueous phases were extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($1: 1$ hexanesethyl acetate) afforded $\mathbf{1 2 a}\left(94.6 \mathrm{mg}, 140 \mu \mathrm{~mol}, 97 \%\right.$) as a pale yellow oil: $\mathrm{R}_{\mathrm{f}} 0.03$ (2:1 hexanesethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.44$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 3 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=$ $13.5,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dddd}, J=14,6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=14.3,7.3$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dddd, $J=13.1,6.6,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.47$ (ddd, $J=14,5.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39$ (ddd, $J=13.5,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 75 MHz): $\delta 159.0,141.9,135.7,133.9,130.6,129.7,129.2,127.6,113.7,110.3,74.3,73.5$, $72.5,69.8,69.3,69.2,66.6,65.7,63.5,55.2,39.7,39.4,39.3,39.0,34.3,33.7,27.0,19.2$; HRMS calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 675.3719$, found 675.3685 .

Bispyran TES ether (13).
To a soln of 12a ($94.4 \mathrm{mg}, 140 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added imidazole ($28 \mathrm{mg}, 410$ $\mu \mathrm{mol}$). The soln was cooled to $-78^{\circ} \mathrm{C}$, chlorotriethylsilane ($28 \mu \mathrm{~L}, 170 \mu \mathrm{~mol}$) was added and the mixture was stirred for 30 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, washed with water (5 mL) and brine (5 mL), and the combined aqueous phases were extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2×5 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($6: 1$ hexanes-ethyl acetate) afforded $13(91.5 \mathrm{mg}, 116 \mu \mathrm{~mol}$, 83%) as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.56$ ($2: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.67$ (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}$, $1 \mathrm{H}), 3.90-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dd}, J=10,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=10,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52(\mathrm{~m}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=13,4 \mathrm{~Hz}$, 1 H), 2.08 (dd, $J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=13,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$,

Supporting Information for
Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A
$1.55(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (ddd, $J=13.5,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ (ddd, $J=13.5,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10$ $(\mathrm{s}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.0$, $142.2,135.70,135.68,134.2,134.0,130.6,129.6,129.2,127.6,113.7,110.2,73.8,72.6,71.8$, $69.05,68.97,68.8,66.7,65.9,62.9,55.2,40.0,39.1,38.7,34.5,34.1,27.0,19.3,6.7,4.3$; HRMS calcd for $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 789.4584$, found 789.4521.

Bispyran azide (13a).
To a soln of $13(91.3 \mathrm{mg}, 116 \mu \mathrm{~mol})$ in THF (5 mL) was added $\mathrm{PPh}_{3}(152 \mathrm{mg}, 580 \mu \mathrm{~mol})$, diethyl azodicarboxylate ($91 \mu \mathrm{~L}, 580 \mu \mathrm{~mol}$), and diphenylphosphoryl azide ($120 \mu \mathrm{~L}, 557 \mu \mathrm{~mol}$). The reaction was stirred for 30 min , then concentrated by rotary evaporation, and filtered through a plug of silica gel eluting with $5: 1$ hexanes-ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was dissolved in ethyl acetate (40 mL), washed with water (5 mL), and brine (5 mL), and the combined aqueous phases were extracted with ethyl acetate (10 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated by rotary evaporation. Flash chromatography ($15: 1$ hexanes-ethyl acetate) afforded 13a ($82.5 \mathrm{mg}, 101$ $\mu \mathrm{mol}, 88 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.69$ ($2: 1$ hexanes-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.66(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H})$, 4.14 (ddd, $J=11.5,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{dd}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.77 (dd, $J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.22$ (ddd, $J=6.3,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=$ $13,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=13,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=13,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (dd, $J=13,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.79$ (ddd, $J=14,6,8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 4 \mathrm{H}), 1.32$ (ddd, J $=13.5,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.0(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.0,142.1,135.6,133.9,130.6,129.7,129.2,127.6,113.6,110.2,72.6$, $71.1,69.2,69.1,68.6,66.7,66.6,65.9,62.7,55.2,39.8,39.2,38.8,38.7,35.5,33.6,27.0,19.3$, 6.7, 4.3 .

Supporting Information for

Stereoselective Synthesis of the C3-C17
Bis-Oxane Domain of Phorboxazole A

Bispyran amine (2).

To a soln of 13a ($82.3 \mathrm{mg}, 101 \mu \mathrm{~mol}$) in THF (4 mL) was added $\mathrm{PPh}_{3}(53 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and water ($18 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). The soln was heated at reflux for 13 h , cooled to rt , additional water (35 $\mu \mathrm{L}, 1.9 \mathrm{mmol}$) was added and the soln was heated at reflux for an additional 3 h . The soln was cooled to rt and concentrated by rotary evaporation. Flash chromatography on silica gel neutralized with $\mathrm{Et}_{3} \mathrm{~N}$ ($1: 1$ hexanes-ethyl acetate) afforded $2(70.3 \mathrm{mg}, 89.2 \mu \mathrm{~mol}, 88 \%$) as a pale yellow oil: $\mathrm{R}_{\mathrm{f}} 0.23$ ($1: 2$ hexanes-ethyl acetate); $[\alpha]^{23}{ }_{\mathrm{D}}=-17.7$ (c $0.975, \mathrm{CHCl}_{3}$); IR (neat): 3390, 3080, $2950,1515,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}$, $4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=10,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=9.5,7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{q}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=13,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=13,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=13,5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02(\mathrm{dd}, J=13,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.59(\mathrm{~m}, 4 \mathrm{H})$, 1.28 (ddd, $J=13.5,11.5,2 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=8 \mathrm{~Hz}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=8 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.0,142.2,135.7,134.1,130.6,129.6,129.2,127.6,113.7$, $110.2,72.6,72.2,69.1,69.0,68.6,66.7,66.1,64.7,57.0,55.2,40.0,39.2,39.1,38.7,35.4,34.1$, $27.0,19.2,6.8,4.4$; HRMS calcd for $\mathrm{C}_{46} \mathrm{H}_{69} \mathrm{O}_{6} \mathrm{NSi}_{2}[\mathrm{M}+\mathrm{H}]+788.4744$, found 788.4777 .

standard proton parameters

$\exp 152 \mathrm{pul}$

4

Standard proton parameters

6

RC-III-18
expl stdih

$6 \mathbf{a}$

A

RC-III-21
expl std1h

6b

RC-II-229
expl stdin

SAMPLE	DEC. \& VT
date Jul 1096	dfra 239.889
solvent CDC13	dn Hi
file /oldfid/5/cfor	dpwr 30
rdc/reli22s_Hi	dof 0
ACQUISITION	dm nnn
sfrq 299.891	dmm
tn H1	dmf 200
at 2.001	dseq undefined
np 24000	dres undefined
5 w 5997.9	homo
fb 3400	PROCESSING
bs 16	1b 0.10
tpwr 63	Wtfile
pw 9.5	proc ft
d1 1.500	fn 131072
tof 1322.9	math
nt 16	
ct 16	werr react (wait*)
alock n	wexp autolist ('gin
$\text { gain flags }{ }^{\text {not used }}$	
11 n	-11de_dept_acq*)
in n	wbs
dp y	wnt
hs yn	
sp DISPLAY -76.0	
sp wp	
vs 78	
sc	
Wc 225	
hzmm 11.50	
is 1167.86	
rfl 2771.0	
rfp 2171.2	
th ${ }^{2}$	
1ns 100.000	
ai cdc ph	

7

STANDARD IH OBSERVE

8
expl stdih

-
\qquad

standard 1h observe

STANDARD 1H OBSERVE

STANDARD 1H OBSERVE

standard 1h observe

Standard in observe

SAMPLE		DEC. \& VT	
date	Apr 1897	dfrq	300.170
solvent	nt Benzene	dn	H1
file /d	/data/cfordic/~	dpwr	30
	rciif183_h	dof	0
	QUISITION	dm	nnn
sfrq	300.171	dimm	6
tn	H1	dimf	200
at	1.999	ciseq	
np	24000	dres	1.0
sw	6003.3	PROCESSING	
fb	3000		
bs	16	1b	0.10
tpwr	55	wtfile	
pw	17.0	proc	$f t$
d1	1.500	fn	131072
tof	900.5	math	f
nt	32		
ct	32	werr	
a lock	S	wexp	wft
gain F	not used FLAGS	wbs wht	
11	n		
in	n		
dp	y		
DISPLAY			
sp	-67.2		
wp	2576.7		
vs	164		
5 c	0		
we	210		
hzimm	12.27		
is	500.00		
rfi	2746.5		
rfp	2146.2		
th	20		
ins	100.000		
nm cal	cdc ph		

11

STANDARD 1H OBSERVE

expl stdih
sample
date AAMPLE 2187 dfra DEC. \& VT

 wnt

DISPLAY
-79.6
2589.3
162 2589.3
162
0
210
1233 210
12.33
500.00
2746.5
2146.2
20
100.000 ph

11a

standard proton parameters

exp1 s2pul

12

STANDARD PROTON PARAMETERS
$\operatorname{exp1} \mathrm{s} 2 \mathrm{pu}$

$\operatorname{exp1} \mathrm{s} 2 \mathrm{pu} 1$

SAMPLE 28	DEC. * VT 870
date Apr 2897	dfrq 4ss.870
solvent CDCl3	dn H1
file /data/cfordc/~	dpwr 15
rcijis1_h	dof 0
ACQUISITION	da mnn
sfrq 459.871	dmm c
tn H1	dmf 200
at 2.001	dseq
np 40000	dres 1.0
sw 9997.5	homo n
fb 6000	PROCESSING
bs 16	1b 0.10
tpwr 58	wtfile
pw 7.5	proc ft
di 1.500	fn 131072
tof 1504.1	math f
nt 32	
ct 32	werr
alock n	wexp wft
gain flacs not used	whs wnt wft
i] n	
in n	
dp ${ }_{\text {d }}$	
hs display yn	
sp -104.1	
wp 4287.3	
vs 33	
sc 0	
wc 210	
hzmme 20.42	
is 33.57	
rfi 4614.4	
rfp 3619.1	
th 7	
ins 100.000	
ai cdc ph	

cdc ph

13

STANDARD PROTON PARAMETERS
$\operatorname{exp1}$ s2pu1

Standard proton paraneters

expl s2pul

